research communications
H-1,2,3-triazole-4-carboxylic acid monohydrate
of 1-anilino-5-methyl-1aGraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora - MG, CEP 36036-330, Brazil, bInstituto de Química, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, CEP 23.890-000, Seropédica, RJ, Brazil, cInstituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Avenida Universitária, 3500, Pontal do Araguaia - MT, CEP 78698-000, Brazil, and dDepartamento de Farmácia, Universidade Federal do Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Faria, S/N, Natal - RN, CEP 59012-570, Brazil
*Correspondence e-mail: jacksonresende@ufmt.br
In the molecular structure of the title compound, C10H10N4O2·H2O, the angle between the triazole and arene rings is 87.39 (5)°. The water of crystallization connects the molecules in the crystal packing. The exhibits N—H⋯O, O—H⋯O and O—H⋯N interactions, resulting in the formation of a three-dimensional framework. The intermolecular interactions were identified and quantified using Hirshfeld surface analysis.
Keywords: crystal structure; triazole compounds; crystal packing; hydrogen bonding; Hirshfeld surface analysis..
CCDC reference: 1912546
1. Chemical context
Triazoles are a class of compounds that have aroused chemical interest because of their wide range of applications, including their biological relevance and the development of new materials. Triazoles have potent antifungal activity, being an important class of drugs (Peyton et al., 2015). Their antitubercular (Zhang et al., 2017), anticancer (Teixeira et al., 2019), antimicrobial (Yadav et al., 2018) and antiviral (Jordão et al., 2009) activities have also been evaluated. This class of compounds has also aroused interest in materials chemistry, mainly in the development of systems with uptake capacity for both CO2 and H2 (Mukherjee et al., 2019).
2. Structural commentary
The title molecule (Fig. 1) is formed by planar aniline and triazolic rings, which subtend a dihedral angle of 87.41 (5)°. Atoms O1 and O2 are located 0.237 (2) and 0.208 (2) Å, respectively, outside the plane of the triazole ring. The methyl group exhibits occupational disorder of the hydrogen atoms.
3. Supramolecular features
The crystal packing is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds between the water molecule and the organic molecule. The supramolecular arrangement is formed by four hydrogen bonds (Table 1): (A) N4—H4⋯O1Wii, (B) O1—H1⋯O1Wi, (C) O1W—H1WA⋯O2iii and (D) O1W—H1WB⋯N1. Separately, these hydrogen bonds do not form nets in the structure. However, when combined, they generate interesting supramolecular systems. The combination of the (A:B), (B:C) and (B:D) interactions result in intermolecular rings with R24(18), R44(12) and R44(14) motifs, respectively. Representations of the R44(12) and R44(14) motifs are illustrated in Fig. 2). A C22(9) motif is observed along [10] (A:C interactions) (Fig. 3a), a C22(7) motif along [010] (A:D interactions) (Fig. 3b) and a C22(7) motif along [100] (C:D interactions).
4. Hirshfeld surface analysis
For an unequivocal description of the supramolecular system, Hirshfeld Surface (HS) analysis was performed. The isosurface was plotted for the weight function equal to 0.5. The red areas in Fig. 4 correspond to short contacts between atoms inside and outside the surface atom, di and de. There are three spots on the surface, and in the corresponding fingerprint plot (FPP; Fig. 5), they are represented as sharp spikes. Chemically, they correspond to classical hydrogen bonds. Two of these involve interactions between the carboxyl group and the water molecule while the third is the interaction between N-triazole and the water molecule. These hydrogen bonds are the shortest contacts, assigned in the FPP as O⋯H and N⋯H. The N⋯H interaction contributes 15.8% to the HS, while the O⋯H interaction corresponds to 18.1%. The majority of the interactions are H⋯H, being equal to 36.0%.
5. Database survey
A research of the Cambridge Structural Database (CSD version 5.40, update of November 2018; Groom et al., 2016) for N-phenyl-1H-1,2,3-triazol-1-amine derivatives gave 18 hits for structures that include atomic coordinates. These results include and a carbohydrazide. The molecular structures of these compounds show dihedral angles between the triazole and aniline rings in the range 76 to 89°. These values are affected by the hydrogen bonds in the crystal packing. In addition, in studies of halogenated phenyl derivatives, differences in C—H⋯π interactions were shown to result in changes in the crystal packing (Jordão et al., 2012).
6. Vibrational spectrum
Fig. 6 shows the IR spectrum measured in ATR mode (νmax, cm−1) which exhibits the following characteristic bands: 3205 (N—H stretching); 2984 (methyl C—H stretching); 1725 (C=O stretching); 1600 (>C=N stretching); 1496 (aromatic C=C stretching); 1348 (C—N stretching of triazole); 1208 (C—O stretching) for the esther and 3431 (OH stretching); 3268 (N—H stretching); 1695 (C=O stretching); 1589 (>C=N stretching); 1496 (aromatic C=C stretching); 1381 (C—N stretching of triazole); 1259 (C—O stretching) for the acid.
7. Synthesis and crystallization
The title compound was synthesized by the alkaline hydrolysis of 5-methyl-1-(phenylamino)-1H-[1,2,3]-triazole-4-carboxylic acid ethyl ester (Jordão et al., 2009), 1. 3.6 mmol of 1 were dissolved in 30.0 ml of a sodium hydroxide solution (0.1 mol L−1) (NaOH, VETEC). This mixture was refluxed at 373 K for about 48 h. The product was neutralized using dilute hydrochloric acid (HCl, VETEC), filtered and dried in vacuo. The title compound was dissolved in methanol and kept at room temperature. After a few days, colourless block-shaped crystals, suitable for X-ray analysis, were obtained by slow evaporation (yield 83%).
1H NMR (500 MHz, C2D6OS): 10.218 (1H, s), 9.887 (1H, s), 7.215 (2H, m), 6.872 (1H, m), 6.390(2H, d, J = 3Hz), 3.295 (1H, s).
8. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map and freely refined except for hydrogen atoms bound to C10 which are disordered (occupancy 0.5) and were refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1912546
https://doi.org/10.1107/S2056989019005711/ex2020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005711/ex2020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019005711/ex2020Isup3.cml
Data collection: COLLECT (Bruker, 2004); cell
DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H10N4O2·H2O | F(000) = 496 |
Mr = 236.24 | Dx = 1.345 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2288 (14) Å | Cell parameters from 11378 reflections |
b = 6.8265 (14) Å | θ = 3.1–25.2° |
c = 23.922 (5) Å | µ = 0.10 mm−1 |
β = 98.69 (3)° | T = 298 K |
V = 1167.0 (4) Å3 | Block, colourless |
Z = 4 | 0.24 × 0.20 × 0.06 mm |
Bruker KappaCCD diffractometer | 2207 independent reflections |
Horizonally mounted graphite crystal monochromator | 1559 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.042 |
CCD scans | θmax = 25.7°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −8→8 |
Tmin = 0.701, Tmax = 0.745 | k = −8→7 |
11378 measured reflections | l = −28→29 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2317P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.18 e Å−3 |
2207 reflections | Δρmin = −0.15 e Å−3 |
191 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.016 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.1134 (2) | 0.5773 (2) | 0.07579 (6) | 0.0470 (4) | |
N2 | 0.1952 (2) | 0.4253 (2) | 0.10201 (7) | 0.0490 (4) | |
N3 | 0.0553 (2) | 0.3016 (2) | 0.11042 (6) | 0.0408 (4) | |
N4 | 0.0956 (2) | 0.1211 (2) | 0.13675 (6) | 0.0456 (4) | |
O1 | −0.11452 (18) | 0.8386 (2) | 0.01606 (6) | 0.0548 (4) | |
O2 | −0.37050 (18) | 0.6983 (2) | 0.03987 (6) | 0.0626 (4) | |
C1 | −0.2030 (3) | 0.7017 (3) | 0.04017 (7) | 0.0416 (4) | |
C2 | −0.0763 (2) | 0.5512 (3) | 0.06831 (7) | 0.0379 (4) | |
C3 | −0.1165 (2) | 0.3727 (2) | 0.09034 (7) | 0.0375 (4) | |
C4 | 0.1777 (2) | 0.1351 (2) | 0.19481 (7) | 0.0387 (4) | |
C5 | 0.3163 (3) | 0.0044 (3) | 0.21538 (9) | 0.0536 (5) | |
C6 | 0.3937 (3) | 0.0088 (3) | 0.27196 (9) | 0.0608 (6) | |
C7 | 0.3320 (3) | 0.1427 (3) | 0.30781 (9) | 0.0552 (6) | |
C8 | 0.1928 (3) | 0.2721 (3) | 0.28731 (9) | 0.0575 (5) | |
C9 | 0.1139 (3) | 0.2681 (3) | 0.23076 (8) | 0.0502 (5) | |
C10 | −0.2922 (3) | 0.2638 (3) | 0.09330 (8) | 0.0507 (5) | |
H10A | −0.397146 | 0.341238 | 0.076648 | 0.076* | 0.5 |
H10B | −0.290788 | 0.142584 | 0.073046 | 0.076* | 0.5 |
H10C | −0.302575 | 0.237247 | 0.132110 | 0.076* | 0.5 |
H10D | −0.263193 | 0.139474 | 0.111221 | 0.076* | 0.5 |
H10E | −0.369552 | 0.338129 | 0.114823 | 0.076* | 0.5 |
H10F | −0.357764 | 0.243466 | 0.055760 | 0.076* | 0.5 |
O1W | 0.3100 (2) | 0.9111 (2) | 0.05054 (6) | 0.0509 (4) | |
H1 | −0.199 (3) | 0.926 (4) | −0.0049 (10) | 0.081 (7)* | |
H9 | 0.022 (3) | 0.353 (3) | 0.2172 (8) | 0.058 (6)* | |
H5 | 0.359 (3) | −0.091 (3) | 0.1907 (9) | 0.067 (6)* | |
H6 | 0.495 (3) | −0.078 (3) | 0.2851 (9) | 0.076 (7)* | |
H7 | 0.388 (3) | 0.149 (3) | 0.3456 (10) | 0.067 (6)* | |
H8 | 0.139 (3) | 0.367 (4) | 0.3125 (10) | 0.083 (7)* | |
H4 | 0.170 (3) | 0.056 (3) | 0.1157 (9) | 0.063 (6)* | |
H1WA | 0.415 (4) | 0.876 (4) | 0.0455 (10) | 0.074 (8)* | |
H1WB | 0.241 (4) | 0.800 (4) | 0.0552 (10) | 0.089 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0395 (9) | 0.0483 (9) | 0.0530 (9) | 0.0066 (7) | 0.0060 (7) | 0.0148 (8) |
N2 | 0.0410 (9) | 0.0486 (9) | 0.0570 (10) | 0.0059 (8) | 0.0067 (7) | 0.0150 (8) |
N3 | 0.0423 (9) | 0.0390 (8) | 0.0404 (8) | 0.0054 (7) | 0.0043 (6) | 0.0064 (7) |
N4 | 0.0573 (10) | 0.0355 (9) | 0.0431 (9) | 0.0114 (7) | 0.0046 (7) | 0.0046 (7) |
O1 | 0.0467 (8) | 0.0527 (8) | 0.0641 (9) | 0.0101 (7) | 0.0057 (7) | 0.0233 (7) |
O2 | 0.0394 (8) | 0.0704 (10) | 0.0785 (10) | 0.0141 (7) | 0.0102 (7) | 0.0187 (8) |
C1 | 0.0426 (11) | 0.0450 (11) | 0.0374 (9) | 0.0082 (9) | 0.0068 (8) | 0.0011 (8) |
C2 | 0.0361 (10) | 0.0419 (10) | 0.0355 (9) | 0.0054 (8) | 0.0051 (7) | 0.0020 (8) |
C3 | 0.0407 (10) | 0.0403 (10) | 0.0313 (9) | 0.0053 (8) | 0.0053 (7) | −0.0019 (8) |
C4 | 0.0390 (10) | 0.0348 (9) | 0.0428 (10) | 0.0029 (8) | 0.0080 (8) | 0.0070 (8) |
C5 | 0.0580 (13) | 0.0519 (12) | 0.0522 (12) | 0.0201 (10) | 0.0129 (10) | 0.0078 (10) |
C6 | 0.0533 (13) | 0.0678 (15) | 0.0594 (14) | 0.0172 (11) | 0.0027 (10) | 0.0192 (12) |
C7 | 0.0569 (13) | 0.0638 (14) | 0.0433 (11) | −0.0076 (11) | 0.0022 (10) | 0.0109 (11) |
C8 | 0.0658 (14) | 0.0566 (13) | 0.0506 (12) | 0.0041 (11) | 0.0107 (10) | −0.0039 (11) |
C9 | 0.0498 (12) | 0.0487 (12) | 0.0512 (12) | 0.0146 (10) | 0.0045 (9) | 0.0020 (10) |
C10 | 0.0478 (11) | 0.0478 (11) | 0.0557 (12) | −0.0048 (9) | 0.0053 (9) | −0.0045 (9) |
O1W | 0.0430 (9) | 0.0445 (8) | 0.0649 (9) | 0.0073 (7) | 0.0074 (7) | 0.0108 (7) |
N1—N2 | 1.307 (2) | C5—H5 | 0.96 (2) |
N1—C2 | 1.367 (2) | C6—C7 | 1.373 (3) |
N2—N3 | 1.356 (2) | C6—H6 | 0.96 (2) |
N3—C3 | 1.352 (2) | C7—C8 | 1.372 (3) |
N3—N4 | 1.394 (2) | C7—H7 | 0.93 (2) |
N4—C4 | 1.429 (2) | C8—C9 | 1.387 (3) |
N4—H4 | 0.91 (2) | C8—H8 | 1.00 (2) |
O1—C1 | 1.314 (2) | C9—H9 | 0.90 (2) |
O1—H1 | 0.94 (2) | C10—H10A | 0.9600 |
O2—C1 | 1.210 (2) | C10—H10B | 0.9600 |
C1—C2 | 1.470 (2) | C10—H10C | 0.9600 |
C2—C3 | 1.376 (2) | C10—H10D | 0.9600 |
C3—C10 | 1.482 (2) | C10—H10E | 0.9600 |
C4—C5 | 1.376 (3) | C10—H10F | 0.9600 |
C4—C9 | 1.377 (3) | O1W—H1WA | 0.82 (3) |
C5—C6 | 1.385 (3) | O1W—H1WB | 0.92 (3) |
N2—N1—C2 | 109.36 (14) | C6—C7—H7 | 120.2 (13) |
N1—N2—N3 | 105.80 (14) | C7—C8—C9 | 120.5 (2) |
C3—N3—N2 | 112.91 (14) | C7—C8—H8 | 122.1 (13) |
C3—N3—N4 | 126.55 (15) | C9—C8—H8 | 117.3 (14) |
N2—N3—N4 | 120.53 (14) | C4—C9—C8 | 119.66 (19) |
N3—N4—C4 | 114.07 (14) | C4—C9—H9 | 119.7 (13) |
N3—N4—H4 | 106.5 (13) | C8—C9—H9 | 120.6 (13) |
C4—N4—H4 | 112.3 (14) | C3—C10—H10A | 109.5 |
C1—O1—H1 | 111.4 (14) | C3—C10—H10B | 109.5 |
O2—C1—O1 | 124.32 (17) | H10A—C10—H10B | 109.5 |
O2—C1—C2 | 122.91 (17) | C3—C10—H10C | 109.5 |
O1—C1—C2 | 112.77 (15) | H10A—C10—H10C | 109.5 |
N1—C2—C3 | 109.33 (15) | H10B—C10—H10C | 109.5 |
N1—C2—C1 | 120.80 (15) | C3—C10—H10D | 109.5 |
C3—C2—C1 | 129.87 (16) | H10A—C10—H10D | 141.1 |
N3—C3—C2 | 102.58 (14) | H10B—C10—H10D | 56.3 |
N3—C3—C10 | 123.43 (16) | H10C—C10—H10D | 56.3 |
C2—C3—C10 | 133.97 (16) | C3—C10—H10E | 109.5 |
C5—C4—C9 | 119.92 (18) | H10A—C10—H10E | 56.3 |
C5—C4—N4 | 118.51 (16) | H10B—C10—H10E | 141.1 |
C9—C4—N4 | 121.46 (16) | H10C—C10—H10E | 56.3 |
C4—C5—C6 | 120.0 (2) | H10D—C10—H10E | 109.5 |
C4—C5—H5 | 120.3 (13) | C3—C10—H10F | 109.5 |
C6—C5—H5 | 119.7 (13) | H10A—C10—H10F | 56.3 |
C7—C6—C5 | 120.3 (2) | H10B—C10—H10F | 56.3 |
C7—C6—H6 | 120.8 (13) | H10C—C10—H10F | 141.1 |
C5—C6—H6 | 118.8 (13) | H10D—C10—H10F | 109.5 |
C8—C7—C6 | 119.7 (2) | H10E—C10—H10F | 109.5 |
C8—C7—H7 | 120.1 (13) | H1WA—O1W—H1WB | 108 (2) |
C2—N1—N2—N3 | 0.73 (19) | N1—C2—C3—N3 | 0.32 (18) |
N1—N2—N3—C3 | −0.55 (19) | C1—C2—C3—N3 | −179.89 (16) |
N1—N2—N3—N4 | 178.75 (14) | N1—C2—C3—C10 | −178.06 (18) |
C3—N3—N4—C4 | −114.38 (18) | C1—C2—C3—C10 | 1.7 (3) |
N2—N3—N4—C4 | 66.4 (2) | N3—N4—C4—C5 | −141.88 (17) |
N2—N1—C2—C3 | −0.69 (19) | N3—N4—C4—C9 | 41.9 (2) |
N2—N1—C2—C1 | 179.51 (15) | C9—C4—C5—C6 | −1.1 (3) |
O2—C1—C2—N1 | −168.96 (17) | N4—C4—C5—C6 | −177.43 (18) |
O1—C1—C2—N1 | 10.7 (2) | C4—C5—C6—C7 | 0.3 (3) |
O2—C1—C2—C3 | 11.3 (3) | C5—C6—C7—C8 | 0.1 (3) |
O1—C1—C2—C3 | −169.10 (17) | C6—C7—C8—C9 | 0.2 (3) |
N2—N3—C3—C2 | 0.13 (18) | C5—C4—C9—C8 | 1.4 (3) |
N4—N3—C3—C2 | −179.11 (15) | N4—C4—C9—C8 | 177.62 (18) |
N2—N3—C3—C10 | 178.74 (15) | C7—C8—C9—C4 | −1.0 (3) |
N4—N3—C3—C10 | −0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1Wi | 0.94 (2) | 1.68 (3) | 2.6030 (19) | 167 (2) |
N4—H4···O1Wii | 0.91 (2) | 2.22 (2) | 3.111 (2) | 169.2 (19) |
O1W—H1WA···O2iii | 0.82 (3) | 1.99 (3) | 2.773 (2) | 159 (2) |
O1W—H1WB···N1 | 0.92 (3) | 1.88 (3) | 2.800 (2) | 172 (2) |
Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z; (iii) x+1, y, z. |
Acknowledgements
The authors would like to thank LAME–UFF and LDRX–UFF for analyses.
Funding information
Funding for this research was provided by: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 311142/2017-6).
References
Bruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands. Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, C. R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783. Web of Science PubMed Google Scholar
Jordão, A. K., Ferreira, V. F., Cunha, A. C., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2012). CrystEngComm, 14, 6534–6539. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mukherjee, S., Das, M., Manna, A., Krishna, R. & Das, S. (2019). J. Mater. Chem. A, 7, 1055–1068. Web of Science CrossRef CAS Google Scholar
Peyton, L. R., Gallagher, S. & Hashemzadeh, M. (2015). Drugs Today, 51, 705–718. Web of Science CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Teixeira, R. R., Silva, A. M., Siqueira, R. P., Gonçalves, V. H. S., Pereira, H. S., Ferreira, R. S., Costa, A. V., Melo, E. B., Paula, F. R., Ferreira, M. M. C. & Bressan, G. C. (2019). J. Braz. Chem. Soc. 30, 541–561. CAS Google Scholar
Yadav, P., Lal, K., Kumar, L., Kumar, A., Kumar, A., Paul, A. K. & Kumar, R. (2018). Eur. J. Med. Chem. 155, 263–274. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, A., Xu, Z., Gao, G., Ren, Q. C., Chang, L., Lv, Z. S. & Feng, L. S. (2017). Eur. J. Med. Chem. 138, 501–513. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.