research communications
Crystal structures of butyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate
aDepartment of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici NA, Italy, and bDepartment of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
*Correspondence e-mail: antonio.carella@unina.it
The title benzofuran derivatives 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1), C19H18N2O6, and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2), C18H16N2O7, recently attracted attention because of their promising antitumoral activity. BF1 crystallizes in the P. BF2 in the P21/c. The nitrophenyl group is inclined to benzofuran moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the molecular structures of BF1 and BF2 is the intramolecular N—H⋯Ocarbonyl hydrogen bond. In the crystal of BF1, the molecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of molecules along the b-axis direction are linked by O—H⋯Omethoxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).
Keywords: crystal structure; benzofuran; anti tumoral properties.
1. Chemical context
Organic heterocyclic materials play a very important role in the field of synthetic chemistry because of their relevant biological activity: the great majority of marketed drugs contain at least one heterocycle in their molecular structure (Wu, 2012; Gomtsyan, 2012). At the same time, the high polarizability of heterocycles results in particular optical and electronic properties that make these systems key elements in materials chemistry, fundamental for the rapid development of new advanced materials. Heterocyclic-based novel materials have been investigated in the fields of organic photovoltaics (Maglione et al., 2017; Maglione, Carella, Centore et al., 2016; Maglione, Carella, Carbonara et al., 2016; Holliday et al., 2016; Jin & Irfan, 2017; Bruno et al., 2014; Morvillo et al., 2016), luminescent materials (Caruso et al., 2013; Borbone et al., 2016) non-linear optics (Carella et al., 2005; Caruso et al., 2006). Among compounds containing oxygen heterocycles, benzofuran derivatives have proven to be powerful systems displaying a wide range of biological properties including antimicrobial (Alper-Hayta et al., 2008; Piotto et al., 2017; Soni & Soman, 2014), antitumor (Xie et al., 2015; Hayakawa et al., 2004), anti-parasitic (Thévenin et al., 2013)and analgesic activities (Wang et al., 2017). In the field of materials chemistry, benzofuran derivatives have found applications in the area of industrial dyes as optical whiteners or disperse dyes characterized by high fastness properties. Moreover, interesting applications of benzofuran-based organic sensitizers for dye-sensitized solar cells (Justin Thomas & Baheti, 2013) have been recently discovered. Different synthetic strategies are reported for the synthesis of benzofurans, the majority of which are associated with transition-metal-catalysed reactions of pre-functionalized substrates that are typically synthesized by Heck or Sonogashira coupling reactions (Anderson et al., 2006; Guo et al., 2009; Li et al., 2011; Yue et al., 2005). In a recent paper, inspired by a previous work (Obushak, 2002), we managed to fine-tune a synthetic procedure for the synthesis of two benzofuran derivatives and their antiproliferative activity and ability to bind telomeric DNA was proved (Carella et al., 2019). This synthesis was realized by using a cheap and simple reaction known as the Craven reaction, which does not need either a precious transition metal as catalyst or an environment to be carried on. The Craven reaction is a well-known procedure for the synthesis of benzodifuran derivatives that consists of the reaction of 1,4-benzoquinone with various cyanoacetic in alcoholic ammonia (King & Newall, 1965; Caruso et al., 2009; Carella et al., 2012). While the Craven reaction typically affords benzodifuran derivatives almost exclusively, we observed (Carella et al., 2019) that, by properly optimizing the reaction conditions, it is possible to isolate benzofuran derivatives as the main product and in significant yields (up to 38%). The formation of benzofuran derivatives was confirmed by elemental CHN analysis.
As shown in Fig. 1, two different constitutional isomers can in principle form during the reaction, with the p-nitrophenyl group functionalizing the benzofuran ring in position 4 (isomer A) or 7 (isomer B). The NMR analysis and the (DSC) analysis performed suggested that only one of the two possible isomers was recovered for both of the benzofuran derivatives. In particular, following the results of NMR analysis, in the previous paper we proposed that type A isomers were obtained, namely the title compounds. The determination of the real molecular structure of the isomer actually formed during the reaction is undoubtedly also interesting in consideration of the anti-tumoral properties shown by this class of compounds (Carella et al., 2019). In this context, to ultimately confirm that the A isomer forms, we report here the structural investigation of the previously synthesized benzofuran derivatives BF1 and BF2.
2. Structural commentary
XRD analysis of single crystals grown as described in the experimental section confirmed that the benzofuran derivatives previously reported (Carella et al., 2019) are the isomers A indicated in Fig. 1. The molecular structures of BF1 and BF2 are shown in Figs. 2 and 3. The obtained isomers are characterized by a cisoid configuration of the two substituents at C2 and C4, with a higher as compared to isomer B: in this case, the ortho-orientating effect of the electron-acceptor nitrophenyl group drives the path of the reaction, prevailing over steric considerations.
No unusual geometric features were found in either structure, all bond lengths and angles being in expected ranges and in agreement with analogous benzofuran derivatives reported in the Database survey section of this paper. A common structural feature in BF1 and BF2 is the intramolecular N—H⋯O hydrogen bond between the amine group and the carbonyl oxygen (Tables 1 and 2) that leads to near co-planarity of the –COO– group and the benzofuran ring [15.71 (18)° in BF1 and 23.85 (2)° in BF2]. The geometry at N1 amine atom is almost planar [deviation of N1 from least square plane of attached atoms is 0.01 (4) Å in BF1 and 0.16 (2) Å in BF2]. A shortening of the N1—C1 bond distance [1.318 (7) Å in BF1 and 1.335 (3) Å in BF2] is observed, compared with a mean value for a Csp2—NH2 bond of 1.336 (17) Å (Allen et al., 1987). Such geometric features suggest a partial conjugation of the N atom with benzofuran that is more marked in BF1, where a shorter N1—C1 bond distance and a more evident planar geometry at N1 are found. The benzofuran group is planar within 0.049 (4) Å in BF1 and 0.040 (2) Å in BF2; the nitrobenzene group is planar within 0.027 (5) Å in BF1 and 0.074 (2) Å in BF2. The dihedral angle between benzofuran and nitrophenyl mean planes is 69.26 (16)° in BF1 and 60.20 (6)° in BF2. The orientation of the nitrophenyl group clearly minimizes interactions with the adjacent ester group. Small differences (Fig. 4) are found between the molecular geometries of BF1 and BF2, apart from the different orientation of the methoxyethyl or butyl groups resulting from a different torsion angle around C16—C17 [mean value of 172.9 (11)° in BF1 and 83.6 (2)° in BF2]. In BF1, the butyl group is disordered over two orientations that differ in the torsion angle around C17—C18 bond [C16—C17A—C18A—C19A = 171.5 (17)° and C16—C17B—C18B—C19B = −81 (2)°].
|
3. Supramolecular features
In BF1 and BF2, the crystal packing is dominated by strong N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O interactions (Tables 1 and 2). Weak intermolecular C—H⋯π interactions are also present in BF2 due to the edge-to-face contacts between nitrobenzene and furan ring systems.
In BF1, the amine group is involved only in one intramolecular hydrogen bond, acting as donor towards the close carbonyl O atom. The hydroxy group is involved only in one intermolecular hydrogen bond, acting as donor towards the carbonyl O atom of an adjacent molecule. In the crystal packing, chains of strong O—H⋯O head-to-tail hydrogen-bonded molecules are formed along a-axis direction (Fig. 5). The chains are connected into a three-dimensional network by weak intermolecular interactions involving the nitro group as acceptor from Car—H atoms (Table 1). In particular, the C11 atom acts as a hydrogen-bond donor to the nitro O3 atom, forming centrosymmetric dimers.
In BF2, one more O acceptor atom is present compared to BF1. The amine group is involved both in intra- and intermolecular hydrogen bonds. Similarly to BF1, an intramolecular N—H⋯O hydrogen bond is formed with the carbonyl oxygen atom. An intermolecular N—H⋯O hydrogen bond is formed with the hydroxy oxygen atom of an adjacent molecule as acceptor. The hydroxy group is also involved as donor in O—H⋯O hydrogen bonds with the methoxy O atom of an adjacent molecule. In the crystal packing, neighbouring head-to-tail hydrogen-bonded chains of molecules are linked through O—H⋯Omethoxy hydrogen bonds and weak intermolecular C—H⋯π(benzofuran) interactions, wrapping around the 21 screw axis (Fig. 6).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018 with February 2019 updates; Groom et al., 2016) found 25 structures that match the fragment made of benzofuran substituted at the 2-position with –NX2 (X = C, H). The hits found are crystal structures determined at temperatures in the range 103–298 K. Among these, 11 structures match the 2-amino-benzofurane fragment present in BF1 and BF2: DOZYIB (Caruso et al., 2009), FERXEG (Otsuka et al., 2004), FUFBEO (Murai et al., 2004), GOWHEF (Tandel et al., 1998), GUYXEE (Yi et al., 2010), QINXUI (Roviello et al., 2013), RAMZAH and RAMZEL (Ishikawa et al., 2005), RISSAP and RISSET (Li et al., 2014) and SECDUZ (Becker et al., 1989). Of these, two are similar to the title compounds: 2-amino-3-(p-tolyl)benzofuran-4-yl acetate and 2-amino-3-(4-methoxyphenyl)benzofuran-4-yl acetate (RAMZEL and RAMZAH) in which the aryl ring is inclined to the benzofuran ring system by 61.9 (5)° and 52.1 (6)°, respectively [69.26 (16)° in BF1 and 60.20 (6)° in BF2]. The acetate group is inclined to the benzofuran ring system by 68.8 (6)° in RAMZAH and 75.68°(5) in RAMZEL, while in the title compounds near co-planarity of the –COO– group with benzofuran is observed [15.71 (18)° in BF1 and 23.85 (2)° in BF2]. In the 11 hits, the C—Namine bond distance ranges between 1.305 and 1.408 Å with an average value of 1.34 (2) Å, compared to 1.318 (7) Å in BF1 and 1.335 (3) Å in BF2.
5. Analysis of Hirshfeld surfaces and interaction energies
In order to detect additional packing features and to analyse close intermolecular contacts in BF1 and BF2, we have examined the Hirshfeld surfaces and two-dimensional fingerprint plots using CrystalExplorer17.5 (Turner et al. 2017). The electrostatic potentials were calculated using TONTO, integrated within CrystalExplorer. The interaction energies between the molecules were obtained using wavefunctions at the B3LYP/6-31G(d,p) level. The total interaction energy was calculated for a 3.8 Å radius cluster of molecules around the selected molecule. The scale factors used in the CE-B3LYP benchmarked energy model (Mackenzie et al. 2017) are given in footnote of Tables 3 and 4. Calculations were made for both disorder components of BF1; results for the major disordered component (named BF1-molA) are reported since very small differences were found between them.
|
|
The two-dimensional fingerprint plots of BF1-molA (Fig. 7) and BF2 (Fig. 8) show the significant intermolecular interactions. In both compounds, the greatest contribution arises from O⋯H/H⋯O interactions (35.5% in BF1-molA and 38.3% in BF2) that correspond to strong hydrogen bonds (see Tables 1 and 2). These interactions are displayed as a pair of sharp spikes at about di + de = 2.0 Å, symmetrically disposed with respect to the diagonal in Fig. 7and 8 (top). The large number of H⋯H interactions (35.3% in BF1-molA and 30.8% in BF2) are shown as a diagonal blue strip that ends, with a more evident sting in BF2, at about di = de = 1.08 Å (Figs. 7 and 8, middle). The C⋯H/H⋯C plot (23.2% in BF1-molA and 22.5% in BF2, Figs. 7 and 8, bottom) shows two broad symmetrical wings at about di + de = 3.0 Å in BF2, typical of C—H⋯π interactions. No significant C⋯C contacts were found in BF1 and BF2, confirming the absence of π–π stacking interactions. Other contacts are N⋯H/H⋯N (2.9% in BF1-molA and 2.3% in BF2); C⋯O/O⋯C (1.5% in BF1-molA and 1.8% in BF2); O⋯O (1.7% in BF1-molA and 2.6% in BF2). In the Hirshfeld surfaces of BF1 and BF2 mapped over dnorm (Figs. 7 and 8), the strong intermolecular hydrogen bonds are observed as red spots. These interactions can be also identified in the Hirshfeld surfaces mapped over the electrostatic potential (Fig. 9) where the negative potential around oxygen appear as bright red and positive potential around hydrogen as bright blue.
The energies of interaction between molecules in the crystal structures of BF1-molA and BF2 were explored using CrystalExplorer to perform energy calculations for a 3.8 Å cluster of molecules around the selected molecule. The data reported in Tables 3 and 4 show that the crystal packing in both compounds is mostly stabilized by electrostatic and dispersion energy and that the major contribution to the electrostatic energy originates from strong hydrogen bonds. Some interaction energies were analysed and their possible interaction energies and geometry are reported. In Table 3, the lowest Eele interaction energies correspond to pairs of molecules involved in the intermolecular hydrogen bonds reported in Table 1 and to weak N—H⋯O—N and C—H⋯O=C interactions (not included in Table 1 because the donor—H⋯acceptor geometry is out of the normal range). One destabilizing positive interaction energy (Eele = 8.5 KJ mol−1) can be associated with a pair of molecules where the nitro groups point to each other with repulsive N—O⋯O—N interactions. In Table 4, the analysed interactions with low Eele interaction energies can be associated with pairs of hydrogen-bonded molecules (Table 2).
The supramolecular architectures for the crystal structures of BF1 and BF2 (Fig. 10) were visualized by energy framework calculations (Turner et al., 2015; Mackenzie et al., 2017) that were performed using CE-B3LYP energy model for a 2 x 2 x 2 (BF1-molA) and a 2 x 2 x 1 (BF2) block of unit cells. Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules, with the cylinder radius proportional to the magnitude of the interaction energy. Frameworks were constructed for Eele (red cylinders), Edis (green) and Etot (blue), the scale for tube/cylinder size is 80 and cutoff of 8.00 KJ mol−1 was used. Yellow cylinders in Fig. 10a depicts poor destabilizing positive interactions energies in the crystal packing of BF1.
6. Synthesis and crystallization
BF1 and BF2 were synthesised as described in a previous report (Carella et al., 2019). For both compounds, single crystals suitable for X-ray analysis were obtained by slow evaporation of THF–heptane (v:v = ?:?) solutions at room temperature.
7. Refinement
Crystal data, data collection and structure . In both structures, hydroxy and amine H atoms were found in difference electron-density maps and then freely refined. All the other H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). In BF1, the butyl group bound to O5 is disordered over two positions with refined occupancy factors of 0.557 (13) and 0.443 (13). As a result of the brittleness of the crystals, which broke under the cold stream nitrogen flow, it was not possible to collect data at low temperature. This could explain the rather high R values for BF1, where disorder is present.
details for BF1 and BF2 are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S205698901900728X/dx2017sup1.cif
contains datablocks global, BF1, BF2. DOI:Structure factors: contains datablock BF1. DOI: https://doi.org/10.1107/S205698901900728X/dx2017BF1sup2.hkl
Structure factors: contains datablock BF2. DOI: https://doi.org/10.1107/S205698901900728X/dx2017BF2sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901900728X/dx2017BF1sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698901900728X/dx2017BF2sup5.cml
For both structures, data collection: Collect (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C19H18N2O6 | Z = 2 |
Mr = 370.35 | F(000) = 388 |
Triclinic, P1 | Dx = 1.388 Mg m−3 |
a = 9.4420 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.558 (3) Å | Cell parameters from 134 reflections |
c = 11.419 (2) Å | θ = 4.3–18.7° |
α = 110.58 (2)° | µ = 0.11 mm−1 |
β = 95.669 (19)° | T = 298 K |
γ = 108.863 (19)° | Needle, yellow |
V = 886.3 (4) Å3 | 0.48 × 0.08 × 0.01 mm |
Bruker-Nonius KappaCCD diffractometer | 3006 independent reflections |
Radiation source: normal-focus sealed tube | 1212 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
CCD rotation images, thick slices scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −11→11 |
Tmin = 0.925, Tmax = 0.987 | l = −13→13 |
5854 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.093 | Hydrogen site location: mixed |
wR(F2) = 0.236 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0652P)2] where P = (Fo2 + 2Fc2)/3 |
3006 reflections | (Δ/σ)max < 0.001 |
274 parameters | Δρmax = 0.23 e Å−3 |
41 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The alkyl group at O5 is disordered over two orientations. The two split positions were refined by applying DFIX and SIMU restraints on bond lengths and displacement parameters. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.0745 (7) | 0.4807 (8) | 0.8031 (6) | 0.0708 (17) | |
C2 | 0.9991 (6) | 0.3911 (6) | 0.6776 (6) | 0.0601 (15) | |
C3 | 0.8466 (6) | 0.3990 (6) | 0.6666 (5) | 0.0500 (13) | |
C4 | 0.7108 (6) | 0.3317 (5) | 0.5697 (5) | 0.0478 (13) | |
C5 | 0.5923 (6) | 0.3826 (6) | 0.6031 (6) | 0.0546 (14) | |
C6 | 0.6039 (7) | 0.4895 (6) | 0.7249 (6) | 0.0697 (17) | |
H6 | 0.522787 | 0.522558 | 0.741744 | 0.084* | |
C7 | 0.7321 (7) | 0.5481 (6) | 0.8216 (6) | 0.0671 (17) | |
H7 | 0.740213 | 0.617845 | 0.905105 | 0.081* | |
C8 | 0.8479 (6) | 0.4976 (6) | 0.7879 (5) | 0.0599 (15) | |
C9 | 0.6832 (5) | 0.2043 (6) | 0.4439 (5) | 0.0514 (14) | |
C10 | 0.6654 (7) | 0.2268 (7) | 0.3306 (6) | 0.0727 (18) | |
H10 | 0.671548 | 0.327540 | 0.334700 | 0.087* | |
C11 | 0.6393 (7) | 0.1055 (8) | 0.2139 (6) | 0.0787 (19) | |
H11 | 0.630450 | 0.122599 | 0.138677 | 0.094* | |
C12 | 0.6266 (6) | −0.0422 (7) | 0.2106 (6) | 0.0657 (16) | |
C13 | 0.6403 (7) | −0.0701 (6) | 0.3180 (6) | 0.0711 (17) | |
H13 | 0.630802 | −0.172387 | 0.312089 | 0.085* | |
C14 | 0.6680 (6) | 0.0516 (6) | 0.4354 (6) | 0.0634 (16) | |
H14 | 0.676691 | 0.032325 | 0.509609 | 0.076* | |
C15 | 1.0806 (7) | 0.3308 (6) | 0.5863 (6) | 0.0588 (15) | |
C16 | 1.0804 (7) | 0.2212 (8) | 0.3631 (6) | 0.0825 (19) | |
H16A | 1.030642 | 0.226635 | 0.287168 | 0.099* | |
H16B | 1.186378 | 0.298045 | 0.390155 | 0.099* | |
C17A | 1.0790 (8) | 0.0602 (8) | 0.3295 (7) | 0.103 (2) | 0.557 (13) |
H17A | 0.975065 | −0.019365 | 0.308210 | 0.123* | 0.557 (13) |
H17B | 1.142348 | 0.054603 | 0.398655 | 0.123* | 0.557 (13) |
C18A | 1.148 (3) | 0.036 (2) | 0.2114 (16) | 0.133 (5) | 0.557 (13) |
H18A | 1.075824 | 0.031654 | 0.141926 | 0.160* | 0.557 (13) |
H18B | 1.241883 | 0.129730 | 0.232273 | 0.160* | 0.557 (13) |
C19A | 1.183 (2) | −0.1118 (16) | 0.1655 (16) | 0.136 (6) | 0.557 (13) |
H19A | 1.247458 | −0.112461 | 0.235361 | 0.204* | 0.557 (13) |
H19B | 1.234537 | −0.113113 | 0.097225 | 0.204* | 0.557 (13) |
H19C | 1.088185 | −0.205753 | 0.134145 | 0.204* | 0.557 (13) |
C17B | 1.0790 (8) | 0.0602 (8) | 0.3295 (7) | 0.103 (2) | 0.443 (13) |
H17C | 0.972300 | −0.014526 | 0.293379 | 0.123* | 0.443 (13) |
H17D | 1.112223 | 0.052835 | 0.409518 | 0.123* | 0.443 (13) |
C18B | 1.171 (3) | −0.004 (4) | 0.2383 (17) | 0.141 (6) | 0.443 (13) |
H18C | 1.270102 | 0.079386 | 0.250798 | 0.169* | 0.443 (13) |
H18D | 1.187648 | −0.095011 | 0.248124 | 0.169* | 0.443 (13) |
C19B | 1.068 (3) | −0.055 (3) | 0.111 (2) | 0.162 (7) | 0.443 (13) |
H19D | 0.970732 | −0.136990 | 0.102475 | 0.244* | 0.443 (13) |
H19E | 1.114365 | −0.098113 | 0.043673 | 0.244* | 0.443 (13) |
H19F | 1.050918 | 0.036411 | 0.105986 | 0.244* | 0.443 (13) |
N1 | 1.2139 (7) | 0.5123 (8) | 0.8657 (6) | 0.094 (2) | |
H1A | 1.283 (8) | 0.475 (8) | 0.821 (7) | 0.112* | |
H1B | 1.255 (8) | 0.560 (8) | 0.944 (7) | 0.112* | |
N2 | 0.5962 (7) | −0.1744 (8) | 0.0885 (6) | 0.0949 (19) | |
O1 | 0.9885 (5) | 0.5479 (5) | 0.8716 (4) | 0.0757 (12) | |
O2 | 0.4613 (5) | 0.3189 (5) | 0.5099 (4) | 0.0776 (13) | |
H2 | 0.406 (6) | 0.356 (7) | 0.561 (5) | 0.093* | |
O3 | 0.5829 (9) | −0.1520 (9) | −0.0083 (6) | 0.172 (3) | |
O4 | 0.5908 (9) | −0.3032 (7) | 0.0850 (6) | 0.164 (3) | |
O5 | 1.0027 (4) | 0.2678 (5) | 0.4653 (4) | 0.0728 (12) | |
O6 | 1.2162 (4) | 0.3471 (5) | 0.6150 (4) | 0.0753 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.060 (4) | 0.093 (4) | 0.064 (5) | 0.033 (4) | 0.005 (3) | 0.035 (3) |
C2 | 0.056 (4) | 0.075 (4) | 0.055 (4) | 0.031 (3) | 0.009 (3) | 0.029 (3) |
C3 | 0.055 (3) | 0.049 (3) | 0.054 (4) | 0.025 (3) | 0.018 (3) | 0.023 (3) |
C4 | 0.047 (3) | 0.053 (3) | 0.047 (3) | 0.025 (3) | 0.008 (3) | 0.018 (3) |
C5 | 0.048 (3) | 0.049 (3) | 0.063 (4) | 0.021 (3) | 0.007 (3) | 0.018 (3) |
C6 | 0.059 (4) | 0.069 (4) | 0.082 (5) | 0.036 (3) | 0.024 (3) | 0.019 (3) |
C7 | 0.077 (5) | 0.071 (4) | 0.059 (4) | 0.039 (3) | 0.028 (3) | 0.020 (3) |
C8 | 0.055 (4) | 0.064 (3) | 0.053 (4) | 0.023 (3) | 0.002 (3) | 0.018 (3) |
C9 | 0.044 (3) | 0.064 (3) | 0.054 (4) | 0.031 (3) | 0.005 (2) | 0.024 (3) |
C10 | 0.095 (5) | 0.075 (4) | 0.064 (5) | 0.053 (3) | 0.009 (3) | 0.030 (3) |
C11 | 0.104 (5) | 0.095 (4) | 0.042 (4) | 0.054 (4) | 0.003 (3) | 0.025 (3) |
C12 | 0.071 (4) | 0.070 (4) | 0.046 (4) | 0.035 (3) | 0.004 (3) | 0.007 (3) |
C13 | 0.092 (5) | 0.060 (3) | 0.065 (5) | 0.035 (3) | 0.025 (3) | 0.023 (3) |
C14 | 0.085 (4) | 0.060 (3) | 0.063 (4) | 0.036 (3) | 0.025 (3) | 0.036 (3) |
C15 | 0.053 (4) | 0.057 (3) | 0.066 (4) | 0.021 (3) | 0.004 (3) | 0.027 (3) |
C16 | 0.083 (5) | 0.109 (5) | 0.082 (5) | 0.055 (4) | 0.031 (4) | 0.049 (4) |
C17A | 0.110 (6) | 0.092 (5) | 0.113 (7) | 0.059 (4) | 0.034 (5) | 0.030 (4) |
C18A | 0.191 (12) | 0.135 (11) | 0.116 (11) | 0.133 (8) | 0.046 (9) | 0.032 (7) |
C19A | 0.197 (13) | 0.123 (9) | 0.116 (11) | 0.100 (9) | 0.062 (9) | 0.039 (8) |
C17B | 0.110 (6) | 0.092 (5) | 0.113 (7) | 0.059 (4) | 0.034 (5) | 0.030 (4) |
C18B | 0.195 (13) | 0.137 (12) | 0.126 (11) | 0.137 (9) | 0.038 (10) | 0.025 (9) |
C19B | 0.206 (14) | 0.155 (13) | 0.127 (13) | 0.108 (10) | 0.037 (11) | 0.023 (10) |
N1 | 0.068 (4) | 0.129 (5) | 0.071 (4) | 0.041 (3) | −0.011 (3) | 0.031 (4) |
N2 | 0.118 (5) | 0.103 (5) | 0.066 (5) | 0.064 (4) | 0.013 (4) | 0.020 (4) |
O1 | 0.080 (3) | 0.091 (3) | 0.050 (3) | 0.040 (2) | 0.008 (2) | 0.018 (2) |
O2 | 0.063 (3) | 0.091 (3) | 0.086 (3) | 0.049 (2) | 0.016 (2) | 0.027 (2) |
O3 | 0.267 (8) | 0.201 (6) | 0.065 (4) | 0.165 (6) | −0.002 (5) | 0.016 (4) |
O4 | 0.294 (9) | 0.092 (3) | 0.119 (5) | 0.086 (5) | 0.094 (5) | 0.033 (4) |
O5 | 0.062 (3) | 0.102 (3) | 0.061 (3) | 0.046 (2) | 0.019 (2) | 0.027 (2) |
O6 | 0.050 (2) | 0.100 (3) | 0.087 (3) | 0.041 (2) | 0.013 (2) | 0.041 (2) |
C1—N1 | 1.318 (7) | C16—C17B | 1.445 (8) |
C1—O1 | 1.339 (7) | C16—C17A | 1.445 (8) |
C1—C2 | 1.355 (8) | C16—O5 | 1.454 (7) |
C2—C15 | 1.427 (8) | C16—H16A | 0.9700 |
C2—C3 | 1.462 (7) | C16—H16B | 0.9700 |
C3—C8 | 1.370 (7) | C17A—C18A | 1.530 (9) |
C3—C4 | 1.403 (7) | C17A—H17A | 0.9700 |
C4—C5 | 1.393 (7) | C17A—H17B | 0.9700 |
C4—C9 | 1.451 (7) | C18A—C19A | 1.484 (9) |
C5—O2 | 1.353 (6) | C18A—H18A | 0.9700 |
C5—C6 | 1.375 (8) | C18A—H18B | 0.9700 |
C6—C7 | 1.364 (8) | C19A—H19A | 0.9600 |
C6—H6 | 0.9300 | C19A—H19B | 0.9600 |
C7—C8 | 1.368 (7) | C19A—H19C | 0.9600 |
C7—H7 | 0.9300 | C17B—C18B | 1.516 (10) |
C8—O1 | 1.386 (6) | C17B—H17C | 0.9700 |
C9—C14 | 1.386 (7) | C17B—H17D | 0.9700 |
C9—C10 | 1.387 (7) | C18B—C19B | 1.487 (10) |
C10—C11 | 1.359 (8) | C18B—H18C | 0.9700 |
C10—H10 | 0.9300 | C18B—H18D | 0.9700 |
C11—C12 | 1.364 (8) | C19B—H19D | 0.9600 |
C11—H11 | 0.9300 | C19B—H19E | 0.9600 |
C12—C13 | 1.346 (8) | C19B—H19F | 0.9600 |
C12—N2 | 1.439 (8) | N1—H1A | 0.95 (7) |
C13—C14 | 1.362 (7) | N1—H1B | 0.83 (7) |
C13—H13 | 0.9300 | N2—O3 | 1.199 (8) |
C14—H14 | 0.9300 | N2—O4 | 1.202 (7) |
C15—O6 | 1.235 (6) | O2—H2 | 0.88 (2) |
C15—O5 | 1.319 (6) | ||
N1—C1—O1 | 116.9 (6) | C17A—C16—H16B | 109.0 |
N1—C1—C2 | 131.4 (7) | O5—C16—H16B | 109.0 |
O1—C1—C2 | 111.7 (5) | H16A—C16—H16B | 107.8 |
C1—C2—C15 | 119.5 (5) | C16—C17A—C18A | 101.6 (7) |
C1—C2—C3 | 106.0 (5) | C16—C17A—H17A | 111.5 |
C15—C2—C3 | 133.8 (5) | C18A—C17A—H17A | 111.5 |
C8—C3—C4 | 118.1 (5) | C16—C17A—H17B | 111.5 |
C8—C3—C2 | 105.0 (5) | C18A—C17A—H17B | 111.5 |
C4—C3—C2 | 136.9 (5) | H17A—C17A—H17B | 109.3 |
C5—C4—C3 | 116.4 (5) | C19A—C18A—C17A | 114.2 (11) |
C5—C4—C9 | 119.3 (4) | C19A—C18A—H18A | 108.7 |
C3—C4—C9 | 124.0 (5) | C17A—C18A—H18A | 108.7 |
O2—C5—C6 | 120.6 (5) | C19A—C18A—H18B | 108.7 |
O2—C5—C4 | 116.7 (5) | C17A—C18A—H18B | 108.7 |
C6—C5—C4 | 122.7 (5) | H18A—C18A—H18B | 107.6 |
C7—C6—C5 | 121.2 (5) | C18A—C19A—H19A | 109.5 |
C7—C6—H6 | 119.4 | C18A—C19A—H19B | 109.5 |
C5—C6—H6 | 119.4 | H19A—C19A—H19B | 109.5 |
C6—C7—C8 | 115.7 (5) | C18A—C19A—H19C | 109.5 |
C6—C7—H7 | 122.2 | H19A—C19A—H19C | 109.5 |
C8—C7—H7 | 122.2 | H19B—C19A—H19C | 109.5 |
C3—C8—C7 | 125.7 (5) | C16—C17B—C18B | 121.7 (13) |
C3—C8—O1 | 110.1 (5) | C16—C17B—H17C | 106.9 |
C7—C8—O1 | 124.1 (5) | C18B—C17B—H17C | 106.9 |
C14—C9—C10 | 118.2 (5) | C16—C17B—H17D | 106.9 |
C14—C9—C4 | 119.0 (5) | C18B—C17B—H17D | 106.9 |
C10—C9—C4 | 122.8 (5) | H17C—C17B—H17D | 106.7 |
C11—C10—C9 | 121.7 (5) | C19B—C18B—C17B | 101.0 (15) |
C11—C10—H10 | 119.1 | C19B—C18B—H18C | 111.6 |
C9—C10—H10 | 119.1 | C17B—C18B—H18C | 111.6 |
C10—C11—C12 | 117.8 (6) | C19B—C18B—H18D | 111.6 |
C10—C11—H11 | 121.1 | C17B—C18B—H18D | 111.6 |
C12—C11—H11 | 121.1 | H18C—C18B—H18D | 109.4 |
C13—C12—C11 | 122.4 (5) | C18B—C19B—H19D | 109.5 |
C13—C12—N2 | 118.2 (6) | C18B—C19B—H19E | 109.5 |
C11—C12—N2 | 119.4 (6) | H19D—C19B—H19E | 109.5 |
C12—C13—C14 | 120.0 (5) | C18B—C19B—H19F | 109.5 |
C12—C13—H13 | 120.0 | H19D—C19B—H19F | 109.5 |
C14—C13—H13 | 120.0 | H19E—C19B—H19F | 109.5 |
C13—C14—C9 | 119.8 (6) | C1—N1—H1A | 121 (4) |
C13—C14—H14 | 120.1 | C1—N1—H1B | 130 (5) |
C9—C14—H14 | 120.1 | H1A—N1—H1B | 109 (7) |
O6—C15—O5 | 121.8 (5) | O3—N2—O4 | 120.9 (7) |
O6—C15—C2 | 124.0 (6) | O3—N2—C12 | 119.1 (7) |
O5—C15—C2 | 114.0 (5) | O4—N2—C12 | 119.9 (7) |
C17B—C16—O5 | 113.0 (6) | C1—O1—C8 | 107.1 (5) |
C17A—C16—O5 | 113.0 (6) | C5—O2—H2 | 96 (4) |
C17A—C16—H16A | 109.0 | C15—O5—C16 | 119.0 (5) |
O5—C16—H16A | 109.0 | ||
N1—C1—C2—C15 | −8.7 (10) | C4—C9—C10—C11 | −179.9 (5) |
O1—C1—C2—C15 | 170.4 (5) | C9—C10—C11—C12 | 1.8 (9) |
N1—C1—C2—C3 | 179.1 (7) | C10—C11—C12—C13 | −0.6 (9) |
O1—C1—C2—C3 | −1.9 (7) | C10—C11—C12—N2 | 178.9 (6) |
C1—C2—C3—C8 | 1.6 (6) | C11—C12—C13—C14 | −0.1 (9) |
C15—C2—C3—C8 | −169.1 (6) | N2—C12—C13—C14 | −179.6 (5) |
C1—C2—C3—C4 | −176.7 (6) | C12—C13—C14—C9 | −0.5 (8) |
C15—C2—C3—C4 | 12.7 (11) | C10—C9—C14—C13 | 1.7 (8) |
C8—C3—C4—C5 | 5.3 (7) | C4—C9—C14—C13 | 179.3 (5) |
C2—C3—C4—C5 | −176.6 (6) | C1—C2—C15—O6 | 4.2 (9) |
C8—C3—C4—C9 | −168.8 (5) | C3—C2—C15—O6 | 173.9 (5) |
C2—C3—C4—C9 | 9.4 (10) | C1—C2—C15—O5 | −169.9 (5) |
C3—C4—C5—O2 | 179.7 (5) | C3—C2—C15—O5 | −0.2 (9) |
C9—C4—C5—O2 | −6.0 (7) | O5—C16—C17A—C18A | 173.0 (11) |
C3—C4—C5—C6 | −1.7 (8) | C16—C17A—C18A—C19A | 171.5 (17) |
C9—C4—C5—C6 | 172.7 (5) | O5—C16—C17B—C18B | −171.7 (11) |
O2—C5—C6—C7 | 176.5 (5) | C16—C17B—C18B—C19B | −81 (2) |
C4—C5—C6—C7 | −2.1 (9) | C13—C12—N2—O3 | 179.7 (7) |
C5—C6—C7—C8 | 2.0 (9) | C11—C12—N2—O3 | 0.1 (10) |
C4—C3—C8—C7 | −5.8 (9) | C13—C12—N2—O4 | −3.4 (10) |
C2—C3—C8—C7 | 175.6 (6) | C11—C12—N2—O4 | 177.1 (7) |
C4—C3—C8—O1 | 177.8 (4) | N1—C1—O1—C8 | −179.4 (6) |
C2—C3—C8—O1 | −0.9 (6) | C2—C1—O1—C8 | 1.3 (7) |
C6—C7—C8—C3 | 2.0 (9) | C3—C8—O1—C1 | −0.2 (6) |
C6—C7—C8—O1 | 177.9 (5) | C7—C8—O1—C1 | −176.7 (6) |
C5—C4—C9—C14 | −106.8 (6) | O6—C15—O5—C16 | −2.1 (8) |
C3—C4—C9—C14 | 67.1 (7) | C2—C15—O5—C16 | 172.2 (5) |
C5—C4—C9—C10 | 70.6 (7) | C17B—C16—O5—C15 | 85.4 (7) |
C3—C4—C9—C10 | −115.4 (6) | C17A—C16—O5—C15 | 85.4 (7) |
C14—C9—C10—C11 | −2.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4i | 0.93 | 2.64 | 3.444 (8) | 146 |
C11—H11···O3ii | 0.93 | 2.53 | 3.237 (8) | 133 |
C17B—H17D···O6 | 0.97 | 2.74 | 3.226 (8) | 112 |
N1—H1A···O6 | 0.95 (7) | 2.15 (7) | 2.747 (8) | 120 (6) |
O2—H2···O6iii | 0.88 (2) | 1.94 (3) | 2.755 (6) | 154 (6) |
Symmetry codes: (i) x, y+1, z+1; (ii) −x+1, −y, −z; (iii) x−1, y, z. |
C18H16N2O7 | F(000) = 776 |
Mr = 372.33 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.263 (2) Å | Cell parameters from 72 reflections |
b = 9.0860 (8) Å | θ = 3.0–20.3° |
c = 20.049 (4) Å | µ = 0.11 mm−1 |
β = 111.577 (16)° | T = 298 K |
V = 1738.6 (6) Å3 | Plate, yellow |
Z = 4 | 0.48 × 0.22 × 0.02 mm |
Bruker-Nonius KappaCCD diffractometer | 3784 independent reflections |
Radiation source: normal-focus sealed tube | 2408 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
CCD rotation images, thick slices scans | h = −8→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −11→10 |
Tmin = 0.825, Tmax = 0.927 | l = −26→23 |
9595 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.058P)2 + 0.521P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3784 reflections | Δρmax = 0.21 e Å−3 |
254 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1522 (2) | −0.1808 (2) | 0.16883 (11) | 0.0445 (5) | |
C2 | 0.1956 (2) | −0.0554 (2) | 0.20982 (10) | 0.0373 (5) | |
C3 | 0.1095 (2) | 0.0632 (2) | 0.16748 (10) | 0.0341 (4) | |
C4 | 0.1002 (2) | 0.2168 (2) | 0.17400 (10) | 0.0344 (4) | |
C5 | −0.0070 (2) | 0.2886 (2) | 0.11922 (11) | 0.0406 (5) | |
C6 | −0.0987 (2) | 0.2149 (2) | 0.05940 (11) | 0.0461 (5) | |
H6 | −0.169033 | 0.267025 | 0.024435 | 0.055* | |
C7 | −0.0860 (2) | 0.0655 (2) | 0.05158 (11) | 0.0450 (5) | |
H7 | −0.145055 | 0.015044 | 0.011512 | 0.054* | |
C8 | 0.0173 (2) | −0.0043 (2) | 0.10548 (10) | 0.0390 (5) | |
C9 | 0.2033 (2) | 0.3040 (2) | 0.23255 (10) | 0.0340 (4) | |
C10 | 0.1601 (2) | 0.3939 (2) | 0.27675 (11) | 0.0420 (5) | |
H10 | 0.065367 | 0.399616 | 0.269523 | 0.050* | |
C11 | 0.2554 (2) | 0.4745 (2) | 0.33092 (11) | 0.0467 (5) | |
H11 | 0.225981 | 0.534073 | 0.360395 | 0.056* | |
C12 | 0.3945 (2) | 0.4653 (2) | 0.34070 (11) | 0.0444 (5) | |
C13 | 0.4412 (2) | 0.3798 (2) | 0.29739 (12) | 0.0503 (6) | |
H13 | 0.535893 | 0.376423 | 0.304353 | 0.060* | |
C14 | 0.3444 (2) | 0.2992 (2) | 0.24337 (11) | 0.0440 (5) | |
H14 | 0.374444 | 0.240694 | 0.213767 | 0.053* | |
C15 | 0.2933 (2) | −0.0684 (2) | 0.28310 (11) | 0.0424 (5) | |
C16 | 0.3911 (3) | 0.0471 (3) | 0.39702 (12) | 0.0675 (7) | |
H15A | 0.476930 | 0.089810 | 0.395981 | 0.081* | |
H15B | 0.411377 | −0.052314 | 0.415599 | 0.081* | |
C17 | 0.3393 (3) | 0.1360 (3) | 0.44439 (12) | 0.0639 (7) | |
H17A | 0.418292 | 0.173723 | 0.484457 | 0.077* | |
H17B | 0.285814 | 0.219097 | 0.417820 | 0.077* | |
C18 | 0.2178 (3) | 0.1191 (3) | 0.52447 (15) | 0.0807 (9) | |
H18A | 0.301484 | 0.142483 | 0.564594 | 0.121* | |
H18B | 0.160476 | 0.054063 | 0.539727 | 0.121* | |
H18C | 0.166857 | 0.207917 | 0.505670 | 0.121* | |
N1 | 0.1990 (3) | −0.3192 (2) | 0.17972 (13) | 0.0662 (7) | |
H1A | 0.137 (3) | −0.388 (3) | 0.1558 (15) | 0.079* | |
H1B | 0.258 (3) | −0.334 (3) | 0.2202 (16) | 0.079* | |
N2 | 0.4964 (3) | 0.5494 (2) | 0.39927 (11) | 0.0620 (6) | |
O1 | 0.04482 (16) | −0.15477 (14) | 0.10650 (8) | 0.0487 (4) | |
O2 | −0.01457 (18) | 0.43883 (16) | 0.12485 (9) | 0.0579 (5) | |
H2O | −0.094 (3) | 0.471 (3) | 0.0929 (14) | 0.069* | |
O3 | 0.4543 (2) | 0.6155 (2) | 0.44027 (10) | 0.0856 (6) | |
O4 | 0.6174 (2) | 0.5507 (3) | 0.40383 (12) | 0.0956 (7) | |
O5 | 0.28607 (16) | 0.04351 (16) | 0.32517 (7) | 0.0519 (4) | |
O6 | 0.37098 (18) | −0.17310 (18) | 0.30529 (9) | 0.0630 (5) | |
O7 | 0.25432 (19) | 0.04923 (17) | 0.47021 (8) | 0.0628 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0499 (13) | 0.0369 (11) | 0.0459 (12) | −0.0015 (9) | 0.0168 (11) | 0.0021 (9) |
C2 | 0.0385 (12) | 0.0333 (10) | 0.0406 (11) | −0.0025 (8) | 0.0150 (9) | 0.0018 (8) |
C3 | 0.0328 (11) | 0.0374 (11) | 0.0341 (10) | −0.0029 (8) | 0.0144 (8) | 0.0005 (8) |
C4 | 0.0327 (11) | 0.0378 (11) | 0.0334 (10) | −0.0007 (8) | 0.0130 (8) | −0.0013 (8) |
C5 | 0.0406 (12) | 0.0346 (11) | 0.0448 (12) | 0.0016 (8) | 0.0135 (10) | 0.0010 (9) |
C6 | 0.0425 (13) | 0.0489 (13) | 0.0385 (11) | 0.0023 (9) | 0.0051 (10) | 0.0056 (9) |
C7 | 0.0481 (13) | 0.0488 (13) | 0.0334 (11) | −0.0085 (9) | 0.0095 (9) | −0.0038 (9) |
C8 | 0.0459 (12) | 0.0353 (11) | 0.0369 (11) | −0.0046 (8) | 0.0165 (9) | −0.0030 (8) |
C9 | 0.0346 (11) | 0.0314 (10) | 0.0344 (10) | −0.0002 (7) | 0.0109 (8) | 0.0015 (8) |
C10 | 0.0382 (12) | 0.0436 (12) | 0.0459 (12) | −0.0009 (9) | 0.0177 (10) | −0.0042 (9) |
C11 | 0.0574 (15) | 0.0434 (12) | 0.0426 (12) | −0.0045 (10) | 0.0221 (11) | −0.0073 (9) |
C12 | 0.0489 (14) | 0.0439 (12) | 0.0357 (11) | −0.0119 (9) | 0.0099 (10) | −0.0002 (9) |
C13 | 0.0348 (12) | 0.0612 (14) | 0.0528 (14) | −0.0076 (10) | 0.0137 (11) | −0.0026 (11) |
C14 | 0.0367 (12) | 0.0501 (12) | 0.0463 (12) | −0.0006 (9) | 0.0165 (10) | −0.0078 (9) |
C15 | 0.0418 (12) | 0.0391 (12) | 0.0447 (12) | −0.0043 (9) | 0.0142 (10) | 0.0069 (9) |
C16 | 0.0584 (17) | 0.089 (2) | 0.0386 (13) | −0.0056 (13) | −0.0011 (11) | 0.0059 (12) |
C17 | 0.0819 (19) | 0.0544 (15) | 0.0396 (13) | −0.0198 (12) | 0.0039 (12) | −0.0003 (11) |
C18 | 0.097 (2) | 0.082 (2) | 0.0644 (18) | −0.0044 (16) | 0.0318 (17) | −0.0191 (15) |
N1 | 0.0802 (17) | 0.0332 (11) | 0.0703 (15) | −0.0010 (10) | 0.0100 (12) | 0.0010 (10) |
N2 | 0.0671 (16) | 0.0586 (13) | 0.0475 (12) | −0.0200 (11) | 0.0061 (11) | −0.0018 (10) |
O1 | 0.0610 (10) | 0.0359 (8) | 0.0435 (8) | −0.0051 (7) | 0.0126 (7) | −0.0066 (6) |
O2 | 0.0537 (10) | 0.0383 (9) | 0.0629 (11) | 0.0095 (7) | −0.0005 (8) | 0.0010 (7) |
O3 | 0.1101 (17) | 0.0828 (14) | 0.0548 (12) | −0.0276 (12) | 0.0195 (12) | −0.0262 (10) |
O4 | 0.0596 (14) | 0.1190 (18) | 0.0861 (15) | −0.0335 (12) | 0.0009 (11) | −0.0229 (12) |
O5 | 0.0540 (10) | 0.0558 (10) | 0.0352 (8) | 0.0042 (7) | 0.0040 (7) | 0.0019 (7) |
O6 | 0.0615 (11) | 0.0517 (10) | 0.0639 (11) | 0.0120 (8) | 0.0091 (9) | 0.0131 (8) |
O7 | 0.0778 (12) | 0.0530 (10) | 0.0515 (10) | −0.0191 (8) | 0.0165 (9) | −0.0113 (8) |
C1—N1 | 1.335 (3) | C12—N2 | 1.468 (3) |
C1—O1 | 1.349 (3) | C13—C14 | 1.380 (3) |
C1—C2 | 1.380 (3) | C13—H13 | 0.9300 |
C2—C15 | 1.447 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.453 (3) | C15—O6 | 1.216 (2) |
C3—C8 | 1.397 (3) | C15—O5 | 1.341 (2) |
C3—C4 | 1.409 (3) | C16—O5 | 1.448 (3) |
C4—C5 | 1.397 (3) | C16—C17 | 1.486 (4) |
C4—C9 | 1.487 (3) | C16—H15A | 0.9700 |
C5—O2 | 1.375 (2) | C16—H15B | 0.9700 |
C5—C6 | 1.393 (3) | C17—O7 | 1.408 (3) |
C6—C7 | 1.378 (3) | C17—H17A | 0.9700 |
C6—H6 | 0.9300 | C17—H17B | 0.9700 |
C7—C8 | 1.361 (3) | C18—O7 | 1.424 (3) |
C7—H7 | 0.9300 | C18—H18A | 0.9600 |
C8—O1 | 1.394 (2) | C18—H18B | 0.9600 |
C9—C14 | 1.384 (3) | C18—H18C | 0.9600 |
C9—C10 | 1.392 (3) | N1—H1A | 0.89 (3) |
C10—C11 | 1.375 (3) | N1—H1B | 0.83 (3) |
C10—H10 | 0.9300 | N2—O4 | 1.212 (3) |
C11—C12 | 1.370 (3) | N2—O3 | 1.218 (3) |
C11—H11 | 0.9300 | O2—H2O | 0.88 (3) |
C12—C13 | 1.376 (3) | ||
N1—C1—O1 | 116.06 (19) | C12—C13—H13 | 120.8 |
N1—C1—C2 | 131.5 (2) | C14—C13—H13 | 120.8 |
O1—C1—C2 | 112.45 (17) | C13—C14—C9 | 121.09 (19) |
C1—C2—C15 | 119.26 (18) | C13—C14—H14 | 119.5 |
C1—C2—C3 | 105.70 (17) | C9—C14—H14 | 119.5 |
C15—C2—C3 | 134.37 (17) | O6—C15—O5 | 122.9 (2) |
C8—C3—C4 | 118.08 (17) | O6—C15—C2 | 123.5 (2) |
C8—C3—C2 | 105.17 (16) | O5—C15—C2 | 113.51 (17) |
C4—C3—C2 | 136.74 (17) | O5—C16—C17 | 109.8 (2) |
C5—C4—C3 | 116.75 (17) | O5—C16—H15A | 109.7 |
C5—C4—C9 | 119.87 (17) | C17—C16—H15A | 109.7 |
C3—C4—C9 | 123.23 (17) | O5—C16—H15B | 109.7 |
O2—C5—C6 | 120.48 (18) | C17—C16—H15B | 109.7 |
O2—C5—C4 | 116.78 (18) | H15A—C16—H15B | 108.2 |
C6—C5—C4 | 122.66 (18) | O7—C17—C16 | 110.3 (2) |
C7—C6—C5 | 120.60 (19) | O7—C17—H17A | 109.6 |
C7—C6—H6 | 119.7 | C16—C17—H17A | 109.6 |
C5—C6—H6 | 119.7 | O7—C17—H17B | 109.6 |
C8—C7—C6 | 116.59 (19) | C16—C17—H17B | 109.6 |
C8—C7—H7 | 121.7 | H17A—C17—H17B | 108.1 |
C6—C7—H7 | 121.7 | O7—C18—H18A | 109.5 |
C7—C8—O1 | 124.28 (18) | O7—C18—H18B | 109.5 |
C7—C8—C3 | 125.21 (18) | H18A—C18—H18B | 109.5 |
O1—C8—C3 | 110.50 (17) | O7—C18—H18C | 109.5 |
C14—C9—C10 | 118.59 (18) | H18A—C18—H18C | 109.5 |
C14—C9—C4 | 120.45 (17) | H18B—C18—H18C | 109.5 |
C10—C9—C4 | 120.95 (17) | C1—N1—H1A | 115.4 (19) |
C11—C10—C9 | 120.97 (19) | C1—N1—H1B | 114 (2) |
C11—C10—H10 | 119.5 | H1A—N1—H1B | 122 (3) |
C9—C10—H10 | 119.5 | O4—N2—O3 | 123.5 (2) |
C12—C11—C10 | 118.8 (2) | O4—N2—C12 | 118.3 (2) |
C12—C11—H11 | 120.6 | O3—N2—C12 | 118.1 (2) |
C10—C11—H11 | 120.6 | C1—O1—C8 | 106.12 (15) |
C11—C12—C13 | 122.05 (19) | C5—O2—H2O | 109.6 (17) |
C11—C12—N2 | 118.8 (2) | C15—O5—C16 | 116.75 (18) |
C13—C12—N2 | 119.2 (2) | C17—O7—C18 | 113.83 (19) |
C12—C13—C14 | 118.5 (2) | ||
N1—C1—C2—C15 | −11.7 (4) | C3—C4—C9—C10 | −124.6 (2) |
O1—C1—C2—C15 | 169.66 (17) | C14—C9—C10—C11 | −1.2 (3) |
N1—C1—C2—C3 | 176.4 (2) | C4—C9—C10—C11 | 179.96 (18) |
O1—C1—C2—C3 | −2.2 (2) | C9—C10—C11—C12 | 0.2 (3) |
C1—C2—C3—C8 | 2.4 (2) | C10—C11—C12—C13 | 1.0 (3) |
C15—C2—C3—C8 | −167.7 (2) | C10—C11—C12—N2 | −179.02 (19) |
C1—C2—C3—C4 | −176.8 (2) | C11—C12—C13—C14 | −1.2 (3) |
C15—C2—C3—C4 | 13.2 (4) | N2—C12—C13—C14 | 178.81 (19) |
C8—C3—C4—C5 | 3.6 (3) | C12—C13—C14—C9 | 0.2 (3) |
C2—C3—C4—C5 | −177.3 (2) | C10—C9—C14—C13 | 0.9 (3) |
C8—C3—C4—C9 | −171.97 (18) | C4—C9—C14—C13 | 179.83 (19) |
C2—C3—C4—C9 | 7.1 (3) | C1—C2—C15—O6 | 22.3 (3) |
C3—C4—C5—O2 | −178.79 (17) | C3—C2—C15—O6 | −168.7 (2) |
C9—C4—C5—O2 | −3.0 (3) | C1—C2—C15—O5 | −155.14 (19) |
C3—C4—C5—C6 | −2.0 (3) | C3—C2—C15—O5 | 13.9 (3) |
C9—C4—C5—C6 | 173.74 (19) | O5—C16—C17—O7 | 83.6 (2) |
O2—C5—C6—C7 | 176.1 (2) | C11—C12—N2—O4 | −173.8 (2) |
C4—C5—C6—C7 | −0.5 (3) | C13—C12—N2—O4 | 6.2 (3) |
C5—C6—C7—C8 | 1.4 (3) | C11—C12—N2—O3 | 5.4 (3) |
C6—C7—C8—O1 | 179.86 (19) | C13—C12—N2—O3 | −174.5 (2) |
C6—C7—C8—C3 | 0.5 (3) | N1—C1—O1—C8 | −177.8 (2) |
C4—C3—C8—C7 | −3.0 (3) | C2—C1—O1—C8 | 1.1 (2) |
C2—C3—C8—C7 | 177.62 (19) | C7—C8—O1—C1 | −178.9 (2) |
C4—C3—C8—O1 | 177.49 (16) | C3—C8—O1—C1 | 0.6 (2) |
C2—C3—C8—O1 | −1.8 (2) | O6—C15—O5—C16 | 9.3 (3) |
C5—C4—C9—C14 | −118.9 (2) | C2—C15—O5—C16 | −173.19 (18) |
C3—C4—C9—C14 | 56.5 (3) | C17—C16—O5—C15 | −157.75 (19) |
C5—C4—C9—C10 | 59.9 (3) | C16—C17—O7—C18 | 170.9 (2) |
Cg1 and Cg2 are the centroids of the O1/C1/C2/C3/C8 and C3–C8 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O3i | 0.97 | 2.49 | 3.366 (3) | 150 |
N1—H1A···O2ii | 0.89 (3) | 2.14 (3) | 3.013 (3) | 165 (3) |
N1—H1B···O6 | 0.83 (3) | 2.22 (3) | 2.819 (3) | 129 (3) |
O2—H2O···O7iii | 0.88 (3) | 1.81 (3) | 2.691 (2) | 176 (3) |
C10—H10···Cg1iii | 0.93 | 2.76 | 3.521 (3) | 139 |
C11—H11···Cg2iii | 0.93 | 2.80 | 3.601 (3) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, y+1/2, −z+1/2. |
R is the distance between molecular centroids (mean atomic position) in Å and N is the number of molecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a). |
N | symop | R | Eelec | Epol | Edisp | Erep | Etotal | interaction |
2 | x, y, z | 12.04 | -9.1 | -2.5 | -14.1 | 9.1 | -18.1 | C7—H7···O4i |
1 | -x, -y, -z | 10.51 | -8.2 | -3.0 | -11.7 | 13.1 | -12.9 | C11—H11···O3ii |
1 | -x, -y, -z | 11.10 | -3.2 | -1.9 | -12.2 | 2.8 | -13.6 | |
2 | x, y, z | 12.43 | -3.3 | -1.4 | -5.4 | 1.0 | -8.6 | |
1 | -x, -y, -z | 12.97 | 8.5 | -1.0 | -2.3 | 0.5 | 6.5 | N2—O4···O4iii |
1 | -x, -y, -z | 5.99 | -27.6 | -3.7 | -67.7 | 35.8 | -68.8 | N1—H1A···O4iv |
1 | -x, -y, -z | 6.67 | -8.0 | -3.0 | -43.4 | 22.8 | -34.4 | |
2 | x, y, z | 9.44 | -42.2 | -10.7 | -27.7 | 52.0 | -44.5 | O2—H2···O6v |
1 | -x, -y, -z | 5.08 | -13.2 | -1.5 | -76.1 | 36.5 | -58.7 | C10—H10···O6vi |
1 | -x, -y, -z | 9.63 | 1.5 | -1.2 | -14.8 | 3.4 | -10.1 | |
1 | -x, -y, -z | 11.07 | -0.5 | -1.9 | -14.6 | 4.5 | -11.9 |
Notes: (a) Energy Model: CE_B3LYP···B3LYP/6-31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017): kele = 1.057; kpol = 0.740; kdisp = 0.871; krep= 0.61. Symmetry codes: (i) x, 1 + y, 1 + z; (ii) 1 - x, -y, -z; (iii) 1 - x, -1 - y, -z; (iv) 2 - x, -y, 1 - z; (v) -1 + x, y, z; (vi) 2 - x, 1 - y, 1 - z. |
R is the distance between molecular centroids (mean atomic position) in Å and N is the number of molecules at that distance. Total energies are the sum of the four energy components, scaled according to the appropriate scale factor(a). |
N | symop | R | Eelec | Epol | Edisp | Erep | Etotal | interaction |
1 | -x, -y, -z | 10.65 | -2.1 | -0.6 | -21.2 | 12.0 | -13.7 | |
2 | -x, y + 1/2, -z + 1/2 | 6.41 | -70.6 | -16.2 | -59.8 | 98.4 | -77.9 | O2—H2O···O7i |
2 | x, -y + 1/2, z + 1/2 | 11.49 | -4.5 | -1.4 | -6.2 | 4.1 | -8.6 | |
2 | x, y, z | 9.09 | -23.5 | -7.2 | -29.9 | 35.7 | -34.2 | N1—H1A···O2ii |
1 | -x, -y, -z | 12.21 | -1.4 | -0.1 | -2.2 | 0.2 | -3.3 | |
2 | x, -y + 1/2, z + 1/2 | 10.11 | -1.4 | -0.4 | -13.6 | 5.3 | -10.4 | |
2 | -x, y + 1/2, -zz + 1/2 | 7.42 | -8.0 | -2.5 | -26.4 | 13.6 | -25.0 | |
1 | -x, -y, -z | 9.34 | -6.5 | -0.8 | -22.8 | 12.2 | -19.9 | |
2 | x, -y + 1/2, z + 1/2 | 12.67 | 2.2 | -0.3 | -3.1 | 0.6 | -0.2 | |
1 | -x, -y, -z | 10.57 | -17.3 | -6.8 | -22.2 | 26.4 | -26.3 | C17—H17A···O3iii |
Notes: (a) Energy Model: CE_B3LYP···B3LYP/6-31G(d,p) electron densities. Scale factors for benchmarked energy model (Mackenzie et al. 2017): kele = 1.057; kpol = 0.740; kdisp = 0.871; krep= 0.61. Symmetry codes: (i) -x, 1/2 + y, 1/2 - z; (ii) x, -1 + y, z; (iii) 1 - x, 1 - y, 1 - z. |
Acknowledgements
The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 0, S1–S19. Google Scholar
Alper-Hayta, S., Arisoy, M., Temiz-Arpaci, Ö., Yildiz, I., Aki, E., Özkan, S. & Kaynak, F. (2008). Eur. J. Med. Chem. 43, 2568–2578. PubMed CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anderson, K. W., Ikawa, T., Tundel, R. E. & Buchwald, S. L. (2006). J. Am. Chem. Soc. 128, 10694–10695. CrossRef PubMed CAS Google Scholar
Becker, J. Y., Bernstein, J., Bittner, S., Harlev, E. & Sarma, J. A. R. P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1157–1160. CSD CrossRef Google Scholar
Borbone, F., Caruso, U., Concilio, S., Nabha, S., Panunzi, B., Piotto, S., Shikler, R. & Tuzi, A. (2016). Eur. J. Inorg. Chem. 2016, 818–825. CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, A., Villani, F., Grimaldi, I. A., Loffredo, F., Morvillo, P., Diana, R., Haque, S. & Minarini, C. (2014). Thin Solid Films, 560, 14–19. CrossRef CAS Google Scholar
Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, D. (2012). Dyes Pigments, 95, 116–125. CSD CrossRef CAS Google Scholar
Carella, A., Centore, R., Riccio, P., Sirigu, A., Quatela, A., Palazzesi, C. & Casalboni, M. (2005). Macromol. Chem. Phys. 206, 1399–1404. CrossRef CAS Google Scholar
Carella, A., Roviello, V., Iannitti, R., Palumbo, R., La Manna, S., Marasco, D., Trifuoggi, M., Diana, R. & Roviello, G. N. (2019). Int. J. Biol. Macromol. 121, 77–88. CrossRef CAS PubMed Google Scholar
Caruso, U., Diana, R., Fort, A., Panunzi, B. & Roviello, A. (2006). Macromol. Symp. 234, 87–93. CrossRef CAS Google Scholar
Caruso, U., Panunzi, B., Roviello, A. & Tuzi, A. (2013). Inorg. Chem. Commun. 29, 138–140. CrossRef CAS Google Scholar
Caruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622–634. Web of Science CSD CrossRef CAS Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomtsyan, A. (2012). Chem. Heterocycl. Compd, 48, 7–10. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, X., Yu, R., Li, H. & Li, Z. (2009). J. Am. Chem. Soc. 131, 17387–17393. CSD CrossRef PubMed CAS Google Scholar
Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H., Naruto, S. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 455–458. Web of Science CrossRef PubMed CAS Google Scholar
Holliday, S., Ashraf, R. S., Wadsworth, A., Baran, D., Yousaf, S. A., Nielsen, C. B., Tan, C. H., Dimitrov, S. D., Shang, Z., Gasparini, N., Alamoudi, M., Laquai, F., Brabec, C. J., Salleo, A., Durrant, J. R. & McCulloch, I. (2016). Nat. Commun. 7, 11585. CrossRef PubMed Google Scholar
Ishikawa, T., Miyahara, T., Asakura, M., Higuchi, S., Miyauchi, Y. & Saito, S. (2005). Org. Lett. 7, 1211–1214. CSD CrossRef PubMed CAS Google Scholar
Jin, R. & Irfan, A. (2017). RSC Adv. 7, 39899–39905. CrossRef CAS Google Scholar
Justin Thomas, K. R. & Baheti, A. (2013). Mater. Technol. 28, 71–87. CrossRef CAS Google Scholar
King, T. J. & Newall, C. E. (1965). J. Chem. Soc. pp. 974–977. CrossRef Google Scholar
Li, B., Yue, Z., Xiang, H., Lv, L., Song, S., Miao, Z. & Yang, C. (2014). RSC Adv. 4, 358–364. CSD CrossRef CAS Google Scholar
Li, C., Zhang, Y., Li, P. & Wang, L. (2011). J. Org. Chem. 76, 4692–4696. CrossRef CAS PubMed Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maglione, C., Carella, A., Carbonara, C., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D., Lanuti, A. & Di Carlo, A. (2016). Dyes Pigments, 133, 395–405. CrossRef CAS Google Scholar
Maglione, C., Carella, A., Centore, R., Chávez, P., Lévêque, P., Fall, S. & Leclerc, N. (2017). Dyes Pigments, 141, 169–178. CrossRef CAS Google Scholar
Maglione, C., Carella, A., Centore, R., Fusco, S., Velardo, A., Peluso, A., Colonna, D. & Di Carlo, A. (2016). J. Photochem. Photobiol. Chem. 321, 79–89. CrossRef CAS Google Scholar
Morvillo, P., Ricciardi, R., Nenna, G., Bobeico, E., Diana, R. & Minarini, C. (2016). Solar Energy Mater. Solar Cells, 152, 51–58. CrossRef CAS Google Scholar
Murai, M., Miki, K. & Ohe, K. (2004). Chem. Commun. pp. 3466–3468. Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Obushak, M. (2002). Pol. J. Chem. 1419–1424. Google Scholar
Otsuka, H., Takeda, Y., Hirata, E., Shinzato, T. & Bando, M. (2004). Chem. Pharm. Bull. 52, 591–596. CSD CrossRef PubMed CAS Google Scholar
Piotto, S., Concilio, S., Sessa, L., Diana, R., Torrens, G., Juan, C., Caruso, U. & Iannelli, P. (2017). Molecules, 22, 1372. CrossRef Google Scholar
Roviello, G., Borbone, F., Carella, A., Roviello, G. N. & Tuzi, A. (2013). Acta Cryst. E69, o1526–o1527. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soni, J. N. & Soman, S. S. (2014). Eur. J. Med. Chem. 75, 77–81. CrossRef CAS PubMed Google Scholar
Tandel, S., Wang, A., Holdeman, T. C., Zhang, H. & Biehl, E. R. (1998). Tetrahedron, 54, 15147–15154. CSD CrossRef CAS Google Scholar
Thévenin, M., Thoret, S., Grellier, P. & Dubois, J. (2013). Bioorg. Med. Chem. 21, 4885–4892. PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Wang, Y. N., Liu, M. F., Hou, W. Z., Xu, R. M., Gao, J., Lu, A. Q., Xie, M. P., Li, L., Zhang, J. J., Peng, Y., Ma, L. L., Wang, X. L., Shi, J. G. & Wang, S. J. (2017). Molecules, 22, 236. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Y. J. (2012). Prog. Heterocycl. Chem. 24, 1–53. CrossRef Google Scholar
Xie, F., Zhu, H., Zhang, H., Lang, Q., Tang, L., Huang, Q. & Yu, L. (2015). Eur. J. Med. Chem. 89, 310–319. CrossRef CAS PubMed Google Scholar
Yi, C., Blum, C., Lehmann, M., Keller, S., Liu, S.-X., Frei, G., Neels, A., Hauser, J., Schürch, S. & Decurtins, S. (2010). J. Org. Chem. 75, 3350–3357. CSD CrossRef CAS PubMed Google Scholar
Yue, D., Yao, T. & Larock, R. C. (2005). J. Org. Chem. 70, 10292–10296. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.