research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of butyl 2-amino-5-hy­dr­oxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate and 2-meth­­oxy­ethyl 2-amino-5-hy­dr­oxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici NA, Italy, and bDepartment of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
*Correspondence e-mail: antonio.carella@unina.it

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 2 April 2019; accepted 20 May 2019; online 24 May 2019)

The title benzo­furan derivatives 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF1), C19H18N2O6, and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF2), C18H16N2O7, recently attracted attention because of their promising anti­tumoral activity. BF1 crystallizes in the space group P[\overline{1}]. BF2 in the space group P21/c. The nitro­phenyl group is inclined to benzo­furan moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the mol­ecular structures of BF1 and BF2 is the intra­molecular N—H⋯Ocarbon­yl hydrogen bond. In the crystal of BF1, the mol­ecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of mol­ecules along the b-axis direction are linked by O—H⋯Ometh­oxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).

1. Chemical context

Organic heterocyclic materials play a very important role in the field of synthetic chemistry because of their relevant biological activity: the great majority of marketed drugs contain at least one heterocycle in their mol­ecular structure (Wu, 2012[Wu, Y. J. (2012). Prog. Heterocycl. Chem. 24, 1-53.]; Gomtsyan, 2012[Gomtsyan, A. (2012). Chem. Heterocycl. Compd, 48, 7-10.]). At the same time, the high polarizability of heterocycles results in particular optical and electronic properties that make these systems key elements in materials chemistry, fundamental for the rapid development of new advanced materials. Heterocyclic-based novel materials have been investigated in the fields of organic photovoltaics (Maglione et al., 2017[Maglione, C., Carella, A., Centore, R., Chávez, P., Lévêque, P., Fall, S. & Leclerc, N. (2017). Dyes Pigments, 141, 169-178.]; Maglione, Carella, Centore et al., 2016[Maglione, C., Carella, A., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D. & Di Carlo, A. (2016). J. Photochem. Photobiol. Chem. 321, 79-89.]; Maglione, Carella, Carbonara et al., 2016[Maglione, C., Carella, A., Carbonara, C., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D., Lanuti, A. & Di Carlo, A. (2016). Dyes Pigments, 133, 395-405.]; Holliday et al., 2016[Holliday, S., Ashraf, R. S., Wadsworth, A., Baran, D., Yousaf, S. A., Nielsen, C. B., Tan, C. H., Dimitrov, S. D., Shang, Z., Gasparini, N., Alamoudi, M., Laquai, F., Brabec, C. J., Salleo, A., Durrant, J. R. & McCulloch, I. (2016). Nat. Commun. 7, 11585.]; Jin & Irfan, 2017[Jin, R. & Irfan, A. (2017). RSC Adv. 7, 39899-39905.]; Bruno et al., 2014[Bruno, A., Villani, F., Grimaldi, I. A., Loffredo, F., Morvillo, P., Diana, R., Haque, S. & Minarini, C. (2014). Thin Solid Films, 560, 14-19.]; Morvillo et al., 2016[Morvillo, P., Ricciardi, R., Nenna, G., Bobeico, E., Diana, R. & Minarini, C. (2016). Solar Energy Mater. Solar Cells, 152, 51-58.]), luminescent materials (Caruso et al., 2013[Caruso, U., Panunzi, B., Roviello, A. & Tuzi, A. (2013). Inorg. Chem. Commun. 29, 138-140.]; Borbone et al., 2016[Borbone, F., Caruso, U., Concilio, S., Nabha, S., Panunzi, B., Piotto, S., Shikler, R. & Tuzi, A. (2016). Eur. J. Inorg. Chem. 2016, 818-825.]) non-linear optics (Carella et al., 2005[Carella, A., Centore, R., Riccio, P., Sirigu, A., Quatela, A., Palazzesi, C. & Casalboni, M. (2005). Macromol. Chem. Phys. 206, 1399-1404.]; Caruso et al., 2006[Caruso, U., Diana, R., Fort, A., Panunzi, B. & Roviello, A. (2006). Macromol. Symp. 234, 87-93.]). Among compounds containing oxygen heterocycles, benzo­furan derivatives have proven to be powerful systems displaying a wide range of biological properties including anti­microbial (Alper-Hayta et al., 2008[Alper-Hayta, S., Arisoy, M., Temiz-Arpaci, Ö., Yildiz, I., Aki, E., Özkan, S. & Kaynak, F. (2008). Eur. J. Med. Chem. 43, 2568-2578.]; Piotto et al., 2017[Piotto, S., Concilio, S., Sessa, L., Diana, R., Torrens, G., Juan, C., Caruso, U. & Iannelli, P. (2017). Molecules, 22, 1372.]; Soni & Soman, 2014[Soni, J. N. & Soman, S. S. (2014). Eur. J. Med. Chem. 75, 77-81.]), anti­tumor (Xie et al., 2015[Xie, F., Zhu, H., Zhang, H., Lang, Q., Tang, L., Huang, Q. & Yu, L. (2015). Eur. J. Med. Chem. 89, 310-319.]; Hayakawa et al., 2004[Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H., Naruto, S. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 455-458.]), anti-parasitic (Thévenin et al., 2013[Thévenin, M., Thoret, S., Grellier, P. & Dubois, J. (2013). Bioorg. Med. Chem. 21, 4885-4892.])and analgesic activities (Wang et al., 2017[Wang, Y. N., Liu, M. F., Hou, W. Z., Xu, R. M., Gao, J., Lu, A. Q., Xie, M. P., Li, L., Zhang, J. J., Peng, Y., Ma, L. L., Wang, X. L., Shi, J. G. & Wang, S. J. (2017). Molecules, 22, 236.]). In the field of materials chemistry, benzo­furan derivatives have found applications in the area of industrial dyes as optical whiteners or disperse dyes characterized by high fastness properties. Moreover, inter­esting applications of benzo­furan-based organic sensitizers for dye-sensitized solar cells (Justin Thomas & Baheti, 2013[Justin Thomas, K. R. & Baheti, A. (2013). Mater. Technol. 28, 71-87.]) have been recently discovered. Different synthetic strategies are reported for the synthesis of benzo­furans, the majority of which are associated with transition-metal-catalysed annulation reactions of pre-functionalized substrates that are typically synthesized by Heck or Sonogashira coupling reactions (Anderson et al., 2006[Anderson, K. W., Ikawa, T., Tundel, R. E. & Buchwald, S. L. (2006). J. Am. Chem. Soc. 128, 10694-10695.]; Guo et al., 2009[Guo, X., Yu, R., Li, H. & Li, Z. (2009). J. Am. Chem. Soc. 131, 17387-17393.]; Li et al., 2011[Li, C., Zhang, Y., Li, P. & Wang, L. (2011). J. Org. Chem. 76, 4692-4696.]; Yue et al., 2005[Yue, D., Yao, T. & Larock, R. C. (2005). J. Org. Chem. 70, 10292-10296.]). In a recent paper, inspired by a previous work (Obushak, 2002[Obushak, M. (2002). Pol. J. Chem. 1419-1424.]), we managed to fine-tune a synthetic procedure for the synthesis of two benzo­furan derivatives and their anti­proliferative activity and ability to bind telomeric DNA was proved (Carella et al., 2019[Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77-88.]). This synthesis was realized by using a cheap and simple reaction known as the Craven reaction, which does not need either a precious transition metal as catalyst or an inert gas environment to be carried on. The Craven reaction is a well-known procedure for the synthesis of benzodi­furan derivatives that consists of the reaction of 1,4-benzo­quinone with various cyano­acetic esters in alcoholic ammonia (King & Newall, 1965[King, T. J. & Newall, C. E. (1965). J. Chem. Soc. pp. 974-977.]; Caruso et al., 2009[Caruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622-634.]; Carella et al., 2012[Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, D. (2012). Dyes Pigments, 95, 116-125.]). While the Craven reaction typically affords benzodi­furan derivatives almost exclusively, we observed (Carella et al., 2019[Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77-88.]) that, by properly optimizing the reaction conditions, it is possible to isolate benzo­furan deriv­atives as the main product and in significant yields (up to 38%). The formation of benzo­furan derivatives was confirmed by elemental CHN analysis.

[Scheme 1]

As shown in Fig. 1[link], two different constitutional isomers can in principle form during the reaction, with the p-nitro­phenyl group functionalizing the benzo­furan ring in position 4 (isomer A) or 7 (isomer B). The NMR analysis and the differential scanning calorimetry (DSC) analysis performed suggested that only one of the two possible isomers was recovered for both of the benzo­furan derivatives. In particular, following the results of NMR analysis, in the previous paper we proposed that type A isomers were obtained, namely the title compounds. The determination of the real mol­ecular structure of the isomer actually formed during the reaction is undoubtedly also inter­esting in consideration of the anti-tumoral properties shown by this class of compounds (Carella et al., 2019[Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77-88.]). In this context, to ultimately confirm that the A isomer forms, we report here the structural investigation of the previously synthesized benzo­furan derivatives BF1 and BF2.

[Figure 1]
Figure 1
Reaction scheme for the preparation of benzo­furan derivatives BF1 and BF2: the reaction could afford two different isomers.

2. Structural commentary

XRD analysis of single crystals grown as described in the experimental section confirmed that the benzo­furan derivatives previously reported (Carella et al., 2019[Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77-88.]) are the isomers A indicated in Fig. 1[link]. The mol­ecular structures of BF1 and BF2 are shown in Figs. 2[link] and 3[link]. The obtained isomers are characterized by a cisoid configuration of the two substituents at C2 and C4, with a higher steric hindrance as compared to isomer B: in this case, the ortho-orientating effect of the electron-acceptor nitro­phenyl group drives the path of the reaction, prevailing over steric considerations.

[Figure 2]
Figure 2
Mol­ecular structure of BF1, with displacement ellipsoids drawn at the 30% probability level. The minor component of the disordered butyl group is drawn with open bonds.
[Figure 3]
Figure 3
Mol­ecular structure of BF2 with displacement ellipsoids drawn at the 30% probability level.

No unusual geometric features were found in either structure, all bond lengths and angles being in expected ranges and in agreement with analogous benzo­furan derivatives reported in the Database survey section of this paper. A common structural feature in BF1 and BF2 is the intra­molecular N—H⋯O hydrogen bond between the amine group and the carbonyl oxygen (Tables 1[link] and 2[link]) that leads to near co-planarity of the –COO– group and the benzo­furan ring [15.71 (18)° in BF1 and 23.85 (2)° in BF2]. The geometry at N1 amine atom is almost planar [deviation of N1 from least square plane of attached atoms is 0.01 (4) Å in BF1 and 0.16 (2) Å in BF2]. A shortening of the N1—C1 bond distance [1.318 (7) Å in BF1 and 1.335 (3) Å in BF2] is observed, compared with a mean value for a Csp2—NH2 bond of 1.336 (17) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 0, S1-S19.]). Such geometric features suggest a partial conjugation of the N atom with benzo­furan that is more marked in BF1, where a shorter N1—C1 bond distance and a more evident planar geometry at N1 are found. The benzo­furan group is planar within 0.049 (4) Å in BF1 and 0.040 (2) Å in BF2; the nitro­benzene group is planar within 0.027 (5) Å in BF1 and 0.074 (2) Å in BF2. The dihedral angle between benzo­furan and nitro­phenyl mean planes is 69.26 (16)° in BF1 and 60.20 (6)° in BF2. The orientation of the nitro­phenyl group clearly minimizes inter­actions with the adjacent ester group. Small differences (Fig. 4[link]) are found between the mol­ecular geometries of BF1 and BF2, apart from the different orientation of the meth­oxy­ethyl or butyl groups resulting from a different torsion angle around C16—C17 [mean value of 172.9 (11)° in BF1 and 83.6 (2)° in BF2]. In BF1, the butyl group is disordered over two orientations that differ in the torsion angle around C17—C18 bond [C16—C17A—C18A—C19A = 171.5 (17)° and C16—C17B—C18B—C19B = −81 (2)°].

Table 1
Hydrogen-bond geometry (Å, °) for BF1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.64 3.444 (8) 146
C11—H11⋯O3ii 0.93 2.53 3.237 (8) 133
C17B—H17D⋯O6 0.97 2.74 3.226 (8) 112
N1—H1A⋯O6 0.95 (7) 2.15 (7) 2.747 (8) 120 (6)
O2—H2⋯O6iii 0.88 (2) 1.94 (3) 2.755 (6) 154 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) -x+1, -y, -z; (iii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for BF2[link]

Cg1 and Cg2 are the centroids of the O1/C1/C2/C3/C8 and C3–C8 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3i 0.97 2.49 3.366 (3) 150
N1—H1A⋯O2ii 0.89 (3) 2.14 (3) 3.013 (3) 165 (3)
N1—H1B⋯O6 0.83 (3) 2.22 (3) 2.819 (3) 129 (3)
O2—H2O⋯O7iii 0.88 (3) 1.81 (3) 2.691 (2) 176 (3)
C10—H10⋯Cg1iii 0.93 2.76 3.521 (3) 139
C11—H11⋯Cg2iii 0.93 2.80 3.601 (3) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Superimposition of BF1 (light green) with BF2 (magenta) mol­ecules showing the different orientation of the ester groups. H atoms are not included for clarity. The two positions of the disordered butyl group are shown for BF1.

3. Supra­molecular features

In BF1 and BF2, the crystal packing is dominated by strong N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions (Tables 1[link] and 2[link]). Weak intermolecular C—H⋯π interactions are also present in BF2 due to the edge-to-face contacts between nitrobenzene and furan ring systems.

In BF1, the amine group is involved only in one intra­molecular hydrogen bond, acting as donor towards the close carbonyl O atom. The hy­droxy group is involved only in one inter­molecular hydrogen bond, acting as donor towards the carbonyl O atom of an adjacent mol­ecule. In the crystal packing, chains of strong O—H⋯O head-to-tail hydrogen-bonded mol­ecules are formed along a-axis direction (Fig. 5[link]). The chains are connected into a three-dimensional network by weak inter­molecular inter­actions involving the nitro group as acceptor from Car—H atoms (Table 1[link]). In particular, the C11 atom acts as a hydrogen-bond donor to the nitro O3 atom, forming centrosymmetric dimers.

[Figure 5]
Figure 5
Partial crystal packing of BF1 showing a chain of head-to-tail hydrogen-bonded mol­ecules (intra- and inter­molecular hydrogen bonds are indicated by cyan dashed lines). Only the major component of the disordered buthyl group is shown.

In BF2, one more O acceptor atom is present compared to BF1. The amine group is involved both in intra- and inter­molecular hydrogen bonds. Similarly to BF1, an intra­molecular N—H⋯O hydrogen bond is formed with the carbonyl oxygen atom. An inter­molecular N—H⋯O hydrogen bond is formed with the hy­droxy oxygen atom of an adjacent mol­ecule as acceptor. The hy­droxy group is also involved as donor in O—H⋯O hydrogen bonds with the meth­oxy O atom of an adjacent mol­ecule. In the crystal packing, neighbouring head-to-tail hydrogen-bonded chains of mol­ecules are linked through O—H⋯Ometh­oxy hydrogen bonds and weak intermolecular C—H⋯π(benzofuran) interactions, wrapping around the 21 screw axis (Fig. 6[link]).

[Figure 6]
Figure 6
Partial crystal packing of BF2 showing two head-to-tail hydrogen-bonded chains connected by O—H⋯Ometh­oxy hydrogen bonds (the deeper chain is drawn in capped stick style; intra- and inter­molecular hydrogen bonds are indicated by cyan dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018 with February 2019 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 25 structures that match the fragment made of benzo­furan substituted at the 2-position with –NX2 (X = C, H). The hits found are crystal structures determined at temperatures in the range 103–298 K. Among these, 11 structures match the 2-amino-benzo­furane fragment present in BF1 and BF2: DOZYIB (Caruso et al., 2009[Caruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622-634.]), FERXEG (Otsuka et al., 2004[Otsuka, H., Takeda, Y., Hirata, E., Shinzato, T. & Bando, M. (2004). Chem. Pharm. Bull. 52, 591-596.]), FUFBEO (Murai et al., 2004[Murai, M., Miki, K. & Ohe, K. (2004). Chem. Commun. pp. 3466-3468.]), GOWHEF (Tandel et al., 1998[Tandel, S., Wang, A., Holdeman, T. C., Zhang, H. & Biehl, E. R. (1998). Tetrahedron, 54, 15147-15154.]), GUYXEE (Yi et al., 2010[Yi, C., Blum, C., Lehmann, M., Keller, S., Liu, S.-X., Frei, G., Neels, A., Hauser, J., Schürch, S. & Decurtins, S. (2010). J. Org. Chem. 75, 3350-3357.]), QINXUI (Roviello et al., 2013[Roviello, G., Borbone, F., Carella, A., Roviello, G. N. & Tuzi, A. (2013). Acta Cryst. E69, o1526-o1527.]), RAMZAH and RAMZEL (Ishikawa et al., 2005[Ishikawa, T., Miyahara, T., Asakura, M., Higuchi, S., Miyauchi, Y. & Saito, S. (2005). Org. Lett. 7, 1211-1214.]), RISSAP and RISSET (Li et al., 2014[Li, B., Yue, Z., Xiang, H., Lv, L., Song, S., Miao, Z. & Yang, C. (2014). RSC Adv. 4, 358-364.]) and SECDUZ (Becker et al., 1989[Becker, J. Y., Bernstein, J., Bittner, S., Harlev, E. & Sarma, J. A. R. P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1157-1160.]). Of these, two are similar to the title compounds: 2-amino-3-(p-tol­yl)benzo­furan-4-yl acetate and 2-amino-3-(4-meth­oxy­phen­yl)benzo­furan-4-yl acetate (RAMZEL and RAMZAH) in which the aryl ring is inclined to the benzo­furan ring system by 61.9 (5)° and 52.1 (6)°, respectively [69.26 (16)° in BF1 and 60.20 (6)° in BF2]. The acetate group is inclined to the benzo­furan ring system by 68.8 (6)° in RAMZAH and 75.68°(5) in RAMZEL, while in the title compounds near co-planarity of the –COO– group with benzo­furan is observed [15.71 (18)° in BF1 and 23.85 (2)° in BF2]. In the 11 hits, the C—Namine bond distance ranges between 1.305 and 1.408 Å with an average value of 1.34 (2) Å, compared to 1.318 (7) Å in BF1 and 1.335 (3) Å in BF2.

5. Analysis of Hirshfeld surfaces and inter­action energies

In order to detect additional packing features and to analyse close inter­molecular contacts in BF1 and BF2, we have examined the Hirshfeld surfaces and two-dimensional fingerprint plots using CrystalExplorer17.5 (Turner et al. 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia.]). The electrostatic potentials were calculated using TONTO, integrated within CrystalExplorer. The inter­action energies between the mol­ecules were obtained using wavefunctions at the B3LYP/6-31G(d,p) level. The total inter­action energy was calculated for a 3.8 Å radius cluster of mol­ecules around the selected mol­ecule. The scale factors used in the CE-B3LYP benchmarked energy model (Mackenzie et al. 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) are given in footnote of Tables 3[link] and 4[link]. Calculations were made for both disorder components of BF1; results for the major disordered component (named BF1-molA) are reported since very small differences were found between them.

Table 3
Inter­action energies for BF1-molA (kJ mol−1)

R is the distance between mol­ecular centroids (mean atomic position) in Å and N is the number of mol­ecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a).

N symop R Eelec Epol Eenergy-dispersive Erep Etotal inter­action
2 x, y, z 12.04 −9.1 −2.5 −14.1 9.1 −18.1 C7—H7⋯O4i
1 x, −y, −z 10.51 −8.2 −3.0 −11.7 13.1 −12.9 C11—H11⋯O3ii
1 x, −y, −z 11.10 −3.2 −1.9 −12.2 2.8 −13.6  
2 x, y, z 12.43 −3.3 −1.4 −5.4 1.0 −8.6  
1 x, −y, −z 12.97 8.5 −1.0 −2.3 0.5 6.5 N2—O4⋯O4iii
1 x, −y, −z 5.99 −27.6 −3.7 −67.7 35.8 −68.8 N1—H1A⋯O4iv
1 x, −y, −z 6.67 −8.0 −3.0 −43.4 22.8 −34.4  
2 x, y, z 9.44 −42.2 −10.7 −27.7 52.0 −44.5 O2—H2⋯O6v
1 x, −y, −z 5.08 −13.2 −1.5 −76.1 36.5 −58.7 C10—H10⋯O6vi
1 x, −y, −z 9.63 1.5 −1.2 −14.8 3.4 −10.1  
1 x, −y, −z 11.07 −0.5 −1.9 −14.6 4.5 −11.9  
Notes: (a) Energy Model: CE_B3LYP⋯B3LYP/6–31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]): kele = 1.057; kpol = 0.740; kenergy-dispersive = 0.871; krep= 0.61. Symmetry codes: (i) x, 1 + y, 1 + z; (ii) 1 − x, −y, −z; (iii) 1 − x, −1 − y, −z; (iv) 2 − x, −y, 1 − z; (v) −1 + x, y, z; (vi) 2 − x, 1 − y, 1 − z.

Table 4
Inter­action energies for BF2 (kJ mol−1)

R is the distance between mol­ecular centroids (mean atomic position) in Å and N is the number of mol­ecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a).

N symop R Eelec Epol Eenergy-dispersive Erep Etotal inter­action
1 x, −y, −z 10.65 −2.1 −0.6 −21.2 12.0 −13.7  
2 x, y + [{1\over 2}], −z + [{1\over 2}] 6.41 −70.6 −16.2 −59.8 98.4 −77.9 O2—H2O⋯O7i
2 x, −y + [{1\over 2}], z + [{1\over 2}] 11.49 −4.5 −1.4 −6.2 4.1 −8.6  
2 x, y, z 9.09 −23.5 −7.2 −29.9 35.7 −34.2 N1—H1A⋯O2ii
1 x, −y, −z 12.21 −1.4 −0.1 −2.2 0.2 −3.3  
2 x, −y + [{1\over 2}], z + [{1\over 2}] 10.11 −1.4 −0.4 −13.6 5.3 −10.4  
2 x, y + [{1\over 2}], −z + [{1\over 2}] 7.42 −8.0 −2.5 −26.4 13.6 −25.0  
1 x, −y, −z 9.34 −6.5 −0.8 −22.8 12.2 −19.9  
2 x, −y + [{1\over 2}], z + [{1\over 2}] 12.67 2.2 −0.3 −3.1 0.6 −0.2  
1 x, −y, −z 10.57 −17.3 −6.8 −22.2 26.4 −26.3 C17—H17A⋯O3iii
Notes: (a) Energy Model: CE_B3LYP⋯B3LYP/6–31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]): kele = 1.057; kpol = 0.740; kenergy-dispersive = 0.871; krep= 0.61. Symmetry codes: (i) −x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) x, −1 + y, z; (iii) 1 − x, 1 − y, 1 − z.

The two-dimensional fingerprint plots of BF1-molA (Fig. 7[link]) and BF2 (Fig. 8[link]) show the significant inter­molecular inter­actions. In both compounds, the greatest contribution arises from O⋯H/H⋯O inter­actions (35.5% in BF1-molA and 38.3% in BF2) that correspond to strong hydrogen bonds (see Tables 1[link] and 2[link]). These inter­actions are displayed as a pair of sharp spikes at about di + de = 2.0 Å, symmetrically disposed with respect to the diagonal in Fig. 7[link]and 8 (top). The large number of H⋯H inter­actions (35.3% in BF1-molA and 30.8% in BF2) are shown as a diagonal blue strip that ends, with a more evident sting in BF2, at about di = de = 1.08 Å (Figs. 7[link] and 8[link], middle). The C⋯H/H⋯C plot (23.2% in BF1-molA and 22.5% in BF2, Figs. 7[link] and 8[link], bottom) shows two broad symmetrical wings at about di + de = 3.0 Å in BF2, typical of C—H⋯π inter­actions. No significant C⋯C contacts were found in BF1 and BF2, confirming the absence of ππ stacking inter­actions. Other contacts are N⋯H/H⋯N (2.9% in BF1-molA and 2.3% in BF2); C⋯O/O⋯C (1.5% in BF1-molA and 1.8% in BF2); O⋯O (1.7% in BF1-molA and 2.6% in BF2). In the Hirshfeld surfaces of BF1 and BF2 mapped over dnorm (Figs. 7[link] and 8[link]), the strong inter­molecular hydrogen bonds are observed as red spots. These inter­actions can be also identified in the Hirshfeld surfaces mapped over the electrostatic potential (Fig. 9[link]) where the negative potential around oxygen appear as bright red and positive potential around hydrogen as bright blue.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots of significant inter­molecular contacts for BF1 (major disorder component) with the dnorm surfaces indicating the relevant surface patch associated with the specific contact. The Hirshfeld surface mapped over dnorm with strong hydrogen bonded mol­ecules outside is also shown.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots of significant inter­molecular contacts for BF2 with the dnorm surfaces indicating the relevant surface patch associated with the specific contact. The Hirshfeld surface mapped over dnorm with strongly hydrogen-bonded mol­ecules outside is shown.
[Figure 9]
Figure 9
Hirshfeld surface mapped over the electrostatic potential energy for (a) the major disorder component of BF1 and (b) BF2.

The energies of inter­action between mol­ecules in the crystal structures of BF1-molA and BF2 were explored using CrystalExplorer to perform energy calculations for a 3.8 Å cluster of mol­ecules around the selected mol­ecule. The data reported in Tables 3[link] and 4[link] show that the crystal packing in both compounds is mostly stabilized by electrostatic and dispersion energy and that the major contribution to the electrostatic energy originates from strong hydrogen bonds. Some inter­action energies were analysed and their possible inter­action energies and geometry are reported. In Table 3[link], the lowest Eele inter­action energies correspond to pairs of mol­ecules involved in the inter­molecular hydrogen bonds reported in Table 1[link] and to weak N—H⋯O—N and C—H⋯O=C inter­actions (not included in Table 1[link] because the donor—H⋯acceptor geometry is out of the normal range). One destabilizing positive inter­action energy (Eele = 8.5 KJ mol−1) can be associated with a pair of mol­ecules where the nitro groups point to each other with repulsive N—O⋯O—N inter­actions. In Table 4[link], the analysed inter­actions with low Eele inter­action energies can be associated with pairs of hydrogen-bonded mol­ecules (Table 2[link]).

The supra­molecular architectures for the crystal structures of BF1 and BF2 (Fig. 10[link]) were visualized by energy framework calculations (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) that were performed using CE-B3LYP energy model for a 2 x 2 x 2 (BF1-molA) and a 2 x 2 x 1 (BF2) block of unit cells. Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules, with the cylinder radius proportional to the magnitude of the inter­action energy. Frameworks were constructed for Eele (red cylinders), Edis (green) and Etot (blue), the scale for tube/cylinder size is 80 and cutoff of 8.00 KJ mol−1 was used. Yellow cylinders in Fig. 10[link]a depicts poor destabilizing positive inter­actions energies in the crystal packing of BF1.

[Figure 10]
Figure 10
Framework inter­actions in BF1-molA (a, b, c) and in BF2 (d, e, f) with the electrostatic energy (red cylinders), dispersion energy (green cylinders) and total energy (blue cylinders). Yellow cylinders in (a) depict destabilizing positive inter­action energies. Scale for tube/cylinder size is 80, cutoff of 8.00 kJ mol−1 used.

6. Synthesis and crystallization

BF1 and BF2 were synthesised as described in a previous report (Carella et al., 2019[Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77-88.]). For both compounds, single crystals suitable for X-ray analysis were obtained by slow evaporation of THF–heptane (v:v = ?:?) solutions at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details for BF1 and BF2 are summarized in Table 5[link]. In both structures, hy­droxy and amine H atoms were found in difference electron-density maps and then freely refined. All the other H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). In BF1, the butyl group bound to O5 is disordered over two positions with refined occupancy factors of 0.557 (13) and 0.443 (13). As a result of the brittleness of the crystals, which broke under the cold stream nitro­gen flow, it was not possible to collect data at low temperature. This could explain the rather high R values for BF1, where disorder is present.

Table 5
Experimental details

  BF1 BF2
Crystal data
Chemical formula C19H18N2O6 C18H16N2O7
Mr 370.35 372.33
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 298 298
a, b, c (Å) 9.4420 (16), 9.558 (3), 11.419 (2) 10.263 (2), 9.0860 (8), 20.049 (4)
α, β, γ (°) 110.58 (2), 95.669 (19), 108.863 (19) 90, 111.577 (16), 90
V3) 886.3 (4) 1738.6 (6)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.11
Crystal size (mm) 0.48 × 0.08 × 0.01 0.48 × 0.22 × 0.02
 
Data collection
Diffractometer Bruker-Nonius KappaCCD Bruker-Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.925, 0.987 0.825, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 5854, 3006, 1212 9595, 3784, 2408
Rint 0.105 0.036
(sin θ/λ)max−1) 0.595 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.236, 1.21 0.052, 0.139, 1.03
No. of reflections 3006 3784
No. of parameters 274 254
No. of restraints 41 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.33 0.21, −0.18
Computer programs: Collect (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: Collect (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Butyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1) top
Crystal data top
C19H18N2O6Z = 2
Mr = 370.35F(000) = 388
Triclinic, P1Dx = 1.388 Mg m3
a = 9.4420 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.558 (3) ÅCell parameters from 134 reflections
c = 11.419 (2) Åθ = 4.3–18.7°
α = 110.58 (2)°µ = 0.11 mm1
β = 95.669 (19)°T = 298 K
γ = 108.863 (19)°Needle, yellow
V = 886.3 (4) Å30.48 × 0.08 × 0.01 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3006 independent reflections
Radiation source: normal-focus sealed tube1212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1111
Tmin = 0.925, Tmax = 0.987l = 1313
5854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: mixed
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.23 e Å3
41 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The alkyl group at O5 is disordered over two orientations. The two split positions were refined by applying DFIX and SIMU restraints on bond lengths and displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0745 (7)0.4807 (8)0.8031 (6)0.0708 (17)
C20.9991 (6)0.3911 (6)0.6776 (6)0.0601 (15)
C30.8466 (6)0.3990 (6)0.6666 (5)0.0500 (13)
C40.7108 (6)0.3317 (5)0.5697 (5)0.0478 (13)
C50.5923 (6)0.3826 (6)0.6031 (6)0.0546 (14)
C60.6039 (7)0.4895 (6)0.7249 (6)0.0697 (17)
H60.5227870.5225580.7417440.084*
C70.7321 (7)0.5481 (6)0.8216 (6)0.0671 (17)
H70.7402130.6178450.9051050.081*
C80.8479 (6)0.4976 (6)0.7879 (5)0.0599 (15)
C90.6832 (5)0.2043 (6)0.4439 (5)0.0514 (14)
C100.6654 (7)0.2268 (7)0.3306 (6)0.0727 (18)
H100.6715480.3275400.3347000.087*
C110.6393 (7)0.1055 (8)0.2139 (6)0.0787 (19)
H110.6304500.1225990.1386770.094*
C120.6266 (6)0.0422 (7)0.2106 (6)0.0657 (16)
C130.6403 (7)0.0701 (6)0.3180 (6)0.0711 (17)
H130.6308020.1723870.3120890.085*
C140.6680 (6)0.0516 (6)0.4354 (6)0.0634 (16)
H140.6766910.0323250.5096090.076*
C151.0806 (7)0.3308 (6)0.5863 (6)0.0588 (15)
C161.0804 (7)0.2212 (8)0.3631 (6)0.0825 (19)
H16A1.0306420.2266350.2871680.099*
H16B1.1863780.2980450.3901550.099*
C17A1.0790 (8)0.0602 (8)0.3295 (7)0.103 (2)0.557 (13)
H17A0.9750650.0193650.3082100.123*0.557 (13)
H17B1.1423480.0546030.3986550.123*0.557 (13)
C18A1.148 (3)0.036 (2)0.2114 (16)0.133 (5)0.557 (13)
H18A1.0758240.0316540.1419260.160*0.557 (13)
H18B1.2418830.1297300.2322730.160*0.557 (13)
C19A1.183 (2)0.1118 (16)0.1655 (16)0.136 (6)0.557 (13)
H19A1.2474580.1124610.2353610.204*0.557 (13)
H19B1.2345370.1131130.0972250.204*0.557 (13)
H19C1.0881850.2057530.1341450.204*0.557 (13)
C17B1.0790 (8)0.0602 (8)0.3295 (7)0.103 (2)0.443 (13)
H17C0.9723000.0145260.2933790.123*0.443 (13)
H17D1.1122230.0528350.4095180.123*0.443 (13)
C18B1.171 (3)0.004 (4)0.2383 (17)0.141 (6)0.443 (13)
H18C1.2701020.0793860.2507980.169*0.443 (13)
H18D1.1876480.0950110.2481240.169*0.443 (13)
C19B1.068 (3)0.055 (3)0.111 (2)0.162 (7)0.443 (13)
H19D0.9707320.1369900.1024750.244*0.443 (13)
H19E1.1143650.0981130.0436730.244*0.443 (13)
H19F1.0509180.0364110.1059860.244*0.443 (13)
N11.2139 (7)0.5123 (8)0.8657 (6)0.094 (2)
H1A1.283 (8)0.475 (8)0.821 (7)0.112*
H1B1.255 (8)0.560 (8)0.944 (7)0.112*
N20.5962 (7)0.1744 (8)0.0885 (6)0.0949 (19)
O10.9885 (5)0.5479 (5)0.8716 (4)0.0757 (12)
O20.4613 (5)0.3189 (5)0.5099 (4)0.0776 (13)
H20.406 (6)0.356 (7)0.561 (5)0.093*
O30.5829 (9)0.1520 (9)0.0083 (6)0.172 (3)
O40.5908 (9)0.3032 (7)0.0850 (6)0.164 (3)
O51.0027 (4)0.2678 (5)0.4653 (4)0.0728 (12)
O61.2162 (4)0.3471 (5)0.6150 (4)0.0753 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (4)0.093 (4)0.064 (5)0.033 (4)0.005 (3)0.035 (3)
C20.056 (4)0.075 (4)0.055 (4)0.031 (3)0.009 (3)0.029 (3)
C30.055 (3)0.049 (3)0.054 (4)0.025 (3)0.018 (3)0.023 (3)
C40.047 (3)0.053 (3)0.047 (3)0.025 (3)0.008 (3)0.018 (3)
C50.048 (3)0.049 (3)0.063 (4)0.021 (3)0.007 (3)0.018 (3)
C60.059 (4)0.069 (4)0.082 (5)0.036 (3)0.024 (3)0.019 (3)
C70.077 (5)0.071 (4)0.059 (4)0.039 (3)0.028 (3)0.020 (3)
C80.055 (4)0.064 (3)0.053 (4)0.023 (3)0.002 (3)0.018 (3)
C90.044 (3)0.064 (3)0.054 (4)0.031 (3)0.005 (2)0.024 (3)
C100.095 (5)0.075 (4)0.064 (5)0.053 (3)0.009 (3)0.030 (3)
C110.104 (5)0.095 (4)0.042 (4)0.054 (4)0.003 (3)0.025 (3)
C120.071 (4)0.070 (4)0.046 (4)0.035 (3)0.004 (3)0.007 (3)
C130.092 (5)0.060 (3)0.065 (5)0.035 (3)0.025 (3)0.023 (3)
C140.085 (4)0.060 (3)0.063 (4)0.036 (3)0.025 (3)0.036 (3)
C150.053 (4)0.057 (3)0.066 (4)0.021 (3)0.004 (3)0.027 (3)
C160.083 (5)0.109 (5)0.082 (5)0.055 (4)0.031 (4)0.049 (4)
C17A0.110 (6)0.092 (5)0.113 (7)0.059 (4)0.034 (5)0.030 (4)
C18A0.191 (12)0.135 (11)0.116 (11)0.133 (8)0.046 (9)0.032 (7)
C19A0.197 (13)0.123 (9)0.116 (11)0.100 (9)0.062 (9)0.039 (8)
C17B0.110 (6)0.092 (5)0.113 (7)0.059 (4)0.034 (5)0.030 (4)
C18B0.195 (13)0.137 (12)0.126 (11)0.137 (9)0.038 (10)0.025 (9)
C19B0.206 (14)0.155 (13)0.127 (13)0.108 (10)0.037 (11)0.023 (10)
N10.068 (4)0.129 (5)0.071 (4)0.041 (3)0.011 (3)0.031 (4)
N20.118 (5)0.103 (5)0.066 (5)0.064 (4)0.013 (4)0.020 (4)
O10.080 (3)0.091 (3)0.050 (3)0.040 (2)0.008 (2)0.018 (2)
O20.063 (3)0.091 (3)0.086 (3)0.049 (2)0.016 (2)0.027 (2)
O30.267 (8)0.201 (6)0.065 (4)0.165 (6)0.002 (5)0.016 (4)
O40.294 (9)0.092 (3)0.119 (5)0.086 (5)0.094 (5)0.033 (4)
O50.062 (3)0.102 (3)0.061 (3)0.046 (2)0.019 (2)0.027 (2)
O60.050 (2)0.100 (3)0.087 (3)0.041 (2)0.013 (2)0.041 (2)
Geometric parameters (Å, º) top
C1—N11.318 (7)C16—C17B1.445 (8)
C1—O11.339 (7)C16—C17A1.445 (8)
C1—C21.355 (8)C16—O51.454 (7)
C2—C151.427 (8)C16—H16A0.9700
C2—C31.462 (7)C16—H16B0.9700
C3—C81.370 (7)C17A—C18A1.530 (9)
C3—C41.403 (7)C17A—H17A0.9700
C4—C51.393 (7)C17A—H17B0.9700
C4—C91.451 (7)C18A—C19A1.484 (9)
C5—O21.353 (6)C18A—H18A0.9700
C5—C61.375 (8)C18A—H18B0.9700
C6—C71.364 (8)C19A—H19A0.9600
C6—H60.9300C19A—H19B0.9600
C7—C81.368 (7)C19A—H19C0.9600
C7—H70.9300C17B—C18B1.516 (10)
C8—O11.386 (6)C17B—H17C0.9700
C9—C141.386 (7)C17B—H17D0.9700
C9—C101.387 (7)C18B—C19B1.487 (10)
C10—C111.359 (8)C18B—H18C0.9700
C10—H100.9300C18B—H18D0.9700
C11—C121.364 (8)C19B—H19D0.9600
C11—H110.9300C19B—H19E0.9600
C12—C131.346 (8)C19B—H19F0.9600
C12—N21.439 (8)N1—H1A0.95 (7)
C13—C141.362 (7)N1—H1B0.83 (7)
C13—H130.9300N2—O31.199 (8)
C14—H140.9300N2—O41.202 (7)
C15—O61.235 (6)O2—H20.88 (2)
C15—O51.319 (6)
N1—C1—O1116.9 (6)C17A—C16—H16B109.0
N1—C1—C2131.4 (7)O5—C16—H16B109.0
O1—C1—C2111.7 (5)H16A—C16—H16B107.8
C1—C2—C15119.5 (5)C16—C17A—C18A101.6 (7)
C1—C2—C3106.0 (5)C16—C17A—H17A111.5
C15—C2—C3133.8 (5)C18A—C17A—H17A111.5
C8—C3—C4118.1 (5)C16—C17A—H17B111.5
C8—C3—C2105.0 (5)C18A—C17A—H17B111.5
C4—C3—C2136.9 (5)H17A—C17A—H17B109.3
C5—C4—C3116.4 (5)C19A—C18A—C17A114.2 (11)
C5—C4—C9119.3 (4)C19A—C18A—H18A108.7
C3—C4—C9124.0 (5)C17A—C18A—H18A108.7
O2—C5—C6120.6 (5)C19A—C18A—H18B108.7
O2—C5—C4116.7 (5)C17A—C18A—H18B108.7
C6—C5—C4122.7 (5)H18A—C18A—H18B107.6
C7—C6—C5121.2 (5)C18A—C19A—H19A109.5
C7—C6—H6119.4C18A—C19A—H19B109.5
C5—C6—H6119.4H19A—C19A—H19B109.5
C6—C7—C8115.7 (5)C18A—C19A—H19C109.5
C6—C7—H7122.2H19A—C19A—H19C109.5
C8—C7—H7122.2H19B—C19A—H19C109.5
C3—C8—C7125.7 (5)C16—C17B—C18B121.7 (13)
C3—C8—O1110.1 (5)C16—C17B—H17C106.9
C7—C8—O1124.1 (5)C18B—C17B—H17C106.9
C14—C9—C10118.2 (5)C16—C17B—H17D106.9
C14—C9—C4119.0 (5)C18B—C17B—H17D106.9
C10—C9—C4122.8 (5)H17C—C17B—H17D106.7
C11—C10—C9121.7 (5)C19B—C18B—C17B101.0 (15)
C11—C10—H10119.1C19B—C18B—H18C111.6
C9—C10—H10119.1C17B—C18B—H18C111.6
C10—C11—C12117.8 (6)C19B—C18B—H18D111.6
C10—C11—H11121.1C17B—C18B—H18D111.6
C12—C11—H11121.1H18C—C18B—H18D109.4
C13—C12—C11122.4 (5)C18B—C19B—H19D109.5
C13—C12—N2118.2 (6)C18B—C19B—H19E109.5
C11—C12—N2119.4 (6)H19D—C19B—H19E109.5
C12—C13—C14120.0 (5)C18B—C19B—H19F109.5
C12—C13—H13120.0H19D—C19B—H19F109.5
C14—C13—H13120.0H19E—C19B—H19F109.5
C13—C14—C9119.8 (6)C1—N1—H1A121 (4)
C13—C14—H14120.1C1—N1—H1B130 (5)
C9—C14—H14120.1H1A—N1—H1B109 (7)
O6—C15—O5121.8 (5)O3—N2—O4120.9 (7)
O6—C15—C2124.0 (6)O3—N2—C12119.1 (7)
O5—C15—C2114.0 (5)O4—N2—C12119.9 (7)
C17B—C16—O5113.0 (6)C1—O1—C8107.1 (5)
C17A—C16—O5113.0 (6)C5—O2—H296 (4)
C17A—C16—H16A109.0C15—O5—C16119.0 (5)
O5—C16—H16A109.0
N1—C1—C2—C158.7 (10)C4—C9—C10—C11179.9 (5)
O1—C1—C2—C15170.4 (5)C9—C10—C11—C121.8 (9)
N1—C1—C2—C3179.1 (7)C10—C11—C12—C130.6 (9)
O1—C1—C2—C31.9 (7)C10—C11—C12—N2178.9 (6)
C1—C2—C3—C81.6 (6)C11—C12—C13—C140.1 (9)
C15—C2—C3—C8169.1 (6)N2—C12—C13—C14179.6 (5)
C1—C2—C3—C4176.7 (6)C12—C13—C14—C90.5 (8)
C15—C2—C3—C412.7 (11)C10—C9—C14—C131.7 (8)
C8—C3—C4—C55.3 (7)C4—C9—C14—C13179.3 (5)
C2—C3—C4—C5176.6 (6)C1—C2—C15—O64.2 (9)
C8—C3—C4—C9168.8 (5)C3—C2—C15—O6173.9 (5)
C2—C3—C4—C99.4 (10)C1—C2—C15—O5169.9 (5)
C3—C4—C5—O2179.7 (5)C3—C2—C15—O50.2 (9)
C9—C4—C5—O26.0 (7)O5—C16—C17A—C18A173.0 (11)
C3—C4—C5—C61.7 (8)C16—C17A—C18A—C19A171.5 (17)
C9—C4—C5—C6172.7 (5)O5—C16—C17B—C18B171.7 (11)
O2—C5—C6—C7176.5 (5)C16—C17B—C18B—C19B81 (2)
C4—C5—C6—C72.1 (9)C13—C12—N2—O3179.7 (7)
C5—C6—C7—C82.0 (9)C11—C12—N2—O30.1 (10)
C4—C3—C8—C75.8 (9)C13—C12—N2—O43.4 (10)
C2—C3—C8—C7175.6 (6)C11—C12—N2—O4177.1 (7)
C4—C3—C8—O1177.8 (4)N1—C1—O1—C8179.4 (6)
C2—C3—C8—O10.9 (6)C2—C1—O1—C81.3 (7)
C6—C7—C8—C32.0 (9)C3—C8—O1—C10.2 (6)
C6—C7—C8—O1177.9 (5)C7—C8—O1—C1176.7 (6)
C5—C4—C9—C14106.8 (6)O6—C15—O5—C162.1 (8)
C3—C4—C9—C1467.1 (7)C2—C15—O5—C16172.2 (5)
C5—C4—C9—C1070.6 (7)C17B—C16—O5—C1585.4 (7)
C3—C4—C9—C10115.4 (6)C17A—C16—O5—C1585.4 (7)
C14—C9—C10—C112.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.643.444 (8)146
C11—H11···O3ii0.932.533.237 (8)133
C17B—H17D···O60.972.743.226 (8)112
N1—H1A···O60.95 (7)2.15 (7)2.747 (8)120 (6)
O2—H2···O6iii0.88 (2)1.94 (3)2.755 (6)154 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
2-Methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2) top
Crystal data top
C18H16N2O7F(000) = 776
Mr = 372.33Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.263 (2) ÅCell parameters from 72 reflections
b = 9.0860 (8) Åθ = 3.0–20.3°
c = 20.049 (4) ŵ = 0.11 mm1
β = 111.577 (16)°T = 298 K
V = 1738.6 (6) Å3Plate, yellow
Z = 40.48 × 0.22 × 0.02 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3784 independent reflections
Radiation source: normal-focus sealed tube2408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 813
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1110
Tmin = 0.825, Tmax = 0.927l = 2623
9595 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.058P)2 + 0.521P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3784 reflectionsΔρmax = 0.21 e Å3
254 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1522 (2)0.1808 (2)0.16883 (11)0.0445 (5)
C20.1956 (2)0.0554 (2)0.20982 (10)0.0373 (5)
C30.1095 (2)0.0632 (2)0.16748 (10)0.0341 (4)
C40.1002 (2)0.2168 (2)0.17400 (10)0.0344 (4)
C50.0070 (2)0.2886 (2)0.11922 (11)0.0406 (5)
C60.0987 (2)0.2149 (2)0.05940 (11)0.0461 (5)
H60.1690330.2670250.0244350.055*
C70.0860 (2)0.0655 (2)0.05158 (11)0.0450 (5)
H70.1450550.0150440.0115120.054*
C80.0173 (2)0.0043 (2)0.10548 (10)0.0390 (5)
C90.2033 (2)0.3040 (2)0.23255 (10)0.0340 (4)
C100.1601 (2)0.3939 (2)0.27675 (11)0.0420 (5)
H100.0653670.3996160.2695230.050*
C110.2554 (2)0.4745 (2)0.33092 (11)0.0467 (5)
H110.2259810.5340730.3603950.056*
C120.3945 (2)0.4653 (2)0.34070 (11)0.0444 (5)
C130.4412 (2)0.3798 (2)0.29739 (12)0.0503 (6)
H130.5358930.3764230.3043530.060*
C140.3444 (2)0.2992 (2)0.24337 (11)0.0440 (5)
H140.3744440.2406940.2137670.053*
C150.2933 (2)0.0684 (2)0.28310 (11)0.0424 (5)
C160.3911 (3)0.0471 (3)0.39702 (12)0.0675 (7)
H15A0.4769300.0898100.3959810.081*
H15B0.4113770.0523140.4155990.081*
C170.3393 (3)0.1360 (3)0.44439 (12)0.0639 (7)
H17A0.4182920.1737230.4844570.077*
H17B0.2858140.2190970.4178200.077*
C180.2178 (3)0.1191 (3)0.52447 (15)0.0807 (9)
H18A0.3014840.1424830.5645940.121*
H18B0.1604760.0540630.5397270.121*
H18C0.1668570.2079170.5056700.121*
N10.1990 (3)0.3192 (2)0.17972 (13)0.0662 (7)
H1A0.137 (3)0.388 (3)0.1558 (15)0.079*
H1B0.258 (3)0.334 (3)0.2202 (16)0.079*
N20.4964 (3)0.5494 (2)0.39927 (11)0.0620 (6)
O10.04482 (16)0.15477 (14)0.10650 (8)0.0487 (4)
O20.01457 (18)0.43883 (16)0.12485 (9)0.0579 (5)
H2O0.094 (3)0.471 (3)0.0929 (14)0.069*
O30.4543 (2)0.6155 (2)0.44027 (10)0.0856 (6)
O40.6174 (2)0.5507 (3)0.40383 (12)0.0956 (7)
O50.28607 (16)0.04351 (16)0.32517 (7)0.0519 (4)
O60.37098 (18)0.17310 (18)0.30529 (9)0.0630 (5)
O70.25432 (19)0.04923 (17)0.47021 (8)0.0628 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (13)0.0369 (11)0.0459 (12)0.0015 (9)0.0168 (11)0.0021 (9)
C20.0385 (12)0.0333 (10)0.0406 (11)0.0025 (8)0.0150 (9)0.0018 (8)
C30.0328 (11)0.0374 (11)0.0341 (10)0.0029 (8)0.0144 (8)0.0005 (8)
C40.0327 (11)0.0378 (11)0.0334 (10)0.0007 (8)0.0130 (8)0.0013 (8)
C50.0406 (12)0.0346 (11)0.0448 (12)0.0016 (8)0.0135 (10)0.0010 (9)
C60.0425 (13)0.0489 (13)0.0385 (11)0.0023 (9)0.0051 (10)0.0056 (9)
C70.0481 (13)0.0488 (13)0.0334 (11)0.0085 (9)0.0095 (9)0.0038 (9)
C80.0459 (12)0.0353 (11)0.0369 (11)0.0046 (8)0.0165 (9)0.0030 (8)
C90.0346 (11)0.0314 (10)0.0344 (10)0.0002 (7)0.0109 (8)0.0015 (8)
C100.0382 (12)0.0436 (12)0.0459 (12)0.0009 (9)0.0177 (10)0.0042 (9)
C110.0574 (15)0.0434 (12)0.0426 (12)0.0045 (10)0.0221 (11)0.0073 (9)
C120.0489 (14)0.0439 (12)0.0357 (11)0.0119 (9)0.0099 (10)0.0002 (9)
C130.0348 (12)0.0612 (14)0.0528 (14)0.0076 (10)0.0137 (11)0.0026 (11)
C140.0367 (12)0.0501 (12)0.0463 (12)0.0006 (9)0.0165 (10)0.0078 (9)
C150.0418 (12)0.0391 (12)0.0447 (12)0.0043 (9)0.0142 (10)0.0069 (9)
C160.0584 (17)0.089 (2)0.0386 (13)0.0056 (13)0.0011 (11)0.0059 (12)
C170.0819 (19)0.0544 (15)0.0396 (13)0.0198 (12)0.0039 (12)0.0003 (11)
C180.097 (2)0.082 (2)0.0644 (18)0.0044 (16)0.0318 (17)0.0191 (15)
N10.0802 (17)0.0332 (11)0.0703 (15)0.0010 (10)0.0100 (12)0.0010 (10)
N20.0671 (16)0.0586 (13)0.0475 (12)0.0200 (11)0.0061 (11)0.0018 (10)
O10.0610 (10)0.0359 (8)0.0435 (8)0.0051 (7)0.0126 (7)0.0066 (6)
O20.0537 (10)0.0383 (9)0.0629 (11)0.0095 (7)0.0005 (8)0.0010 (7)
O30.1101 (17)0.0828 (14)0.0548 (12)0.0276 (12)0.0195 (12)0.0262 (10)
O40.0596 (14)0.1190 (18)0.0861 (15)0.0335 (12)0.0009 (11)0.0229 (12)
O50.0540 (10)0.0558 (10)0.0352 (8)0.0042 (7)0.0040 (7)0.0019 (7)
O60.0615 (11)0.0517 (10)0.0639 (11)0.0120 (8)0.0091 (9)0.0131 (8)
O70.0778 (12)0.0530 (10)0.0515 (10)0.0191 (8)0.0165 (9)0.0113 (8)
Geometric parameters (Å, º) top
C1—N11.335 (3)C12—N21.468 (3)
C1—O11.349 (3)C13—C141.380 (3)
C1—C21.380 (3)C13—H130.9300
C2—C151.447 (3)C14—H140.9300
C2—C31.453 (3)C15—O61.216 (2)
C3—C81.397 (3)C15—O51.341 (2)
C3—C41.409 (3)C16—O51.448 (3)
C4—C51.397 (3)C16—C171.486 (4)
C4—C91.487 (3)C16—H15A0.9700
C5—O21.375 (2)C16—H15B0.9700
C5—C61.393 (3)C17—O71.408 (3)
C6—C71.378 (3)C17—H17A0.9700
C6—H60.9300C17—H17B0.9700
C7—C81.361 (3)C18—O71.424 (3)
C7—H70.9300C18—H18A0.9600
C8—O11.394 (2)C18—H18B0.9600
C9—C141.384 (3)C18—H18C0.9600
C9—C101.392 (3)N1—H1A0.89 (3)
C10—C111.375 (3)N1—H1B0.83 (3)
C10—H100.9300N2—O41.212 (3)
C11—C121.370 (3)N2—O31.218 (3)
C11—H110.9300O2—H2O0.88 (3)
C12—C131.376 (3)
N1—C1—O1116.06 (19)C12—C13—H13120.8
N1—C1—C2131.5 (2)C14—C13—H13120.8
O1—C1—C2112.45 (17)C13—C14—C9121.09 (19)
C1—C2—C15119.26 (18)C13—C14—H14119.5
C1—C2—C3105.70 (17)C9—C14—H14119.5
C15—C2—C3134.37 (17)O6—C15—O5122.9 (2)
C8—C3—C4118.08 (17)O6—C15—C2123.5 (2)
C8—C3—C2105.17 (16)O5—C15—C2113.51 (17)
C4—C3—C2136.74 (17)O5—C16—C17109.8 (2)
C5—C4—C3116.75 (17)O5—C16—H15A109.7
C5—C4—C9119.87 (17)C17—C16—H15A109.7
C3—C4—C9123.23 (17)O5—C16—H15B109.7
O2—C5—C6120.48 (18)C17—C16—H15B109.7
O2—C5—C4116.78 (18)H15A—C16—H15B108.2
C6—C5—C4122.66 (18)O7—C17—C16110.3 (2)
C7—C6—C5120.60 (19)O7—C17—H17A109.6
C7—C6—H6119.7C16—C17—H17A109.6
C5—C6—H6119.7O7—C17—H17B109.6
C8—C7—C6116.59 (19)C16—C17—H17B109.6
C8—C7—H7121.7H17A—C17—H17B108.1
C6—C7—H7121.7O7—C18—H18A109.5
C7—C8—O1124.28 (18)O7—C18—H18B109.5
C7—C8—C3125.21 (18)H18A—C18—H18B109.5
O1—C8—C3110.50 (17)O7—C18—H18C109.5
C14—C9—C10118.59 (18)H18A—C18—H18C109.5
C14—C9—C4120.45 (17)H18B—C18—H18C109.5
C10—C9—C4120.95 (17)C1—N1—H1A115.4 (19)
C11—C10—C9120.97 (19)C1—N1—H1B114 (2)
C11—C10—H10119.5H1A—N1—H1B122 (3)
C9—C10—H10119.5O4—N2—O3123.5 (2)
C12—C11—C10118.8 (2)O4—N2—C12118.3 (2)
C12—C11—H11120.6O3—N2—C12118.1 (2)
C10—C11—H11120.6C1—O1—C8106.12 (15)
C11—C12—C13122.05 (19)C5—O2—H2O109.6 (17)
C11—C12—N2118.8 (2)C15—O5—C16116.75 (18)
C13—C12—N2119.2 (2)C17—O7—C18113.83 (19)
C12—C13—C14118.5 (2)
N1—C1—C2—C1511.7 (4)C3—C4—C9—C10124.6 (2)
O1—C1—C2—C15169.66 (17)C14—C9—C10—C111.2 (3)
N1—C1—C2—C3176.4 (2)C4—C9—C10—C11179.96 (18)
O1—C1—C2—C32.2 (2)C9—C10—C11—C120.2 (3)
C1—C2—C3—C82.4 (2)C10—C11—C12—C131.0 (3)
C15—C2—C3—C8167.7 (2)C10—C11—C12—N2179.02 (19)
C1—C2—C3—C4176.8 (2)C11—C12—C13—C141.2 (3)
C15—C2—C3—C413.2 (4)N2—C12—C13—C14178.81 (19)
C8—C3—C4—C53.6 (3)C12—C13—C14—C90.2 (3)
C2—C3—C4—C5177.3 (2)C10—C9—C14—C130.9 (3)
C8—C3—C4—C9171.97 (18)C4—C9—C14—C13179.83 (19)
C2—C3—C4—C97.1 (3)C1—C2—C15—O622.3 (3)
C3—C4—C5—O2178.79 (17)C3—C2—C15—O6168.7 (2)
C9—C4—C5—O23.0 (3)C1—C2—C15—O5155.14 (19)
C3—C4—C5—C62.0 (3)C3—C2—C15—O513.9 (3)
C9—C4—C5—C6173.74 (19)O5—C16—C17—O783.6 (2)
O2—C5—C6—C7176.1 (2)C11—C12—N2—O4173.8 (2)
C4—C5—C6—C70.5 (3)C13—C12—N2—O46.2 (3)
C5—C6—C7—C81.4 (3)C11—C12—N2—O35.4 (3)
C6—C7—C8—O1179.86 (19)C13—C12—N2—O3174.5 (2)
C6—C7—C8—C30.5 (3)N1—C1—O1—C8177.8 (2)
C4—C3—C8—C73.0 (3)C2—C1—O1—C81.1 (2)
C2—C3—C8—C7177.62 (19)C7—C8—O1—C1178.9 (2)
C4—C3—C8—O1177.49 (16)C3—C8—O1—C10.6 (2)
C2—C3—C8—O11.8 (2)O6—C15—O5—C169.3 (3)
C5—C4—C9—C14118.9 (2)C2—C15—O5—C16173.19 (18)
C3—C4—C9—C1456.5 (3)C17—C16—O5—C15157.75 (19)
C5—C4—C9—C1059.9 (3)C16—C17—O7—C18170.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O1/C1/C2/C3/C8 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.972.493.366 (3)150
N1—H1A···O2ii0.89 (3)2.14 (3)3.013 (3)165 (3)
N1—H1B···O60.83 (3)2.22 (3)2.819 (3)129 (3)
O2—H2O···O7iii0.88 (3)1.81 (3)2.691 (2)176 (3)
C10—H10···Cg1iii0.932.763.521 (3)139
C11—H11···Cg2iii0.932.803.601 (3)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1/2, z+1/2.
Interaction energies for BF1-molA (kJ mol-1) top
R is the distance between molecular centroids (mean atomic position) in Å and N is the number of molecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a).
NsymopREelecEpolEdispErepEtotalinteraction
2x, y, z12.04-9.1-2.5-14.19.1-18.1C7—H7···O4i
1-x, -y, -z10.51-8.2-3.0-11.713.1-12.9C11—H11···O3ii
1-x, -y, -z11.10-3.2-1.9-12.22.8-13.6
2x, y, z12.43-3.3-1.4-5.41.0-8.6
1-x, -y, -z12.978.5-1.0-2.30.56.5N2—O4···O4iii
1-x, -y, -z5.99-27.6-3.7-67.735.8-68.8N1—H1A···O4iv
1-x, -y, -z6.67-8.0-3.0-43.422.8-34.4
2x, y, z9.44-42.2-10.7-27.752.0-44.5O2—H2···O6v
1-x, -y, -z5.08-13.2-1.5-76.136.5-58.7C10—H10···O6vi
1-x, -y, -z9.631.5-1.2-14.83.4-10.1
1-x, -y, -z11.07-0.5-1.9-14.64.5-11.9
Notes: (a) Energy Model: CE_B3LYP···B3LYP/6-31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017): kele = 1.057; kpol = 0.740; kdisp = 0.871; krep= 0.61. Symmetry codes: (i) x, 1 + y, 1 + z; (ii) 1 - x, -y, -z; (iii) 1 - x, -1 - y, -z; (iv) 2 - x, -y, 1 - z; (v) -1 + x, y, z; (vi) 2 - x, 1 - y, 1 - z.
Interaction energies for BF2 (kJ mol-1) top
R is the distance between molecular centroids (mean atomic position) in Å and N is the number of molecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a).
NsymopREelecEpolEdispErepEtotalinteraction
1-x, -y, -z10.65-2.1-0.6-21.212.0-13.7
2-x, y + 1/2, -z + 1/26.41-70.6-16.2-59.898.4-77.9O2—H2O···O7i
2x, -y + 1/2, z + 1/211.49-4.5-1.4-6.24.1-8.6
2x, y, z9.09-23.5-7.2-29.935.7-34.2N1—H1A···O2ii
1-x, -y, -z12.21-1.4-0.1-2.20.2-3.3
2x, -y + 1/2, z + 1/210.11-1.4-0.4-13.65.3-10.4
2-x, y + 1/2, -zz + 1/27.42-8.0-2.5-26.413.6-25.0
1-x, -y, -z9.34-6.5-0.8-22.812.2-19.9
2x, -y + 1/2, z + 1/212.672.2-0.3-3.10.6-0.2
1-x, -y, -z10.57-17.3-6.8-22.226.4-26.3C17—H17A···O3iii
Notes: (a) Energy Model: CE_B3LYP···B3LYP/6-31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017): kele = 1.057; kpol = 0.740; kdisp = 0.871; krep= 0.61. Symmetry codes: (i) -x, 1/2 + y, 1/2 - z; (ii) x, -1 + y, z; (iii) 1 - x, 1 - y, 1 - z.
 

Acknowledgements

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 0, S1–S19.  Google Scholar
First citationAlper-Hayta, S., Arisoy, M., Temiz-Arpaci, Ö., Yildiz, I., Aki, E., Özkan, S. & Kaynak, F. (2008). Eur. J. Med. Chem. 43, 2568–2578.  PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, K. W., Ikawa, T., Tundel, R. E. & Buchwald, S. L. (2006). J. Am. Chem. Soc. 128, 10694–10695.  CrossRef PubMed CAS Google Scholar
First citationBecker, J. Y., Bernstein, J., Bittner, S., Harlev, E. & Sarma, J. A. R. P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1157–1160.  CSD CrossRef Google Scholar
First citationBorbone, F., Caruso, U., Concilio, S., Nabha, S., Panunzi, B., Piotto, S., Shikler, R. & Tuzi, A. (2016). Eur. J. Inorg. Chem. 2016, 818–825.  CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, A., Villani, F., Grimaldi, I. A., Loffredo, F., Morvillo, P., Diana, R., Haque, S. & Minarini, C. (2014). Thin Solid Films, 560, 14–19.  CrossRef CAS Google Scholar
First citationCarella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, D. (2012). Dyes Pigments, 95, 116–125.  CSD CrossRef CAS Google Scholar
First citationCarella, A., Centore, R., Riccio, P., Sirigu, A., Quatela, A., Palazzesi, C. & Casalboni, M. (2005). Macromol. Chem. Phys. 206, 1399–1404.  CrossRef CAS Google Scholar
First citationCarella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77–88.  CrossRef CAS PubMed Google Scholar
First citationCaruso, U., Diana, R., Fort, A., Panunzi, B. & Roviello, A. (2006). Macromol. Symp. 234, 87–93.  CrossRef CAS Google Scholar
First citationCaruso, U., Panunzi, B., Roviello, A. & Tuzi, A. (2013). Inorg. Chem. Commun. 29, 138–140.  CrossRef CAS Google Scholar
First citationCaruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622–634.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomtsyan, A. (2012). Chem. Heterocycl. Compd, 48, 7–10.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, X., Yu, R., Li, H. & Li, Z. (2009). J. Am. Chem. Soc. 131, 17387–17393.  CSD CrossRef PubMed CAS Google Scholar
First citationHayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H., Naruto, S. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 455–458.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolliday, S., Ashraf, R. S., Wadsworth, A., Baran, D., Yousaf, S. A., Nielsen, C. B., Tan, C. H., Dimitrov, S. D., Shang, Z., Gasparini, N., Alamoudi, M., Laquai, F., Brabec, C. J., Salleo, A., Durrant, J. R. & McCulloch, I. (2016). Nat. Commun. 7, 11585.  CrossRef PubMed Google Scholar
First citationIshikawa, T., Miyahara, T., Asakura, M., Higuchi, S., Miyauchi, Y. & Saito, S. (2005). Org. Lett. 7, 1211–1214.  CSD CrossRef PubMed CAS Google Scholar
First citationJin, R. & Irfan, A. (2017). RSC Adv. 7, 39899–39905.  CrossRef CAS Google Scholar
First citationJustin Thomas, K. R. & Baheti, A. (2013). Mater. Technol. 28, 71–87.  CrossRef CAS Google Scholar
First citationKing, T. J. & Newall, C. E. (1965). J. Chem. Soc. pp. 974–977.  CrossRef Google Scholar
First citationLi, B., Yue, Z., Xiang, H., Lv, L., Song, S., Miao, Z. & Yang, C. (2014). RSC Adv. 4, 358–364.  CSD CrossRef CAS Google Scholar
First citationLi, C., Zhang, Y., Li, P. & Wang, L. (2011). J. Org. Chem. 76, 4692–4696.  CrossRef CAS PubMed Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaglione, C., Carella, A., Carbonara, C., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D., Lanuti, A. & Di Carlo, A. (2016). Dyes Pigments, 133, 395–405.  CrossRef CAS Google Scholar
First citationMaglione, C., Carella, A., Centore, R., Chávez, P., Lévêque, P., Fall, S. & Leclerc, N. (2017). Dyes Pigments, 141, 169–178.  CrossRef CAS Google Scholar
First citationMaglione, C., Carella, A., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D. & Di Carlo, A. (2016). J. Photochem. Photobiol. Chem. 321, 79–89.  CrossRef CAS Google Scholar
First citationMorvillo, P., Ricciardi, R., Nenna, G., Bobeico, E., Diana, R. & Minarini, C. (2016). Solar Energy Mater. Solar Cells, 152, 51–58.  CrossRef CAS Google Scholar
First citationMurai, M., Miki, K. & Ohe, K. (2004). Chem. Commun. pp. 3466–3468.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationObushak, M. (2002). Pol. J. Chem. 1419–1424.  Google Scholar
First citationOtsuka, H., Takeda, Y., Hirata, E., Shinzato, T. & Bando, M. (2004). Chem. Pharm. Bull. 52, 591–596.  CSD CrossRef PubMed CAS Google Scholar
First citationPiotto, S., Concilio, S., Sessa, L., Diana, R., Torrens, G., Juan, C., Caruso, U. & Iannelli, P. (2017). Molecules, 22, 1372.  CrossRef Google Scholar
First citationRoviello, G., Borbone, F., Carella, A., Roviello, G. N. & Tuzi, A. (2013). Acta Cryst. E69, o1526–o1527.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoni, J. N. & Soman, S. S. (2014). Eur. J. Med. Chem. 75, 77–81.  CrossRef CAS PubMed Google Scholar
First citationTandel, S., Wang, A., Holdeman, T. C., Zhang, H. & Biehl, E. R. (1998). Tetrahedron, 54, 15147–15154.  CSD CrossRef CAS Google Scholar
First citationThévenin, M., Thoret, S., Grellier, P. & Dubois, J. (2013). Bioorg. Med. Chem. 21, 4885–4892.  PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y. N., Liu, M. F., Hou, W. Z., Xu, R. M., Gao, J., Lu, A. Q., Xie, M. P., Li, L., Zhang, J. J., Peng, Y., Ma, L. L., Wang, X. L., Shi, J. G. & Wang, S. J. (2017). Molecules, 22, 236.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. J. (2012). Prog. Heterocycl. Chem. 24, 1–53.  CrossRef Google Scholar
First citationXie, F., Zhu, H., Zhang, H., Lang, Q., Tang, L., Huang, Q. & Yu, L. (2015). Eur. J. Med. Chem. 89, 310–319.  CrossRef CAS PubMed Google Scholar
First citationYi, C., Blum, C., Lehmann, M., Keller, S., Liu, S.-X., Frei, G., Neels, A., Hauser, J., Schürch, S. & Decurtins, S. (2010). J. Org. Chem. 75, 3350–3357.  CSD CrossRef CAS PubMed Google Scholar
First citationYue, D., Yao, T. & Larock, R. C. (2005). J. Org. Chem. 70, 10292–10296.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds