research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chlorido-bis­­[di­chlorido(L-histidinium-κO)cadmium(II)]

aLaboratoire de Géni-méncanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Algeria, bLaboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia, and cLaboratoire de Recherche sur la Physico-chimie des Surfaces et Interfaces, Université de Skikda, 21000, Algeria
*Correspondence e-mail: boufas_sihem@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 April 2019; accepted 13 May 2019; online 17 May 2019)

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the L-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.

1. Chemical context

As a natural amino acid, L-histidine occurs in all organisms. It is a metal chelator in plants accumulating nickel from the soil (Krämer et al., 1996[Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M. & Smith, J. A. C. (1996). Nature, 379, 638-638.]) and a part of the copper-transport system in human blood (Deschamps et al., 2005[Deschamps, P., Kulkarni, P. P., Gautam-Basak, M. & Sarkar, B. (2005). Coord. Chem. Rev. 249, 895-909.]). Considerable efforts have been made to combine amino acids with organic and inorganic matrices to produce materials having a non-centrosymmetric cell, large polarizabilities and a strong non-linear optical coefficient (Ben Ahmed et al., 2008[Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H. & Mlayah, A. (2008). J. Mol. Struct. 888, 180-186.]). As a chelating ligand, L-histidine provides up to three potential binding sites, as has been shown in complexes with nickel(II) (Sakurai et al., 1978[Sakurai, T., Iwasaki, H., Katano, T. & Nakahashi, Y. (1978). Acta Cryst. B34, 660-662.]), chromium(III) (Pennington et al., 1984[Pennington, W. T., Cordes, A. W., Kyle, D. & Wilson, E. W. (1984). Acta Cryst. C40, 1322-1324.]), cobalt(III) (Herak et al., 1981[Herak, R., Prelesnik, B., Kamberi, B. & Ćelap, M. B. (1981). Acta Cryst. B37, 1989-1992.]), molybdenum(V) (Wu et al., 2005[Wu, P.-F., Li, D.-S., Meng, X.-G., Zhong, X.-L., Jiang, C., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1553-m1555.]), vanadium(IV) (Islam et al., 2007[Islam, M. K., Tsuboya, C., Miyashita, Y., Okamoto, K. & Kanamori, K. (2007). Acta Cryst. E63, m1052-m1054.]) and copper(II) (Deschamps et al., 2005[Deschamps, P., Kulkarni, P. P., Gautam-Basak, M. & Sarkar, B. (2005). Coord. Chem. Rev. 249, 895-909.]). In this work, we report the synthesis and structure of the title cadmium complex with L-histidine, (I)[link]. Cadmium is structurally inter­esting as it exhibits a number of coordination numbers and geometries such as those in [CdCl4] (Boufas et al., 2009[Boufas, S., Mouas, T.-N. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, m930-m931.]), [Cd3Cl11] (Kurawa et al., 2008[Kurawa, M. A., Adams, C. J. & Orpen, A. G. (2008). Acta Cryst. E64, m960-m961.]), [CdCl6]n (Jarboui et al., 2011[Jarboui, A., Ousleti, A., Adil, K., Guidara, A. & Hlel, F. (2011). Ionics, 17, 145-155.]) and [CdCl4]n (Loseva et al., 2010[Loseva, O. V., Ivanov, A. V., Gerasimenko, A. V., Rodina, T. A. & Filippova, T. S. (2010). Russ. J. Coord. Chem. 36, 1-8.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit contains a [Cd2Cl6]2− anionic core bridging a pair of histidinium cations via Cd—O bonds. Each cadmium atom is five-coordinated within a CdCl4O environment, where atoms Cl3, Cl4 and Cl5 define the equatorial plane for Cd1, and Cl2 and O1 are in axial positions [O1—Cd1—Cl2 = 166.2 (1)°]. A similar coordination is observed for Cd2, and in this case the equatorial plane is formed by atoms Cl1, Cl2 and Cl6, while O3 and Cl5 are in equatorial positions [O3—Cd2—Cl5 = 165.2 (1)°]. Two μ-Cl atoms lead to a Cd2Cl2 square with a Cd1⋯Cd2 distance of 3.9162 (4) Å. The Cd—Cl distances lie in the range 2.4662 (12) to 2.7244 (14) Å for Cd1 and 2.4812 (11) to 2.7344 (14) Å for Cd2. The Cl—Cd—Cl angles are in the range of 82.61 (4) to 121.93 (3)°.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level.

In the histidinium cation, the α-amino and imidazole groups are protonated and positively charged, while the carboxyl group is deprotonated and negatively charged, which confirms that cations occur in their zwitterionic forms and carry a net positive charge. As expected, the imidazol rings are almost planar with r.m.s deviations for the non-H atoms of 0.003 Å in each mol­ecule. The imidazol group is trans to the carboxyl group and gauche to the amino N atom.

The conformation of the histidine side chain can be described by the two torsion angles, χ1 and χ21 (IUPAC–IUB Commission on Biochemical Nomenclature, 1970[IUPAC-IUB Commission on Biochemical Nomenclature. (1970). J. Mol. Biol. 52, 1-17.]). Angle χ1, which defines the disposition of the side chain with respect to the main chain, can take values in the neighbourhood of −60, +60 or 180°, corresponding to the open conformation I (g), closed conformation (g+) and open conformation II (t), respectively (Krause et al., 1991[Krause, J. A., Baures, P. W. & Eggleston, D. S. (1991). Acta Cryst. B47, 506-511.]). The χ21 values lie near −90 or +90° but the angle often deviates from these ideal values, as a result of inter­actions between the imidazole ring and other groups in the structure. In the title compound, the following values are seen: χ1 = −52.9 (6); χ1′ = −52.3 (5); χ21 = −72.2 (7); χ21′ = −82.5 (7)°. Hence, both histidinium cations adopt the sterically favourable open conformation in (I)[link].

3. Supra­molecular features

The extended structure of (I)[link] is consolidated by a number of hydrogen-bonding (N—H⋯Cl and N—H⋯O) inter­actions (Table 1[link]). The chloride anions and oxygen atoms play an important role in accepting hydrogen bonds from the amine N atom and the N atoms of the imidazolium ring. These inter­actions, together with weak C—H⋯Cl and C—H⋯O inter­actions, generate a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.01 2.881 (5) 167
N1—H1C⋯Cl6i 0.89 2.44 3.070 (4) 128
N2—H2⋯Cl4i 0.86 2.37 3.215 (5) 167
N3—H3⋯O4ii 0.86 1.99 2.751 (6) 146
N4—H11A⋯Cl1iii 0.89 2.38 3.229 (4) 160
N4—H11B⋯Cl3iv 0.89 2.70 3.426 (5) 140
N4—H11C⋯O1v 0.89 1.96 2.846 (6) 171
N5—H22A⋯O2iv 0.86 1.94 2.699 (6) 147
N6—H33⋯Cl6v 0.86 2.28 3.137 (5) 174
C2—H2A⋯O4ii 0.98 2.56 3.252 (7) 128
C5—H5⋯Cl2i 0.93 2.79 3.424 (6) 126
C9—H33B⋯Cl3vi 0.97 2.81 3.686 (6) 151
C11—H55⋯Cl5v 0.93 2.71 3.405 (6) 132
C11—H55⋯O1v 0.93 2.53 3.245 (7) 134
C12—H66⋯Cl1iv 0.93 2.78 3.618 (6) 151
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y-1, z-1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x, y, z+1.
[Figure 2]
Figure 2
Packing diagram for (I)[link]. Red dashed lines indicate hydrogen bonds.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the geometric parameters of the title compound are similar to those found in bis(creatininium) tetra­chlorido­cadmate(II) (Boufas et al., 2009[Boufas, S., Mouas, T.-N. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, m930-m931.]). The imidazol group conformation of the title compound is in contrast to the bent gauche conformation found in the structure of L-HisH+·Cl·H2O (Donohue et al., 1956[Donohue, J., Lavine, L. R. & Rollett, J. S. (1956). Acta Cryst. 9, 655-662.], 1964[Donohue, J. & Caron, A. (1964). Acta Cryst. 17, 1178-1180.]), but similar to the trans conformation observed in DL-HisH+·Cl·2H2O (Steiner, 1996[Steiner, Th. (1996). Acta Cryst. C52, 2266-2269.])

5. Synthesis and crystallization

The title compound was prepared by dissolving 1 mmol (155.16 mg) of L-histidine in 50.0 ml of water with a mixture of CdCl2·2H2O (1 mmol) and HCl (8 mmol). The resulting mixture was capped and then heated at 353 K in a water bath for 1 h under continuous stirring and then left to slowly evaporate at room temperature. After two weeks, colourless crystals were obtained, which appear to be indefinitely stable when stored in air. Theoretical calculations and spectroscopic data are available as supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference-Fourier maps and subsequently treated as riding atoms in geometrically idealized positions: N—H = 0.86 (NH) or 0.89 (NH3) Å, C—H = 0.93 (cyclic), 0.97 (CH2) or 0.98 (aliphatic C—H) Å with Uiso(H) = kUeq(N,C), where k = 1.5 for the NH3 and methyl groups (which were permitted to rotate but not to tilt) and 1.2 for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cd2(C6H9N3O2)2Cl6]
Mr 749.87
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 7.1540 (6), 8.2591 (6), 10.4459 (8)
α, β, γ (°) 108.502 (2), 97.499 (2), 94.512 (2)
V3) 575.54 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.58
Crystal size (mm) 0.08 × 0.03 × 0.02
 
Data collection
Diffractometer Bruker Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.820, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 7735, 4856, 4799
Rint 0.025
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.08
No. of reflections 4856
No. of parameters 274
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.33, −0.44
Absolute structure Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])
Absolute structure parameter 0.02 (2)
Computer programs: COLLECT(Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Rev. B, 37, 785-789.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Computing details top

Data collection: COLLECT(Nonius, 2002); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Di-µ-chlorido-bis[dichlorido(L-histidinium-κO)cadmium(II)] top
Crystal data top
[Cd2(C6H9N3O2)2Cl6]Z = 1
Mr = 749.87F(000) = 364
Triclinic, P1Dx = 2.163 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1540 (6) ÅCell parameters from 6833 reflections
b = 8.2591 (6) Åθ = 2.6–27.6°
c = 10.4459 (8) ŵ = 2.58 mm1
α = 108.502 (2)°T = 100 K
β = 97.499 (2)°Block, colourless
γ = 94.512 (2)°0.08 × 0.03 × 0.02 mm
V = 575.54 (8) Å3
Data collection top
Bruker Nonius KappaCCD
diffractometer
4856 independent reflections
Radiation source: fine-focus sealed tube4799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.2632 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.820, Tmax = 0.950l = 1313
7735 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.33 e Å3
4856 reflectionsΔρmin = 0.43 e Å3
274 parametersAbsolute structure: Flack & Bernardinelli (2000)
3 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd20.32732 (4)0.13067 (3)0.53489 (3)0.00958 (10)
Cd10.21319 (4)0.04006 (3)0.13444 (3)0.00944 (10)
Cl20.5118 (2)0.10427 (15)0.34159 (13)0.0111 (3)
Cl40.38809 (19)0.29705 (15)0.05541 (13)0.0118 (2)
Cl50.0240 (2)0.02992 (15)0.32637 (13)0.0107 (3)
Cl10.25293 (19)0.42775 (14)0.63993 (13)0.0131 (3)
Cl60.18541 (19)0.11633 (15)0.59302 (13)0.0138 (3)
Cl30.2694 (2)0.17319 (16)0.01896 (15)0.0161 (3)
O30.5872 (5)0.1400 (4)0.6964 (4)0.0117 (7)
C40.3126 (9)0.3001 (7)0.4445 (6)0.0096 (12)
O40.7438 (5)0.3680 (4)0.6649 (4)0.0133 (8)
O10.0490 (5)0.2181 (4)0.0211 (4)0.0115 (7)
N10.4829 (6)0.1360 (5)0.1962 (4)0.0126 (9)
H1A0.4474020.0437540.2180170.019*
H1B0.5229670.1029320.1157730.019*
H1C0.5768010.2028400.2601500.019*
O20.2172 (6)0.0068 (4)0.0144 (4)0.0133 (8)
C80.8474 (9)0.3019 (6)0.8662 (6)0.0101 (11)
H220.8915810.1942670.8707620.012*
N50.8879 (7)0.3255 (6)1.1983 (5)0.0115 (10)
H22A0.8604040.2153661.1704540.014*
N20.4575 (7)0.3273 (6)0.6510 (5)0.0124 (10)
H20.5023320.3023270.7218870.015*
N30.3875 (7)0.4694 (6)0.5153 (5)0.0130 (10)
H30.3786590.5532550.4836650.016*
N41.0146 (6)0.4309 (5)0.8826 (4)0.0107 (9)
H11A1.0540370.4131150.8024920.013*
H11B1.1080380.4201700.9433840.013*
H11C0.9814330.5365100.9118300.013*
C30.2016 (8)0.2381 (6)0.3028 (5)0.0097 (11)
H3A0.1388310.1228660.2849980.012*
H3B0.1033140.3116710.2987550.012*
C60.4754 (9)0.4837 (7)0.6399 (6)0.0135 (12)
H60.5375590.5841640.7065360.016*
C90.7299 (8)0.3710 (6)0.9811 (6)0.0097 (11)
H33A0.6693430.4658580.9660650.012*
H33B0.6300520.2806910.9743200.012*
C10.1857 (10)0.1393 (7)0.0503 (6)0.0117 (13)
C50.3564 (9)0.2120 (7)0.5316 (6)0.0147 (13)
H50.3239720.0947580.5137810.018*
C20.3185 (8)0.2340 (6)0.1874 (6)0.0090 (11)
H2A0.3628410.3514330.1922560.011*
C100.8396 (9)0.4311 (7)1.1223 (6)0.0095 (12)
N60.9961 (7)0.5842 (6)1.3260 (5)0.0129 (10)
H331.0518010.6702051.3951650.015*
C120.9823 (9)0.4198 (7)1.3198 (6)0.0137 (12)
H661.0307150.3788241.3889320.016*
C70.7185 (9)0.2673 (7)0.7288 (6)0.0086 (12)
C110.9078 (9)0.5944 (6)1.2053 (6)0.0136 (12)
H550.8963590.6945261.1837230.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd20.0101 (2)0.00984 (15)0.0073 (2)0.00029 (13)0.00021 (15)0.00184 (13)
Cd10.0105 (2)0.00944 (15)0.0071 (2)0.00022 (13)0.00009 (15)0.00171 (13)
Cl20.0106 (7)0.0129 (5)0.0080 (6)0.0004 (5)0.0004 (5)0.0020 (5)
Cl40.0112 (7)0.0124 (5)0.0097 (6)0.0026 (5)0.0001 (5)0.0013 (4)
Cl50.0106 (7)0.0127 (5)0.0071 (6)0.0004 (5)0.0007 (5)0.0016 (5)
Cl10.0155 (7)0.0120 (5)0.0111 (6)0.0024 (5)0.0040 (6)0.0021 (5)
Cl60.0123 (7)0.0171 (5)0.0111 (6)0.0051 (5)0.0026 (5)0.0069 (5)
Cl30.0145 (7)0.0195 (5)0.0185 (7)0.0018 (5)0.0022 (6)0.0123 (5)
O30.012 (2)0.0110 (14)0.0090 (18)0.0013 (13)0.0035 (15)0.0016 (13)
C40.008 (3)0.013 (2)0.007 (3)0.001 (2)0.002 (2)0.001 (2)
O40.015 (2)0.0168 (16)0.0083 (19)0.0010 (15)0.0007 (16)0.0057 (14)
O10.012 (2)0.0102 (14)0.0091 (18)0.0019 (14)0.0026 (15)0.0000 (13)
N10.012 (2)0.0147 (18)0.011 (2)0.0012 (17)0.0015 (19)0.0044 (17)
O20.016 (2)0.0105 (14)0.0098 (19)0.0018 (13)0.0032 (16)0.0005 (13)
C80.012 (3)0.009 (2)0.009 (3)0.003 (2)0.002 (2)0.004 (2)
N50.011 (3)0.0110 (18)0.010 (3)0.0024 (17)0.003 (2)0.0005 (17)
N20.014 (3)0.019 (2)0.006 (2)0.0066 (19)0.004 (2)0.0040 (19)
N30.011 (3)0.017 (2)0.012 (2)0.0009 (17)0.001 (2)0.0072 (18)
N40.014 (2)0.0109 (16)0.007 (2)0.0009 (16)0.0019 (18)0.0030 (15)
C30.010 (3)0.012 (2)0.006 (3)0.0005 (19)0.001 (2)0.0022 (19)
C60.010 (3)0.016 (2)0.012 (3)0.002 (2)0.001 (2)0.003 (2)
C90.009 (3)0.009 (2)0.010 (3)0.0004 (18)0.003 (2)0.0012 (19)
C10.013 (3)0.010 (2)0.012 (3)0.001 (2)0.001 (2)0.005 (2)
C50.017 (3)0.014 (2)0.013 (3)0.004 (2)0.002 (3)0.004 (2)
C20.009 (3)0.012 (2)0.006 (3)0.003 (2)0.002 (2)0.002 (2)
C100.009 (3)0.010 (2)0.009 (3)0.001 (2)0.003 (2)0.003 (2)
N60.012 (3)0.015 (2)0.008 (3)0.0009 (19)0.001 (2)0.0014 (19)
C120.014 (3)0.016 (3)0.009 (3)0.002 (2)0.001 (2)0.002 (2)
C70.010 (3)0.008 (2)0.006 (3)0.001 (2)0.002 (2)0.001 (2)
C110.017 (3)0.012 (2)0.012 (3)0.000 (2)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
Cd1—O12.361 (4)N5—C101.388 (6)
Cd1—Cl32.4662 (12)N5—H22A0.8600
Cd1—Cl52.5061 (14)N2—C61.331 (7)
Cd1—Cl42.5155 (12)N2—C51.374 (8)
Cd1—Cl22.7244 (14)N2—H20.8600
Cd2—O32.320 (3)N3—C61.335 (7)
Cd2—Cl12.4812 (11)N3—H30.8600
Cd2—Cl62.4864 (12)N4—H11A0.8900
Cd2—Cl22.5155 (14)N4—H11B0.8900
Cd2—Cl52.7344 (14)N4—H11C0.8900
Cd2—Cd13.9162 (5)C3—C21.548 (8)
O3—C71.280 (7)C3—H3A0.9700
C4—C51.355 (7)C3—H3B0.9700
C4—N31.383 (7)C6—H60.9300
C4—C31.494 (8)C9—C101.486 (8)
O4—C71.236 (6)C9—H33A0.9700
O1—C11.274 (7)C9—H33B0.9700
N1—C21.489 (6)C1—C21.543 (9)
N1—H1A0.8900C5—H50.9300
N1—H1B0.8900C2—H2A0.9800
N1—H1C0.8900C10—C111.362 (8)
O2—C11.236 (7)N6—C121.334 (7)
C8—N41.492 (7)N6—C111.366 (7)
C8—C71.531 (8)N6—H330.8600
C8—C91.542 (8)C12—H660.9300
C8—H220.9800C11—H550.9300
N5—C121.319 (8)
O1—Cd1—Cl399.31 (8)C8—N4—H11A109.5
O1—Cd1—Cl591.97 (9)C8—N4—H11B109.5
Cl3—Cd1—Cl5118.96 (4)H11A—N4—H11B109.5
O1—Cd1—Cl484.88 (8)C8—N4—H11C109.5
Cl3—Cd1—Cl4113.33 (4)H11A—N4—H11C109.5
Cl5—Cd1—Cl4127.41 (4)H11B—N4—H11C109.5
O1—Cd1—Cl2166.16 (8)C4—C3—C2115.5 (5)
Cl3—Cd1—Cl294.41 (4)C4—C3—H3A108.4
Cl5—Cd1—Cl282.99 (4)C2—C3—H3A108.4
Cl4—Cd1—Cl287.97 (4)C4—C3—H3B108.4
O3—Cd2—Cl197.93 (9)C2—C3—H3B108.4
O3—Cd2—Cl685.65 (9)H3A—C3—H3B107.5
Cl1—Cd2—Cl6121.93 (4)N2—C6—N3107.2 (5)
O3—Cd2—Cl295.70 (10)N2—C6—H6126.4
Cl1—Cd2—Cl2112.59 (4)N3—C6—H6126.4
Cl6—Cd2—Cl2124.74 (4)C10—C9—C8115.2 (5)
O3—Cd2—Cl5165.13 (8)C10—C9—H33A108.5
Cl1—Cd2—Cl596.33 (4)C8—C9—H33A108.5
Cl6—Cd2—Cl583.27 (4)C10—C9—H33B108.5
Cl2—Cd2—Cl582.61 (4)C8—C9—H33B108.5
Cd2—Cl2—Cd196.64 (5)H33A—C9—H33B107.5
Cd1—Cl5—Cd296.62 (5)O2—C1—O1127.5 (6)
C7—O3—Cd2117.6 (3)O2—C1—C2116.9 (5)
C5—C4—N3105.7 (5)O1—C1—C2115.5 (5)
C5—C4—C3129.8 (5)C4—C5—N2107.6 (5)
N3—C4—C3124.5 (4)C4—C5—H5126.2
C1—O1—Cd1114.9 (3)N2—C5—H5126.2
C2—N1—H1A109.5N1—C2—C1108.2 (4)
C2—N1—H1B109.5N1—C2—C3110.9 (4)
H1A—N1—H1B109.5C1—C2—C3107.0 (5)
C2—N1—H1C109.5N1—C2—H2A110.2
H1A—N1—H1C109.5C1—C2—H2A110.2
H1B—N1—H1C109.5C3—C2—H2A110.2
N4—C8—C7110.6 (4)C11—C10—N5105.7 (5)
N4—C8—C9109.8 (4)C11—C10—C9129.2 (4)
C7—C8—C9108.1 (5)N5—C10—C9125.1 (5)
N4—C8—H22109.4C12—N6—C11109.2 (5)
C7—C8—H22109.4C12—N6—H33125.4
C9—C8—H22109.4C11—N6—H33125.4
C12—N5—C10109.6 (5)N5—C12—N6108.0 (5)
C12—N5—H22A125.2N5—C12—H66126.0
C10—N5—H22A125.2N6—C12—H66126.0
C6—N2—C5109.5 (5)O4—C7—O3126.8 (6)
C6—N2—H2125.3O4—C7—C8118.0 (5)
C5—N2—H2125.3O3—C7—C8115.0 (4)
C6—N3—C4110.1 (4)C10—C11—N6107.4 (4)
C6—N3—H3125.0C10—C11—H55126.3
C4—N3—H3125.0N6—C11—H55126.3
C5—C4—N3—C60.7 (7)C4—C3—C2—N152.9 (6)
C3—C4—N3—C6178.8 (5)C4—C3—C2—C1170.8 (4)
C5—C4—C3—C2110.2 (7)C12—N5—C10—C110.8 (7)
N3—C4—C3—C272.2 (7)C12—N5—C10—C9179.0 (6)
C5—N2—C6—N30.1 (7)C8—C9—C10—C1199.8 (7)
C4—N3—C6—N20.4 (7)C8—C9—C10—N582.5 (7)
N4—C8—C9—C1052.3 (5)C10—N5—C12—N60.5 (7)
C7—C8—C9—C10173.0 (4)C11—N6—C12—N50.1 (7)
Cd1—O1—C1—O218.4 (8)Cd2—O3—C7—O416.1 (8)
Cd1—O1—C1—C2157.2 (3)Cd2—O3—C7—C8159.6 (4)
N3—C4—C5—N20.7 (7)N4—C8—C7—O413.9 (7)
C3—C4—C5—N2178.7 (6)C9—C8—C7—O4106.4 (6)
C6—N2—C5—C40.5 (7)N4—C8—C7—O3169.9 (4)
O2—C1—C2—N111.4 (7)C9—C8—C7—O369.8 (5)
O1—C1—C2—N1172.5 (5)N5—C10—C11—N60.9 (7)
O2—C1—C2—C3108.2 (6)C9—C10—C11—N6178.9 (6)
O1—C1—C2—C367.8 (6)C12—N6—C11—C100.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.012.881 (5)167
N1—H1C···Cl6i0.892.443.070 (4)128
N2—H2···Cl4i0.862.373.215 (5)167
N3—H3···O4ii0.861.992.751 (6)146
N4—H11A···Cl1iii0.892.383.229 (4)160
N4—H11B···Cl3iv0.892.703.426 (5)140
N4—H11C···O1v0.891.962.846 (6)171
N5—H22A···O2iv0.861.942.699 (6)147
N6—H33···Cl6v0.862.283.137 (5)174
C2—H2A···O4ii0.982.563.252 (7)128
C5—H5···Cl2i0.932.793.424 (6)126
C9—H33B···Cl3vi0.972.813.686 (6)151
C11—H55···Cl5v0.932.713.405 (6)132
C11—H55···O1v0.932.533.245 (7)134
C12—H66···Cl1iv0.932.783.618 (6)151
Symmetry codes: (i) x1, y, z1; (ii) x1, y1, z1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors thank Patricia Bénard-Rocherullé and Roisnel Thierry, Sciences Chimiques de Rennes (UMR CNRS 6226)University Rennes 1, France, for providing diffraction facilities.

Funding information

Funding for this research was provided by: 20 Aout 1955 University and LGMM Laboratory .

References

First citationBen Ahmed, A., Feki, H., Abid, Y., Boughzala, H. & Mlayah, A. (2008). J. Mol. Struct. 888, 180–186.  CAS Google Scholar
First citationBoufas, S., Mouas, T.-N. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, m930–m931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeschamps, P., Kulkarni, P. P., Gautam-Basak, M. & Sarkar, B. (2005). Coord. Chem. Rev. 249, 895–909.  Web of Science CrossRef CAS Google Scholar
First citationDonohue, J. & Caron, A. (1964). Acta Cryst. 17, 1178–1180.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDonohue, J., Lavine, L. R. & Rollett, J. S. (1956). Acta Cryst. 9, 655–662.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerak, R., Prelesnik, B., Kamberi, B. & Ćelap, M. B. (1981). Acta Cryst. B37, 1989–1992.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIslam, M. K., Tsuboya, C., Miyashita, Y., Okamoto, K. & Kanamori, K. (2007). Acta Cryst. E63, m1052–m1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIUPAC–IUB Commission on Biochemical Nomenclature. (1970). J. Mol. Biol. 52, 1–17.  CrossRef PubMed Google Scholar
First citationJarboui, A., Ousleti, A., Adil, K., Guidara, A. & Hlel, F. (2011). Ionics, 17, 145–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M. & Smith, J. A. C. (1996). Nature, 379, 638–638.  Google Scholar
First citationKrause, J. A., Baures, P. W. & Eggleston, D. S. (1991). Acta Cryst. B47, 506–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKurawa, M. A., Adams, C. J. & Orpen, A. G. (2008). Acta Cryst. E64, m960–m961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoseva, O. V., Ivanov, A. V., Gerasimenko, A. V., Rodina, T. A. & Filippova, T. S. (2010). Russ. J. Coord. Chem. 36, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Rev. B, 37, 785–789.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPennington, W. T., Cordes, A. W., Kyle, D. & Wilson, E. W. (1984). Acta Cryst. C40, 1322–1324.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSakurai, T., Iwasaki, H., Katano, T. & Nakahashi, Y. (1978). Acta Cryst. B34, 660–662.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, Th. (1996). Acta Cryst. C52, 2266–2269.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, P.-F., Li, D.-S., Meng, X.-G., Zhong, X.-L., Jiang, C., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1553–m1555.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds