research communications
rac-2-[2-(4-chlorophenyl)-3,4-dihydro-2H-1-benzopyran-4-ylidene]hydrazine-1-carbothioamide
and Hirshfeld surface analysis ofaDepartment of Chemistry, Nagaland University, Hqtrs: Lumami, Nagaland-798627, India, and bSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India
*Correspondence e-mail: prabha7chem@gmail.com
In the title compound, C16H14N3OSCl, a Schiff base derivative of a thiosemicarbazide with a flavanone, the 4-chlorophenyl ring is inclined to the benzene ring of the chromane ring system by 30.72 (12)°. The pyran ring has an with the methine C atom as the flap. The mean plane of the thiourea unit is twisted with respect to the benzene ring of the chromanone ring system, subtending a dihedral angle of 19.78 (19)°. In the crystal, molecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction. The intermolecular contacts in the crystal have been analysed using Hirshfeld surface analysis.
Keywords: crystal structure; flavanone; chromane; thiosemicarbazide; Schiff base; N—H⋯S hydrogen bonds; supramolecular chemistry; Hirshfeld surface analysis.
CCDC reference: 1893434
1. Chemical context
Flavanones, a subclass of ). Flavanones are also known for their potential bioactivities against cancer (Bauvois et al., 2003). Thiosemicarbazides are a class of versatile ligands exhibiting important physicochemical properties due to their π-delocalization and flexibility of coordination modes. Therefore, a combination of flavanones and thiosemicarbazides may lead to compounds having synergistic properties of both classes of compounds. Schiff base derivatives of thiosemicarbazides have been studied for their biological and pharmacological properties (Bai et al., 2017). However, Schiff base derivatives of flavanones with thiosemicarbazides have not been explored extensively (Brodowska et al., 2016; Bargujar et al., 2018). In particular, structurally characterized flavanone–thiosemicarbazone are rare in the literature. The presence of NH and S moieties in such compounds opens up the possibility of studying the role of the comparatively less explored class of N—H⋯S interactions in building supramolecular architectures. This is of interest as hydrogen bonding to sulfur is known to play an important role in biological systems (Andersen et al., 2014; Walters et al., 2005). Considering the above, we have synthesized the title compound through a Schiff base condensation reaction, and report herein on its and the Hirshfeld surface analysis.
are widely recognized for their nutraceutical values (Testai & Calderone, 20172. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The 4-chlorophenyl ring (C11–C16) is inclined to the benzene ring (C5–C10) of the chromanone ring system by 30.72 (12)°. The pyran ring (O1/C2–C5/C10) has an with atom C2 as the flap, being displaced by 0.655 (2) Å from the mean plane through the other five atoms of the ring. The mean plane of the thiourea unit (N2/C17/S1/N3) is twisted with respect to benzene ring (C5-C10) of the chromane ring system, forming a dihedral angle of 19.78 (19)°.
3. Supramolecular features
A strong hydrogen bond often involves highly electronegative second row elements such as N, O and F. However, the less electronegative third row elements (P, S and Cl) are also known to take part in hydrogen-bonding interactions. In the crystal of the title compound, molecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction (Table 1 and Fig. 2). In the crystal, there are no other significant short intermolecular interactions present.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots for the title compound
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). A recent article by Tiekink and collaborators (Tan et al., 2019) `outlines the various procedures and what can be learned by using CrystalExplorer'.
The Hirshfeld surface of the title compound mapped over dnorm is given in Fig. 3a. The red spots indicate specific points of contact in the crystal. The Hirshfeld surface mapped over the shape-index is given in Fig. 3b, showing red spots and blue regions indicative of possible C⋯H/H⋯C (i.e. C—H⋯π) contacts. The Hirshfeld surface mapped over the curvedness is given in Fig. 3c. Here the region around the chromane ring system is fairly flat, indicative of possible π–π interactions. However, these interactions must be extremely weak as analysis of the structure using PLATON (Spek, 2009) did not indicate the presence of any significant C—H⋯π or offset π–π interactions in the crystal.
The full two-dimensional fingerprint plot for the title compound is given in Fig. 4a. The principal intermolecular interactions (Fig. 4b–4f) are delineated into H⋯H (38.9%), C⋯H/H⋯C (20.3%), S⋯H/H⋯S (13.1%), Cl⋯H/H⋯Cl (12.0%) and N⋯H/H⋯N (3.0%) contacts. Note that only for the H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts is de + di (where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively), less than the sum of the van der Waals radii of the individual atoms.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016) for a similar structure gave one hit, the compound 2′[(2-(4-fluorophenyl)chroman-4-ylidene]isonicotinohydrazide (CSD refcode TEJQUV; Nie et al., 2006). Here, the pyran ring has an and the 4-fluorophenyl ring is inclined to the benzene ring of the chromane ring system by 66.57 (11)°. In the title compound, the pyran ring also has an and the 4-chloropheny ring is inclined to the benzene ring of the chromane ring system by only 30.72 (12)°.
A search for the 2-(tetrahydro-4H-pyran-4-ylidene)hydrazine-1-carbothioamide skeleton gave one hit, viz. (E)-2-[2,6-bis(4-chlorophenyl)-3,5-dimethyltetrahydro-4H-pyran-4-ylidene]hydrazinecarbothioamide (UQAWAL; Umamatheswari et al., 2011). Here, the pyran ring has a chair conformation and the bond lengths and angles of the hydrazinecarbothioamide unit are similar to those in the title compound.
6. Synthesis and crystallization
The synthesis of the title compound was achieved by following a reported procedure with some modifications (Bargale et al., 1988). Conc. H2SO4 (10 mol %) in ethanol (5 ml) was added to a stirred solution of 2-(4-chlorophenyl)-chroman-4-one (0.258 g, 1 mmol) (Zheng et al., 2013) and thiosemicarbazide (0.091 g, 1 mmol). The mixture was refluxed for 96 h with continuous stirring. After completion of the reaction, as monitored by TLC, the solvent was removed under reduce pressure and then ice-cold water was added. The resulting solid product was collected by filtration, washed with water (3–4 times) and finally with hexane and then dried at room temperature. Pale-yellow plate-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in acetonitrile (yield 90%, m.p. 483-486 K). IR (KBr, cm−1): 3417, 3245, 3152, 2984, 2888, 2790, 1598, 1512, 1454, 1298, 1250, 1089, 1077, 883, 766, 507, 498. 1H NMR (400 MHz, DMSO-d6), δ ppm: 10.47 (s, 1H, NH), 8.32 (d, 2H, J = 6.50 Hz, NH2); 8.13 (s, 1H, Ar-H); 7.54 (dd, 4H, J = 8.41 Hz, Ar-H); 7.35–7.31 (m, 1H, Ar-H); 7.02–6.97 (m, 2H, Ar-H); 5.25 (dd, 1H, J = 2.36, 2.40 Hz, CH); 2.79 (dd, 1H, J = 12.10, 12.0 Hz, CH2); 2.51 (s, 1H, CH2).13C NMR (300 MHz, DMSO-d6), δ ppm: 178.84; 156.71; 141.71; 138.79; 132.76; 131.24; 128.44; 128.27; 125.49; 121.48; 120.10; 117.47; 75.41; 31.83. Analysis calculated for C16H14N3OSCl: C, 57.91; H, 4.25; N, 12.66; S, 9.66. Found: C, 57.85; H, 4.28; N, 12.61; S, 9.59.
7. Refinement
Crystal data, data collection and structure . The NH and NH2 H atoms were located in a difference-Fourier map and refined freely. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1893434
https://doi.org/10.1107/S2056989019005073/zp2036sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989019005073/zp2036Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005073/zp2036Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019005073/zp2036Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/03 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXL2018/03 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C16H14ClN3OS | Z = 2 |
Mr = 331.81 | F(000) = 344 |
Triclinic, P1 | Dx = 1.395 Mg m−3 |
a = 7.8218 (7) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.4207 (6) Å | Cell parameters from 2014 reflections |
c = 12.3402 (11) Å | θ = 3.7–66.5° |
α = 99.838 (7)° | µ = 3.41 mm−1 |
β = 95.771 (7)° | T = 293 K |
γ = 96.515 (7)° | Plate, yellow |
V = 789.66 (12) Å3 | 0.50 × 0.17 × 0.10 mm |
Rigaku OD, SuperNova, Dual, Cu at zero, Eos diffractometer | 2346 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.019 |
ω scans | θmax = 66.7°, θmin = 3.7° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) | h = −9→9 |
Tmin = 0.464, Tmax = 1.000 | k = −10→7 |
4478 measured reflections | l = −14→14 |
2766 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: mixed |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1825P] where P = (Fo2 + 2Fc2)/3 |
2766 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.03040 (9) | 0.27189 (6) | 1.04983 (4) | 0.0560 (2) | |
Cl1 | 0.63580 (11) | 1.37767 (8) | 0.85742 (7) | 0.0909 (3) | |
O1 | 0.2996 (2) | 0.65276 (19) | 0.57103 (12) | 0.0597 (4) | |
N1 | 0.1205 (2) | 0.3125 (2) | 0.75055 (14) | 0.0492 (4) | |
N2 | 0.1066 (3) | 0.3537 (2) | 0.86177 (14) | 0.0492 (4) | |
H2N | 0.089 (3) | 0.448 (3) | 0.892 (2) | 0.061 (7)* | |
N3 | 0.0872 (4) | 0.0835 (2) | 0.86608 (18) | 0.0689 (6) | |
H3AN | 0.115 (4) | 0.073 (3) | 0.800 (3) | 0.076 (9)* | |
H3BN | 0.062 (3) | −0.002 (3) | 0.896 (2) | 0.074 (8)* | |
C2 | 0.3685 (3) | 0.6714 (3) | 0.68520 (18) | 0.0499 (5) | |
H2 | 0.467722 | 0.610398 | 0.689533 | 0.060* | |
C3 | 0.2332 (3) | 0.6009 (3) | 0.74971 (17) | 0.0493 (5) | |
H3A | 0.281782 | 0.610110 | 0.826354 | 0.059* | |
H3B | 0.134816 | 0.661355 | 0.748204 | 0.059* | |
C4 | 0.1747 (3) | 0.4250 (2) | 0.69944 (17) | 0.0450 (4) | |
C5 | 0.1826 (3) | 0.3784 (3) | 0.58006 (16) | 0.0474 (5) | |
C6 | 0.1305 (3) | 0.2204 (3) | 0.52088 (19) | 0.0606 (6) | |
H6 | 0.091678 | 0.139229 | 0.558488 | 0.073* | |
C7 | 0.1353 (3) | 0.1822 (3) | 0.4087 (2) | 0.0681 (7) | |
H7 | 0.104231 | 0.075412 | 0.371456 | 0.082* | |
C8 | 0.1866 (3) | 0.3031 (4) | 0.35112 (19) | 0.0650 (7) | |
H8 | 0.186752 | 0.278143 | 0.274751 | 0.078* | |
C9 | 0.2373 (3) | 0.4599 (3) | 0.40644 (19) | 0.0607 (6) | |
H9 | 0.269457 | 0.541354 | 0.367367 | 0.073* | |
C10 | 0.2406 (3) | 0.4967 (3) | 0.52061 (17) | 0.0500 (5) | |
C11 | 0.4330 (3) | 0.8494 (3) | 0.72737 (18) | 0.0506 (5) | |
C12 | 0.4111 (3) | 0.9656 (3) | 0.6620 (2) | 0.0604 (6) | |
H12 | 0.352887 | 0.934776 | 0.590588 | 0.073* | |
C13 | 0.4752 (3) | 1.1273 (3) | 0.7020 (2) | 0.0668 (7) | |
H13 | 0.460876 | 1.204685 | 0.657535 | 0.080* | |
C14 | 0.5595 (3) | 1.1727 (3) | 0.8070 (2) | 0.0624 (6) | |
C15 | 0.5862 (4) | 1.0597 (3) | 0.8729 (2) | 0.0719 (7) | |
H15 | 0.645873 | 1.091518 | 0.943806 | 0.086* | |
C16 | 0.5233 (4) | 0.8983 (3) | 0.8325 (2) | 0.0682 (7) | |
H16 | 0.541890 | 0.821123 | 0.876540 | 0.082* | |
C17 | 0.0759 (3) | 0.2312 (2) | 0.91799 (17) | 0.0470 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0973 (4) | 0.0372 (3) | 0.0360 (3) | 0.0047 (3) | 0.0169 (3) | 0.0114 (2) |
Cl1 | 0.1088 (6) | 0.0550 (4) | 0.1009 (6) | −0.0103 (4) | −0.0092 (4) | 0.0184 (4) |
O1 | 0.0846 (11) | 0.0556 (9) | 0.0446 (8) | 0.0059 (8) | 0.0172 (7) | 0.0219 (7) |
N1 | 0.0673 (11) | 0.0448 (9) | 0.0385 (9) | 0.0057 (8) | 0.0134 (8) | 0.0132 (7) |
N2 | 0.0761 (12) | 0.0362 (9) | 0.0386 (9) | 0.0049 (8) | 0.0174 (8) | 0.0121 (7) |
N3 | 0.127 (2) | 0.0374 (10) | 0.0482 (12) | 0.0088 (11) | 0.0328 (12) | 0.0121 (9) |
C2 | 0.0547 (11) | 0.0521 (12) | 0.0491 (12) | 0.0100 (9) | 0.0147 (9) | 0.0200 (9) |
C3 | 0.0593 (12) | 0.0485 (11) | 0.0438 (11) | 0.0050 (9) | 0.0130 (9) | 0.0163 (9) |
C4 | 0.0498 (11) | 0.0480 (11) | 0.0406 (10) | 0.0083 (8) | 0.0092 (8) | 0.0143 (8) |
C5 | 0.0500 (11) | 0.0577 (12) | 0.0380 (10) | 0.0090 (9) | 0.0085 (8) | 0.0154 (9) |
C6 | 0.0730 (15) | 0.0630 (14) | 0.0427 (12) | −0.0017 (11) | 0.0043 (10) | 0.0101 (10) |
C7 | 0.0738 (16) | 0.0771 (17) | 0.0467 (13) | 0.0005 (13) | 0.0025 (11) | 0.0017 (12) |
C8 | 0.0578 (13) | 0.101 (2) | 0.0356 (11) | 0.0103 (13) | 0.0068 (9) | 0.0095 (12) |
C9 | 0.0627 (13) | 0.0833 (17) | 0.0434 (12) | 0.0128 (12) | 0.0161 (10) | 0.0244 (11) |
C10 | 0.0519 (11) | 0.0594 (13) | 0.0440 (11) | 0.0128 (9) | 0.0121 (9) | 0.0173 (9) |
C11 | 0.0518 (11) | 0.0508 (12) | 0.0546 (12) | 0.0066 (9) | 0.0154 (9) | 0.0198 (10) |
C12 | 0.0671 (14) | 0.0556 (13) | 0.0624 (14) | 0.0069 (10) | 0.0047 (11) | 0.0241 (11) |
C13 | 0.0729 (15) | 0.0549 (14) | 0.0773 (17) | 0.0061 (11) | 0.0021 (13) | 0.0305 (12) |
C14 | 0.0617 (13) | 0.0518 (13) | 0.0755 (16) | 0.0005 (10) | 0.0090 (12) | 0.0208 (11) |
C15 | 0.0828 (17) | 0.0661 (16) | 0.0636 (15) | −0.0061 (13) | −0.0029 (13) | 0.0199 (12) |
C16 | 0.0828 (17) | 0.0581 (14) | 0.0663 (16) | 0.0004 (12) | 0.0026 (13) | 0.0283 (12) |
C17 | 0.0642 (12) | 0.0382 (10) | 0.0407 (10) | 0.0027 (9) | 0.0109 (9) | 0.0129 (8) |
S1—C17 | 1.687 (2) | C5—C6 | 1.398 (3) |
Cl1—C14 | 1.746 (2) | C6—C7 | 1.372 (3) |
O1—C10 | 1.361 (3) | C6—H6 | 0.9300 |
O1—C2 | 1.433 (3) | C7—C8 | 1.383 (4) |
N1—C4 | 1.281 (3) | C7—H7 | 0.9300 |
N1—N2 | 1.375 (2) | C8—C9 | 1.373 (4) |
N2—C17 | 1.351 (3) | C8—H8 | 0.9300 |
N2—H2N | 0.85 (3) | C9—C10 | 1.387 (3) |
N3—C17 | 1.315 (3) | C9—H9 | 0.9300 |
N3—H3AN | 0.85 (3) | C11—C16 | 1.385 (3) |
N3—H3BN | 0.88 (3) | C11—C12 | 1.385 (3) |
C2—C11 | 1.511 (3) | C12—C13 | 1.383 (3) |
C2—C3 | 1.514 (3) | C12—H12 | 0.9300 |
C2—H2 | 0.9800 | C13—C14 | 1.364 (4) |
C3—C4 | 1.505 (3) | C13—H13 | 0.9300 |
C3—H3A | 0.9700 | C14—C15 | 1.374 (4) |
C3—H3B | 0.9700 | C15—C16 | 1.381 (4) |
C4—C5 | 1.468 (3) | C15—H15 | 0.9300 |
C5—C10 | 1.396 (3) | C16—H16 | 0.9300 |
C10—O1—C2 | 114.56 (16) | C8—C7—H7 | 120.1 |
C4—N1—N2 | 118.41 (17) | C9—C8—C7 | 120.2 (2) |
C17—N2—N1 | 117.54 (17) | C9—C8—H8 | 119.9 |
C17—N2—H2N | 117.8 (17) | C7—C8—H8 | 119.9 |
N1—N2—H2N | 122.4 (17) | C8—C9—C10 | 120.0 (2) |
C17—N3—H3AN | 117 (2) | C8—C9—H9 | 120.0 |
C17—N3—H3BN | 121.9 (18) | C10—C9—H9 | 120.0 |
H3AN—N3—H3BN | 121 (3) | O1—C10—C9 | 117.1 (2) |
O1—C2—C11 | 107.89 (17) | O1—C10—C5 | 121.98 (19) |
O1—C2—C3 | 110.01 (18) | C9—C10—C5 | 120.9 (2) |
C11—C2—C3 | 114.02 (18) | C16—C11—C12 | 118.5 (2) |
O1—C2—H2 | 108.3 | C16—C11—C2 | 119.6 (2) |
C11—C2—H2 | 108.3 | C12—C11—C2 | 121.8 (2) |
C3—C2—H2 | 108.3 | C13—C12—C11 | 120.5 (2) |
C4—C3—C2 | 109.75 (17) | C13—C12—H12 | 119.7 |
C4—C3—H3A | 109.7 | C11—C12—H12 | 119.7 |
C2—C3—H3A | 109.7 | C14—C13—C12 | 119.7 (2) |
C4—C3—H3B | 109.7 | C14—C13—H13 | 120.1 |
C2—C3—H3B | 109.7 | C12—C13—H13 | 120.1 |
H3A—C3—H3B | 108.2 | C13—C14—C15 | 121.0 (2) |
N1—C4—C5 | 117.19 (19) | C13—C14—Cl1 | 119.26 (19) |
N1—C4—C3 | 126.53 (19) | C15—C14—Cl1 | 119.7 (2) |
C5—C4—C3 | 116.28 (17) | C14—C15—C16 | 119.1 (3) |
C10—C5—C6 | 117.4 (2) | C14—C15—H15 | 120.4 |
C10—C5—C4 | 119.36 (19) | C16—C15—H15 | 120.4 |
C6—C5—C4 | 123.21 (19) | C15—C16—C11 | 121.0 (2) |
C7—C6—C5 | 121.6 (2) | C15—C16—H16 | 119.5 |
C7—C6—H6 | 119.2 | C11—C16—H16 | 119.5 |
C5—C6—H6 | 119.2 | N3—C17—N2 | 117.00 (19) |
C6—C7—C8 | 119.7 (2) | N3—C17—S1 | 122.99 (17) |
C6—C7—H7 | 120.1 | N2—C17—S1 | 120.00 (16) |
C4—N1—N2—C17 | −169.8 (2) | C8—C9—C10—C5 | −4.0 (3) |
C10—O1—C2—C11 | 178.22 (17) | C6—C5—C10—O1 | −177.7 (2) |
C10—O1—C2—C3 | −56.8 (2) | C4—C5—C10—O1 | 3.8 (3) |
O1—C2—C3—C4 | 57.2 (2) | C6—C5—C10—C9 | 3.4 (3) |
C11—C2—C3—C4 | 178.59 (17) | C4—C5—C10—C9 | −175.0 (2) |
N2—N1—C4—C5 | −178.00 (17) | O1—C2—C11—C16 | −173.0 (2) |
N2—N1—C4—C3 | 2.7 (3) | C3—C2—C11—C16 | 64.5 (3) |
C2—C3—C4—N1 | 150.2 (2) | O1—C2—C11—C12 | 4.2 (3) |
C2—C3—C4—C5 | −29.1 (2) | C3—C2—C11—C12 | −118.3 (2) |
N1—C4—C5—C10 | 179.93 (19) | C16—C11—C12—C13 | −1.3 (4) |
C3—C4—C5—C10 | −0.7 (3) | C2—C11—C12—C13 | −178.5 (2) |
N1—C4—C5—C6 | 1.6 (3) | C11—C12—C13—C14 | −0.5 (4) |
C3—C4—C5—C6 | −179.1 (2) | C12—C13—C14—C15 | 1.8 (4) |
C10—C5—C6—C7 | −0.2 (4) | C12—C13—C14—Cl1 | −178.7 (2) |
C4—C5—C6—C7 | 178.2 (2) | C13—C14—C15—C16 | −1.3 (4) |
C5—C6—C7—C8 | −2.4 (4) | Cl1—C14—C15—C16 | 179.2 (2) |
C6—C7—C8—C9 | 1.9 (4) | C14—C15—C16—C11 | −0.5 (4) |
C7—C8—C9—C10 | 1.3 (4) | C12—C11—C16—C15 | 1.8 (4) |
C2—O1—C10—C9 | −155.12 (19) | C2—C11—C16—C15 | 179.1 (2) |
C2—O1—C10—C5 | 26.0 (3) | N1—N2—C17—N3 | 9.8 (3) |
C8—C9—C10—O1 | 177.1 (2) | N1—N2—C17—S1 | −171.68 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···S1i | 0.85 (3) | 2.65 (3) | 3.480 (2) | 167 (2) |
N3—H3BN···S1ii | 0.88 (3) | 2.52 (3) | 3.392 (2) | 171 (2) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y, −z+2. |
Acknowledgements
We thank Nagaland University, AMRC– IIT Mandi and the University of Hyderabad for the research facilities.
Funding information
PM is grateful to the SERB–DST, Govt. of India for financial support (grant No. SB/EMEQ-030/2014). RZ also thanks the SERB–DST for financial support.
References
Andersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074–11082. Web of Science CrossRef CAS PubMed Google Scholar
Bai, J., Wang, R.-H., Qiao, Y., Wang, A. & Fang, C.-J. (2017). Drug Des. Dev. Ther. 11, 2227–2237. CrossRef CAS Google Scholar
Bargale, S. & Shastry, V. R. (1988). Orient. J. Chem. 4, 53–57. CAS Google Scholar
Bargujar, S., Chandra, S., Chauhan, R., Rajor, H. K. & Bhardwaj, J. (2018). Appl. Organomet. Chem. 32, e4149–e4162. CrossRef Google Scholar
Bauvois, B., Puiffe, M.-L., Bongui, J.-B., Paillat, S., Monneret, C. & Dauzonne, D. (2003). J. Med. Chem. 46, 3900–3913. Web of Science CrossRef PubMed CAS Google Scholar
Brodowska, K., Sykuła, A., Garribba, E., Łodyga-Chruścińska, E. & Sójka, M. (2016). Transition Met. Chem. 41, 179–189. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Testai, L. & Calderone, V. (2017). Nutrients 9, 502-514. CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Umamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1–9. Web of Science CSD CrossRef CAS Google Scholar
Walters, M. A., Roche, C. L., Rheingold, A. L. & Kassel, S. W. (2005). Inorg. Chem. 44, 3777–3779. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, X., Jiang, H., Xie, J., Yin, Z. & Zhang, H. (2013). Synth. Commun. 43, 1023–1029. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.