research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-acet­­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

aCaamTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: andrew@caam.tech

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 24 April 2019; accepted 20 May 2019; online 31 May 2019)

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].

1. Chemical context

Psychedelic agents have received a great deal of inter­est lately as potential pharmaceuticals to treat mood disorders, including depression and post traumatic stress disorder (PTSD) (Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105-2113.]). Psilocybin, a naturally occurring tryptamine derivative found in `magic' mushrooms, is a prodrug of psilocin. When consumed orally, psilocybin hydrolyzes to generate psilocin, a serotonin-2a agonist, producing mood-altering or `psychedelic' effects (Dinis-Oliveira, 2017[Dinis-Oliveira, R. J. (2017). Drug Metab. Rev. 49, 84-91.]). Like psilocybin, psilacetin serves as a prodrug of psilocin. Compared to psilocybin, psilacetin is easier and less expensive to synthesize. This suggests that administering psilacetin (instead of psilocybin) represents a better means of delivery for the active psilocin. Psilacetin was first reported in 1999 by Nichols and co-workers (Nichols & Frescas, 1999[Nichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935-938.]), generally producing the mol­ecule as its crystalline fumarate salt. Psilacetin was structurally characterized earlier this year (Chadeayne et al., 2019[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]). Herein we report the structure of a new crystalline form of psilacetin, in which two psilacetin mol­ecules are protonated, and charge-balanced by one fumarate dianion.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of bis­(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate is shown in Fig. 1[link]. The cation possesses a near-planar indole, with a mean deviation from planarity of 0.04 Å. The acetate on the 4-position of the indole is approximately perpendicular, with the angles between the indole and acetate planes being 100.85 (1)°. Half of a fumarate ion is present in the asymmetric unit, with the full dianion produced through inversion. The fumarate shows a near planar trans configuration with a deviation from planarity of 0.019 Å. A series of N—H⋯O hydrogen bonds hold the ions together in the solid state.

[Figure 1]
Figure 1
The mol­ecular structure of bis­(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate, showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) 2 − x, 1 − y, 2 − z.

3. Supra­molecular features

The 4-acet­oxy-N,N-di­methyl­tryptammonium cations and fumarate dianions are held together in an infinite one-dimensional chain through N—H⋯O hydrogen bonds (Table 1[link]) along the [111] direction. The anionic oxygen of the carb­oxy­lic acid possesses a hydrogen bond with the ammonium proton of the psilacetin mol­ecule. Each of these oxygens also forms a hydrogen bond with the hydrogen of an indole nitro­gen of a different psilacetin cation. Both anionic oxygens of the fumarate dianions form the same hydrogen-bonding inter­actions, generated through symmetry. The hydrogen-bonding inter­actions of a single fumarate dianion are shown in Fig. 2[link]. The packing of the compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4ii 0.90 (2) 1.91 (2) 2.786 (2) 165 (2)
N2—H2⋯O4 0.99 (2) 1.61 (2) 2.607 (2) 179 (2)
Symmetry code: (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The hydrogen bonding of the fumarate ion in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Symmetry codes: (i) 2 − x, 1 − y, 2 − z, (iii) 1 − x, 1 + y, 1 + z, (iv) 1 − x, −y, 1 − z.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the b axis. The N—H⋯O bonds (Table 1[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity

4. Database survey

We recently reported a closely related structure in which one 4-acet­oxy-N,N-di­methyl­tryptammonium cation is charge balanced by one 3-carb­oxy­acrylate anion (Chadeayne et al., 2019[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]). The structure reported here has the same 4-acet­oxy-N,N-di­methyl­tryptammonium cation, two of which are charge-balanced by a single fumarate dianion. The bond distances and angles observed in the compound reported here are consistent with our prior report. The two other reported 4-substituted tryptamine structures are those of the naturally occurring products of `magic' mushrooms – psilocybin, C12H16N2PO4 (Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]) and psilocin, C12H16N2O (Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]). Psilocybin is the 4-phosphate-substituted variation of N,N-di­methyl­tryptamine, and exists as an ammonium/phosphate zwitterion in the solid state. Psilocin, 4-hy­droxy-N,N-di­methyl­tryptamine, is believed to be a statistical mixture of a neutral mol­ecule and an ammonium/phenoxide zwitterion. In both cases, the tryptamine components are structurally very similar to the title compound, but their arrangements in the solid state are substanti­ally different as there are no counter-ions present.

5. Synthesis and crystallization

A commercial sample (The Indole Shop) of 4-acet­oxy-N,N-di­methyl­tryptamine fumarate (100 mg, 0.16 mmol) was dissolved in 10 mL of water and treated with one equivalent of lead(II) acetate­(53 mg, 0.16 mmol). Lead(II) fumarate precipitated and was filtered [the presence of lead(II) fumarate was confirmed by the unit cell of the precipitate]. Water was removed in vacuo and the resulting residue was picked up in acetone and filtered. The filtrate was allowed to evaporate slowly, resulting in single crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl hydrogens on C2 were disordered over two positions and were refined at 50% occupancy with the C–C–H planes set at 60o to each other. The H atoms on N1 and N2 were found in the difference-Fourier map and refined freely. H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula 2C14H19N2O2+·C4H2O42−
Mr 608.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.3965 (13), 8.9879 (14), 12.0126 (16)
α, β, γ (°) 101.730 (5), 100.818 (5), 112.463 (5)
V3) 784.2 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.19 × 0.16 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.714, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21581, 2877, 2087
Rint 0.056
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.03
No. of reflections 2877
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{2-[4-(acetyloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate top
Crystal data top
2C14H19N2O2+·C4H2O42Z = 1
Mr = 608.68F(000) = 324
Triclinic, P1Dx = 1.289 Mg m3
a = 8.3965 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9879 (14) ÅCell parameters from 6407 reflections
c = 12.0126 (16) Åθ = 3.3–25.1°
α = 101.730 (5)°µ = 0.09 mm1
β = 100.818 (5)°T = 200 K
γ = 112.463 (5)°BLOCK, colourless
V = 784.2 (2) Å30.19 × 0.16 × 0.13 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2087 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.3°
Tmin = 0.714, Tmax = 0.745h = 1010
21581 measured reflectionsk = 1010
2877 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.3852P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.26 e Å3
2877 reflectionsΔρmin = 0.20 e Å3
210 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.050 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0322 (2)0.33780 (19)0.50722 (14)0.0539 (4)
O20.30616 (18)0.46535 (16)0.48485 (12)0.0413 (4)
O30.6497 (2)0.3361 (2)1.04226 (12)0.0597 (5)
O40.69101 (17)0.29711 (17)0.86294 (11)0.0386 (4)
N10.2368 (2)0.0732 (2)0.29315 (15)0.0412 (4)
N20.3416 (2)0.1243 (2)0.79890 (13)0.0375 (4)
C10.2567 (4)0.5920 (3)0.6569 (2)0.0578 (6)
H1A0.38180.66700.66500.087*0.5
H1B0.18470.65580.65610.087*0.5
H1C0.25310.54570.72400.087*0.5
H1D0.16460.57870.69840.087*0.5
H1E0.36170.58990.70730.087*0.5
H1F0.29330.70000.63940.087*0.5
C20.1817 (3)0.4512 (3)0.54365 (18)0.0406 (5)
C30.2616 (3)0.3380 (2)0.37872 (17)0.0367 (5)
C40.2330 (3)0.3748 (3)0.27365 (19)0.0482 (6)
H40.23290.48040.27350.058*
C50.2040 (3)0.2580 (3)0.1667 (2)0.0572 (7)
H50.18390.28520.09450.069*
C60.2041 (3)0.1050 (3)0.16395 (18)0.0491 (6)
H60.18550.02610.09120.059*
C70.2325 (2)0.0689 (3)0.27162 (16)0.0361 (5)
C80.2611 (2)0.1833 (2)0.38128 (15)0.0324 (4)
C90.2860 (3)0.1039 (2)0.47124 (16)0.0378 (5)
C100.2697 (3)0.0505 (3)0.41319 (17)0.0428 (5)
H100.27960.13130.45060.051*
C110.3232 (4)0.1765 (3)0.60302 (17)0.0552 (7)
H11A0.45230.25690.63770.066*
H11B0.25180.24080.61600.066*
C120.2802 (3)0.0483 (3)0.66691 (16)0.0446 (6)
H12A0.33800.02640.64530.054*
H12B0.14820.02220.64070.054*
C130.3087 (4)0.0104 (3)0.8580 (2)0.0623 (7)
H13A0.36540.08190.82980.094*
H13B0.17860.07940.83890.094*
H13C0.36030.04150.94430.094*
C140.2660 (3)0.2400 (4)0.84318 (19)0.0610 (7)
H14A0.30730.27930.93030.092*
H14B0.13410.18040.81590.092*
H14C0.30630.33710.81280.092*
C150.9426 (3)0.4767 (2)1.03029 (16)0.0346 (5)
H150.98730.51931.11460.042*
C160.7463 (3)0.3612 (2)0.97637 (16)0.0340 (5)
H10.240 (3)0.159 (3)0.242 (2)0.055 (7)*
H20.475 (3)0.191 (3)0.8236 (18)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (10)0.0427 (9)0.0626 (10)0.0148 (8)0.0223 (8)0.0098 (8)
O20.0381 (8)0.0330 (8)0.0418 (8)0.0099 (6)0.0069 (6)0.0048 (6)
O30.0445 (9)0.0788 (12)0.0310 (8)0.0068 (8)0.0124 (7)0.0053 (8)
O40.0332 (8)0.0447 (8)0.0248 (7)0.0120 (6)0.0032 (6)0.0008 (6)
N10.0449 (11)0.0422 (11)0.0307 (9)0.0198 (9)0.0081 (8)0.0003 (8)
N20.0323 (9)0.0398 (10)0.0267 (8)0.0065 (8)0.0070 (7)0.0022 (7)
C10.0716 (17)0.0518 (14)0.0449 (13)0.0323 (13)0.0071 (12)0.0028 (11)
C20.0472 (13)0.0356 (12)0.0406 (12)0.0208 (11)0.0097 (10)0.0125 (9)
C30.0318 (11)0.0356 (11)0.0347 (11)0.0086 (9)0.0082 (8)0.0083 (9)
C40.0514 (14)0.0464 (13)0.0463 (13)0.0165 (11)0.0143 (10)0.0230 (11)
C50.0671 (16)0.0699 (17)0.0386 (13)0.0257 (13)0.0204 (11)0.0283 (12)
C60.0501 (13)0.0634 (16)0.0291 (11)0.0189 (12)0.0169 (10)0.0114 (10)
C70.0287 (10)0.0423 (12)0.0308 (10)0.0106 (9)0.0097 (8)0.0070 (9)
C80.0254 (10)0.0364 (11)0.0270 (9)0.0082 (8)0.0050 (7)0.0055 (8)
C90.0436 (12)0.0359 (11)0.0269 (10)0.0170 (9)0.0019 (8)0.0036 (8)
C100.0511 (13)0.0416 (12)0.0306 (11)0.0217 (10)0.0034 (9)0.0055 (9)
C110.0909 (19)0.0408 (13)0.0269 (11)0.0334 (13)0.0004 (11)0.0031 (9)
C120.0386 (12)0.0459 (13)0.0265 (10)0.0036 (10)0.0053 (9)0.0018 (9)
C130.0717 (17)0.0533 (15)0.0392 (12)0.0026 (13)0.0183 (12)0.0149 (11)
C140.0548 (15)0.091 (2)0.0379 (12)0.0421 (14)0.0129 (11)0.0014 (12)
C150.0373 (11)0.0371 (11)0.0228 (9)0.0151 (9)0.0025 (7)0.0037 (8)
C160.0372 (11)0.0350 (11)0.0267 (10)0.0159 (9)0.0065 (8)0.0056 (8)
Geometric parameters (Å, º) top
O1—C21.200 (2)C5—H50.9500
O2—C21.349 (2)C5—C61.369 (3)
O2—C31.405 (2)C6—H60.9500
O3—C161.228 (2)C6—C71.396 (3)
O4—C161.282 (2)C7—C81.412 (3)
N1—C71.365 (3)C8—C91.437 (3)
N1—C101.373 (3)C9—C101.362 (3)
N1—H10.90 (2)C9—C111.506 (3)
N2—C121.493 (2)C10—H100.9500
N2—C131.488 (3)C11—H11A0.9900
N2—C141.475 (3)C11—H11B0.9900
N2—H20.99 (2)C11—C121.480 (3)
C1—H1A0.9800C12—H12A0.9900
C1—H1B0.9800C12—H12B0.9900
C1—H1C0.9800C13—H13A0.9800
C1—H1D0.9800C13—H13B0.9800
C1—H1E0.9800C13—H13C0.9800
C1—H1F0.9800C14—H14A0.9800
C1—C21.489 (3)C14—H14B0.9800
C3—C41.370 (3)C14—H14C0.9800
C3—C81.396 (3)C15—C15i1.309 (4)
C4—H40.9500C15—H150.9500
C4—C51.397 (3)C15—C161.494 (3)
C2—O2—C3118.62 (15)C5—C6—C7117.8 (2)
C7—N1—C10108.50 (17)C7—C6—H6121.1
C7—N1—H1126.7 (15)N1—C7—C6129.45 (19)
C10—N1—H1123.8 (15)N1—C7—C8107.93 (17)
C12—N2—H2107.7 (12)C6—C7—C8122.6 (2)
C13—N2—C12110.37 (16)C3—C8—C7117.04 (17)
C13—N2—H2105.4 (12)C3—C8—C9136.10 (17)
C14—N2—C12114.55 (17)C7—C8—C9106.85 (17)
C14—N2—C13111.26 (18)C8—C9—C11127.06 (18)
C14—N2—H2107.1 (12)C10—C9—C8106.02 (16)
H1A—C1—H1B109.5C10—C9—C11126.91 (18)
H1A—C1—H1C109.5N1—C10—H10124.7
H1A—C1—H1D141.1C9—C10—N1110.70 (19)
H1A—C1—H1E56.3C9—C10—H10124.7
H1A—C1—H1F56.3C9—C11—H11A108.7
H1B—C1—H1C109.5C9—C11—H11B108.7
H1B—C1—H1D56.3H11A—C11—H11B107.6
H1B—C1—H1E141.1C12—C11—C9114.06 (17)
H1B—C1—H1F56.3C12—C11—H11A108.7
H1C—C1—H1D56.3C12—C11—H11B108.7
H1C—C1—H1E56.3N2—C12—H12A109.0
H1C—C1—H1F141.1N2—C12—H12B109.0
H1D—C1—H1E109.5C11—C12—N2112.99 (16)
H1D—C1—H1F109.5C11—C12—H12A109.0
H1E—C1—H1F109.5C11—C12—H12B109.0
C2—C1—H1A109.5H12A—C12—H12B107.8
C2—C1—H1B109.5N2—C13—H13A109.5
C2—C1—H1C109.5N2—C13—H13B109.5
C2—C1—H1D109.5N2—C13—H13C109.5
C2—C1—H1E109.5H13A—C13—H13B109.5
C2—C1—H1F109.5H13A—C13—H13C109.5
O1—C2—O2122.94 (19)H13B—C13—H13C109.5
O1—C2—C1126.3 (2)N2—C14—H14A109.5
O2—C2—C1110.81 (19)N2—C14—H14B109.5
C4—C3—O2118.17 (19)N2—C14—H14C109.5
C4—C3—C8120.95 (19)H14A—C14—H14B109.5
C8—C3—O2120.68 (17)H14A—C14—H14C109.5
C3—C4—H4119.8H14B—C14—H14C109.5
C3—C4—C5120.4 (2)C15i—C15—H15117.7
C5—C4—H4119.8C15i—C15—C16124.7 (2)
C4—C5—H5119.4C16—C15—H15117.7
C6—C5—C4121.2 (2)O3—C16—O4124.80 (18)
C6—C5—H5119.4O3—C16—C15118.60 (16)
C5—C6—H6121.1O4—C16—C15116.59 (16)
O2—C3—C4—C5174.36 (19)C6—C7—C8—C30.6 (3)
O2—C3—C8—C7173.84 (16)C6—C7—C8—C9179.64 (19)
O2—C3—C8—C94.9 (3)C7—N1—C10—C90.4 (2)
N1—C7—C8—C3179.97 (16)C7—C8—C9—C100.7 (2)
N1—C7—C8—C91.0 (2)C7—C8—C9—C11179.2 (2)
C2—O2—C3—C4107.9 (2)C8—C3—C4—C50.5 (3)
C2—O2—C3—C877.2 (2)C8—C9—C10—N10.2 (2)
C3—O2—C2—O12.8 (3)C8—C9—C11—C12159.8 (2)
C3—O2—C2—C1176.73 (17)C9—C11—C12—N2172.04 (19)
C3—C4—C5—C60.3 (4)C10—N1—C7—C6179.8 (2)
C3—C8—C9—C10179.5 (2)C10—N1—C7—C80.8 (2)
C3—C8—C9—C110.3 (4)C10—C9—C11—C1220.4 (4)
C4—C3—C8—C70.9 (3)C11—C9—C10—N1179.7 (2)
C4—C3—C8—C9179.6 (2)C13—N2—C12—C11175.2 (2)
C4—C5—C6—C70.6 (3)C14—N2—C12—C1158.3 (3)
C5—C6—C7—N1179.1 (2)C15i—C15—C16—O3174.9 (3)
C5—C6—C7—C80.2 (3)C15i—C15—C16—O44.1 (4)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.90 (2)1.91 (2)2.786 (2)165 (2)
N2—H2···O40.99 (2)1.61 (2)2.607 (2)179 (2)
Symmetry code: (ii) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).

References

First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105–2113.  CAS PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.  Google Scholar
First citationDinis-Oliveira, R. J. (2017). Drug Metab. Rev. 49, 84–91.  CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935–938.  CrossRef Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds