research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-anilino-5-methyl-1H-1,2,3-triazole-4-carb­­oxy­lic acid monohydrate

aGraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora - MG, CEP 36036-330, Brazil, bInstituto de Química, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, CEP 23.890-000, Seropédica, RJ, Brazil, cInstituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Avenida Universitária, 3500, Pontal do Araguaia - MT, CEP 78698-000, Brazil, and dDepartamento de Farmácia, Universidade Federal do Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Faria, S/N, Natal - RN, CEP 59012-570, Brazil
*Correspondence e-mail: jacksonresende@ufmt.br

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 16 April 2019; accepted 25 April 2019; online 3 May 2019)

In the mol­ecular structure of the title compound, C10H10N4O2·H2O, the angle between the triazole and arene rings is 87.39 (5)°. The water of crystallization connects the mol­ecules in the crystal packing. The crystal structure exhibits N—H⋯O, O—H⋯O and O—H⋯N inter­actions, resulting in the formation of a three-dimensional framework. The inter­molecular inter­actions were identified and qu­anti­fied using Hirshfeld surface analysis.

1. Chemical context

Triazoles are a class of compounds that have aroused chemical inter­est because of their wide range of applications, including their biological relevance and the development of new materials. Triazoles have potent anti­fungal activity, being an important class of drugs (Peyton et al., 2015[Peyton, L. R., Gallagher, S. & Hashemzadeh, M. (2015). Drugs Today, 51, 705-718.]). Their anti­tubercular (Zhang et al., 2017[Zhang, A., Xu, Z., Gao, G., Ren, Q. C., Chang, L., Lv, Z. S. & Feng, L. S. (2017). Eur. J. Med. Chem. 138, 501-513.]), anti­cancer (Teixeira et al., 2019[Teixeira, R. R., Silva, A. M., Siqueira, R. P., Gonçalves, V. H. S., Pereira, H. S., Ferreira, R. S., Costa, A. V., Melo, E. B., Paula, F. R., Ferreira, M. M. C. & Bressan, G. C. (2019). J. Braz. Chem. Soc. 30, 541-561.]), anti­microbial (Yadav et al., 2018[Yadav, P., Lal, K., Kumar, L., Kumar, A., Kumar, A., Paul, A. K. & Kumar, R. (2018). Eur. J. Med. Chem. 155, 263-274.]) and anti­viral (Jordão et al., 2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, C. R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]) activities have also been evaluated. This class of compounds has also aroused inter­est in materials chemistry, mainly in the development of systems with uptake capacity for both CO2 and H2 (Mukherjee et al., 2019[Mukherjee, S., Das, M., Manna, A., Krishna, R. & Das, S. (2019). J. Mater. Chem. A, 7, 1055-1068.]).

[Scheme 1]

2. Structural commentary

The title mol­ecule (Fig. 1[link]) is formed by planar aniline and triazolic rings, which subtend a dihedral angle of 87.41 (5)°. Atoms O1 and O2 are located 0.237 (2) and 0.208 (2) Å, respectively, outside the plane of the triazole ring. The methyl group exhibits occupational disorder of the hydrogen atoms.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with anisotropic atomic displacement ellipsoids shown at the 50% probability level.

3. Supra­molecular features

The crystal packing is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds between the water mol­ecule and the organic mol­ecule. The supra­molecular arrangement is formed by four hydrogen bonds (Table 1[link]): (A) N4—H4⋯O1Wii, (B) O1—H1⋯O1Wi, (C) O1W—H1WA⋯O2iii and (D) O1W—H1WB⋯N1. Separately, these hydrogen bonds do not form nets in the structure. However, when combined, they generate inter­esting supra­molecular systems. The combination of the (A:B), (B:C) and (B:D) inter­actions result in inter­molecular rings with R24(18), R44(12) and R44(14) motifs, respectively. Representations of the R44(12) and R44(14) motifs are illustrated in Fig. 2[link]). A C22(9) motif is observed along [[\overline{1}]10] (A:C inter­actions) (Fig. 3a[link]), a C22(7) motif along [010] (A:D inter­actions) (Fig. 3b[link]) and a C22(7) motif along [100] (C:D inter­actions).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Wi 0.94 (2) 1.68 (3) 2.6030 (19) 167 (2)
N4—H4⋯O1Wii 0.91 (2) 2.22 (2) 3.111 (2) 169.2 (19)
O1W—H1WA⋯O2iii 0.82 (3) 1.99 (3) 2.773 (2) 159 (2)
O1W—H1WB⋯N1 0.92 (3) 1.88 (3) 2.800 (2) 172 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z; (iii) x+1, y, z.
[Figure 2]
Figure 2
A partial packing diagram showing the hydrogen-bond network along the a axis and the R44(12) (green) and R44(14) (yellow) motifs. All hydrogen atoms bonded to carbon are omitted for clarity.
[Figure 3]
Figure 3
Views along the c axis showing the layers consolidated by the hydrogen-bond network: (a) a C22(7) chain along the b-axis direction and (b) a C22(9) chain along [[\overline{1}]10]. All hydrogen atoms bonded to carbon are omitted for clarity.

4. Hirshfeld surface analysis

For an unequivocal description of the supra­molecular system, Hirshfeld Surface (HS) analysis was performed. The isosurface was plotted for the weight function equal to 0.5. The red areas in Fig. 4[link] correspond to short contacts between atoms inside and outside the surface atom, di and de. There are three spots on the surface, and in the corresponding fingerprint plot (FPP; Fig. 5[link]), they are represented as sharp spikes. Chemically, they correspond to classical hydrogen bonds. Two of these involve inter­actions between the carboxyl group and the water mol­ecule while the third is the inter­action between N-triazole and the water mol­ecule. These hydrogen bonds are the shortest contacts, assigned in the FPP as O⋯H and N⋯H. The N⋯H inter­action contributes 15.8% to the HS, while the O⋯H inter­action corresponds to 18.1%. The majority of the inter­actions are H⋯H, being equal to 36.0%.

[Figure 4]
Figure 4
Hirshfeld surface mapped with dnorm.
[Figure 5]
Figure 5
The fingerprint plots for the title compound.

5. Database survey

A research of the Cambridge Structural Database (CSD version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for N-phenyl-1H-1,2,3-triazol-1-amine derivatives gave 18 hits for structures that include atomic coordinates. These results include alcohols, esters and a carbohydrazide. The mol­ecular structures of these compounds show dihedral angles between the triazole and aniline rings in the range 76 to 89°. These values are affected by the hydrogen bonds in the crystal packing. In addition, in studies of halogenated phenyl derivatives, differences in C—H⋯π inter­actions were shown to result in changes in the crystal packing (Jordão et al., 2012[Jordão, A. K., Ferreira, V. F., Cunha, A. C., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2012). CrystEngComm, 14, 6534-6539.]).

6. Vibrational spectrum

Fig. 6[link] shows the IR spectrum measured in ATR mode (νmax, cm−1) which exhibits the following characteristic bands: 3205 (N—H stretching); 2984 (methyl C—H stretching); 1725 (C=O stretching); 1600 (>C=N stretching); 1496 (aromatic C=C stretching); 1348 (C—N stretching of triazole); 1208 (C—O stretching) for the esther and 3431 (OH stretching); 3268 (N—H stretching); 1695 (C=O stretching); 1589 (>C=N stretching); 1496 (aromatic C=C stretching); 1381 (C—N stretching of triazole); 1259 (C—O stretching) for the acid.

[Figure 6]
Figure 6
IR spectrum of the title compound.

7. Synthesis and crystallization

The title compound was synthesized by the alkaline hydrolysis of 5-methyl-1-(phenyl­amino)-1H-[1,2,3]-triazole-4-carb­oxy­lic acid ethyl ester (Jordão et al., 2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, C. R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]), 1. 3.6 mmol of 1 were dissolved in 30.0 ml of a sodium hydroxide solution (0.1 mol L−1) (NaOH, VETEC). This mixture was refluxed at 373 K for about 48 h. The product was neutralized using dilute hydro­chloric acid (HCl, VETEC), filtered and dried in vacuo. The title compound was dissolved in methanol and kept at room temperature. After a few days, colourless block-shaped crystals, suitable for X-ray analysis, were obtained by slow evaporation (yield 83%).

1H NMR (500 MHz, C2D6OS): 10.218 (1H, s), 9.887 (1H, s), 7.215 (2H, m), 6.872 (1H, m), 6.390(2H, d, J = 3Hz), 3.295 (1H, s).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference-Fourier map and freely refined except for hydrogen atoms bound to C10 which are disordered (occupancy 0.5) and were refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C10H10N4O2·H2O
Mr 236.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 7.2288 (14), 6.8265 (14), 23.922 (5)
β (°) 98.69 (3)
V3) 1167.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.20 × 0.06
 
Data collection
Diffractometer Bruker KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 11378, 2207, 1559
Rint 0.042
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.04
No. of reflections 2207
No. of parameters 191
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Anilino-5-methyl-1H-1,2,3-triazole-4-carboxylic acid monohydrate top
Crystal data top
C10H10N4O2·H2OF(000) = 496
Mr = 236.24Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2288 (14) ÅCell parameters from 11378 reflections
b = 6.8265 (14) Åθ = 3.1–25.2°
c = 23.922 (5) ŵ = 0.10 mm1
β = 98.69 (3)°T = 298 K
V = 1167.0 (4) Å3Block, colourless
Z = 40.24 × 0.20 × 0.06 mm
Data collection top
Bruker KappaCCD
diffractometer
2207 independent reflections
Horizonally mounted graphite crystal monochromator1559 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.042
CCD scansθmax = 25.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.701, Tmax = 0.745k = 87
11378 measured reflectionsl = 2829
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2317P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
2207 reflectionsΔρmin = 0.15 e Å3
191 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.016 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1134 (2)0.5773 (2)0.07579 (6)0.0470 (4)
N20.1952 (2)0.4253 (2)0.10201 (7)0.0490 (4)
N30.0553 (2)0.3016 (2)0.11042 (6)0.0408 (4)
N40.0956 (2)0.1211 (2)0.13675 (6)0.0456 (4)
O10.11452 (18)0.8386 (2)0.01606 (6)0.0548 (4)
O20.37050 (18)0.6983 (2)0.03987 (6)0.0626 (4)
C10.2030 (3)0.7017 (3)0.04017 (7)0.0416 (4)
C20.0763 (2)0.5512 (3)0.06831 (7)0.0379 (4)
C30.1165 (2)0.3727 (2)0.09034 (7)0.0375 (4)
C40.1777 (2)0.1351 (2)0.19481 (7)0.0387 (4)
C50.3163 (3)0.0044 (3)0.21538 (9)0.0536 (5)
C60.3937 (3)0.0088 (3)0.27196 (9)0.0608 (6)
C70.3320 (3)0.1427 (3)0.30781 (9)0.0552 (6)
C80.1928 (3)0.2721 (3)0.28731 (9)0.0575 (5)
C90.1139 (3)0.2681 (3)0.23076 (8)0.0502 (5)
C100.2922 (3)0.2638 (3)0.09330 (8)0.0507 (5)
H10A0.3971460.3412380.0766480.076*0.5
H10B0.2907880.1425840.0730460.076*0.5
H10C0.3025750.2372470.1321100.076*0.5
H10D0.2631930.1394740.1112210.076*0.5
H10E0.3695520.3381290.1148230.076*0.5
H10F0.3577640.2434660.0557600.076*0.5
O1W0.3100 (2)0.9111 (2)0.05054 (6)0.0509 (4)
H10.199 (3)0.926 (4)0.0049 (10)0.081 (7)*
H90.022 (3)0.353 (3)0.2172 (8)0.058 (6)*
H50.359 (3)0.091 (3)0.1907 (9)0.067 (6)*
H60.495 (3)0.078 (3)0.2851 (9)0.076 (7)*
H70.388 (3)0.149 (3)0.3456 (10)0.067 (6)*
H80.139 (3)0.367 (4)0.3125 (10)0.083 (7)*
H40.170 (3)0.056 (3)0.1157 (9)0.063 (6)*
H1WA0.415 (4)0.876 (4)0.0455 (10)0.074 (8)*
H1WB0.241 (4)0.800 (4)0.0552 (10)0.089 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0395 (9)0.0483 (9)0.0530 (9)0.0066 (7)0.0060 (7)0.0148 (8)
N20.0410 (9)0.0486 (9)0.0570 (10)0.0059 (8)0.0067 (7)0.0150 (8)
N30.0423 (9)0.0390 (8)0.0404 (8)0.0054 (7)0.0043 (6)0.0064 (7)
N40.0573 (10)0.0355 (9)0.0431 (9)0.0114 (7)0.0046 (7)0.0046 (7)
O10.0467 (8)0.0527 (8)0.0641 (9)0.0101 (7)0.0057 (7)0.0233 (7)
O20.0394 (8)0.0704 (10)0.0785 (10)0.0141 (7)0.0102 (7)0.0187 (8)
C10.0426 (11)0.0450 (11)0.0374 (9)0.0082 (9)0.0068 (8)0.0011 (8)
C20.0361 (10)0.0419 (10)0.0355 (9)0.0054 (8)0.0051 (7)0.0020 (8)
C30.0407 (10)0.0403 (10)0.0313 (9)0.0053 (8)0.0053 (7)0.0019 (8)
C40.0390 (10)0.0348 (9)0.0428 (10)0.0029 (8)0.0080 (8)0.0070 (8)
C50.0580 (13)0.0519 (12)0.0522 (12)0.0201 (10)0.0129 (10)0.0078 (10)
C60.0533 (13)0.0678 (15)0.0594 (14)0.0172 (11)0.0027 (10)0.0192 (12)
C70.0569 (13)0.0638 (14)0.0433 (11)0.0076 (11)0.0022 (10)0.0109 (11)
C80.0658 (14)0.0566 (13)0.0506 (12)0.0041 (11)0.0107 (10)0.0039 (11)
C90.0498 (12)0.0487 (12)0.0512 (12)0.0146 (10)0.0045 (9)0.0020 (10)
C100.0478 (11)0.0478 (11)0.0557 (12)0.0048 (9)0.0053 (9)0.0045 (9)
O1W0.0430 (9)0.0445 (8)0.0649 (9)0.0073 (7)0.0074 (7)0.0108 (7)
Geometric parameters (Å, º) top
N1—N21.307 (2)C5—H50.96 (2)
N1—C21.367 (2)C6—C71.373 (3)
N2—N31.356 (2)C6—H60.96 (2)
N3—C31.352 (2)C7—C81.372 (3)
N3—N41.394 (2)C7—H70.93 (2)
N4—C41.429 (2)C8—C91.387 (3)
N4—H40.91 (2)C8—H81.00 (2)
O1—C11.314 (2)C9—H90.90 (2)
O1—H10.94 (2)C10—H10A0.9600
O2—C11.210 (2)C10—H10B0.9600
C1—C21.470 (2)C10—H10C0.9600
C2—C31.376 (2)C10—H10D0.9600
C3—C101.482 (2)C10—H10E0.9600
C4—C51.376 (3)C10—H10F0.9600
C4—C91.377 (3)O1W—H1WA0.82 (3)
C5—C61.385 (3)O1W—H1WB0.92 (3)
N2—N1—C2109.36 (14)C6—C7—H7120.2 (13)
N1—N2—N3105.80 (14)C7—C8—C9120.5 (2)
C3—N3—N2112.91 (14)C7—C8—H8122.1 (13)
C3—N3—N4126.55 (15)C9—C8—H8117.3 (14)
N2—N3—N4120.53 (14)C4—C9—C8119.66 (19)
N3—N4—C4114.07 (14)C4—C9—H9119.7 (13)
N3—N4—H4106.5 (13)C8—C9—H9120.6 (13)
C4—N4—H4112.3 (14)C3—C10—H10A109.5
C1—O1—H1111.4 (14)C3—C10—H10B109.5
O2—C1—O1124.32 (17)H10A—C10—H10B109.5
O2—C1—C2122.91 (17)C3—C10—H10C109.5
O1—C1—C2112.77 (15)H10A—C10—H10C109.5
N1—C2—C3109.33 (15)H10B—C10—H10C109.5
N1—C2—C1120.80 (15)C3—C10—H10D109.5
C3—C2—C1129.87 (16)H10A—C10—H10D141.1
N3—C3—C2102.58 (14)H10B—C10—H10D56.3
N3—C3—C10123.43 (16)H10C—C10—H10D56.3
C2—C3—C10133.97 (16)C3—C10—H10E109.5
C5—C4—C9119.92 (18)H10A—C10—H10E56.3
C5—C4—N4118.51 (16)H10B—C10—H10E141.1
C9—C4—N4121.46 (16)H10C—C10—H10E56.3
C4—C5—C6120.0 (2)H10D—C10—H10E109.5
C4—C5—H5120.3 (13)C3—C10—H10F109.5
C6—C5—H5119.7 (13)H10A—C10—H10F56.3
C7—C6—C5120.3 (2)H10B—C10—H10F56.3
C7—C6—H6120.8 (13)H10C—C10—H10F141.1
C5—C6—H6118.8 (13)H10D—C10—H10F109.5
C8—C7—C6119.7 (2)H10E—C10—H10F109.5
C8—C7—H7120.1 (13)H1WA—O1W—H1WB108 (2)
C2—N1—N2—N30.73 (19)N1—C2—C3—N30.32 (18)
N1—N2—N3—C30.55 (19)C1—C2—C3—N3179.89 (16)
N1—N2—N3—N4178.75 (14)N1—C2—C3—C10178.06 (18)
C3—N3—N4—C4114.38 (18)C1—C2—C3—C101.7 (3)
N2—N3—N4—C466.4 (2)N3—N4—C4—C5141.88 (17)
N2—N1—C2—C30.69 (19)N3—N4—C4—C941.9 (2)
N2—N1—C2—C1179.51 (15)C9—C4—C5—C61.1 (3)
O2—C1—C2—N1168.96 (17)N4—C4—C5—C6177.43 (18)
O1—C1—C2—N110.7 (2)C4—C5—C6—C70.3 (3)
O2—C1—C2—C311.3 (3)C5—C6—C7—C80.1 (3)
O1—C1—C2—C3169.10 (17)C6—C7—C8—C90.2 (3)
N2—N3—C3—C20.13 (18)C5—C4—C9—C81.4 (3)
N4—N3—C3—C2179.11 (15)N4—C4—C9—C8177.62 (18)
N2—N3—C3—C10178.74 (15)C7—C8—C9—C41.0 (3)
N4—N3—C3—C100.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.94 (2)1.68 (3)2.6030 (19)167 (2)
N4—H4···O1Wii0.91 (2)2.22 (2)3.111 (2)169.2 (19)
O1W—H1WA···O2iii0.82 (3)1.99 (3)2.773 (2)159 (2)
O1W—H1WB···N10.92 (3)1.88 (3)2.800 (2)172 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors would like to thank LAME–UFF and LDRX–UFF for analyses.

Funding information

Funding for this research was provided by: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 311142/2017-6).

References

First citationBruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, C. R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783.  Web of Science PubMed Google Scholar
First citationJordão, A. K., Ferreira, V. F., Cunha, A. C., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2012). CrystEngComm, 14, 6534–6539.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S., Das, M., Manna, A., Krishna, R. & Das, S. (2019). J. Mater. Chem. A, 7, 1055–1068.  Web of Science CrossRef CAS Google Scholar
First citationPeyton, L. R., Gallagher, S. & Hashemzadeh, M. (2015). Drugs Today, 51, 705–718.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeixeira, R. R., Silva, A. M., Siqueira, R. P., Gonçalves, V. H. S., Pereira, H. S., Ferreira, R. S., Costa, A. V., Melo, E. B., Paula, F. R., Ferreira, M. M. C. & Bressan, G. C. (2019). J. Braz. Chem. Soc. 30, 541–561.  CAS Google Scholar
First citationYadav, P., Lal, K., Kumar, L., Kumar, A., Kumar, A., Paul, A. K. & Kumar, R. (2018). Eur. J. Med. Chem. 155, 263–274.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, A., Xu, Z., Gao, G., Ren, Q. C., Chang, L., Lv, Z. S. & Feng, L. S. (2017). Eur. J. Med. Chem. 138, 501–513.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds