research communications
μ-chlorido-bis[dichlorido(L-histidinium-κO)cadmium(II)]
of di-aLaboratoire de Géni-méncanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Algeria, bLaboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia, and cLaboratoire de Recherche sur la Physico-chimie des Surfaces et Interfaces, Université de Skikda, 21000, Algeria
*Correspondence e-mail: boufas_sihem@yahoo.fr
In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the L-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the molecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.
Keywords: X-ray diffraction; hybrid materials; dinuclear cadmium compounds; hydrogen bonds; electronic properties; crystal structure.
CCDC reference: 1915915
1. Chemical context
As a natural amino acid, L-histidine occurs in all organisms. It is a metal chelator in plants accumulating nickel from the soil (Krämer et al., 1996) and a part of the copper-transport system in human blood (Deschamps et al., 2005). Considerable efforts have been made to combine amino acids with organic and inorganic matrices to produce materials having a non-centrosymmetric cell, large polarizabilities and a strong non-linear optical coefficient (Ben Ahmed et al., 2008). As a chelating ligand, L-histidine provides up to three potential binding sites, as has been shown in complexes with nickel(II) (Sakurai et al., 1978), chromium(III) (Pennington et al., 1984), cobalt(III) (Herak et al., 1981), molybdenum(V) (Wu et al., 2005), vanadium(IV) (Islam et al., 2007) and copper(II) (Deschamps et al., 2005). In this work, we report the synthesis and structure of the title cadmium complex with L-histidine, (I). Cadmium is structurally interesting as it exhibits a number of coordination numbers and geometries such as those in [CdCl4] (Boufas et al., 2009), [Cd3Cl11] (Kurawa et al., 2008), [CdCl6]n (Jarboui et al., 2011) and [CdCl4]n (Loseva et al., 2010).
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The contains a [Cd2Cl6]2− anionic core bridging a pair of histidinium cations via Cd—O bonds. Each cadmium atom is five-coordinated within a CdCl4O environment, where atoms Cl3, Cl4 and Cl5 define the equatorial plane for Cd1, and Cl2 and O1 are in axial positions [O1—Cd1—Cl2 = 166.2 (1)°]. A similar coordination is observed for Cd2, and in this case the equatorial plane is formed by atoms Cl1, Cl2 and Cl6, while O3 and Cl5 are in equatorial positions [O3—Cd2—Cl5 = 165.2 (1)°]. Two μ-Cl atoms lead to a Cd2Cl2 square with a Cd1⋯Cd2 distance of 3.9162 (4) Å. The Cd—Cl distances lie in the range 2.4662 (12) to 2.7244 (14) Å for Cd1 and 2.4812 (11) to 2.7344 (14) Å for Cd2. The Cl—Cd—Cl angles are in the range of 82.61 (4) to 121.93 (3)°.
In the histidinium cation, the α-amino and imidazole groups are protonated and positively charged, while the carboxyl group is deprotonated and negatively charged, which confirms that cations occur in their zwitterionic forms and carry a net positive charge. As expected, the imidazol rings are almost planar with r.m.s deviations for the non-H atoms of 0.003 Å in each molecule. The imidazol group is trans to the carboxyl group and gauche to the amino N atom.
The conformation of the histidine side chain can be described by the two torsion angles, χ1 and χ21 (IUPAC–IUB Commission on Biochemical Nomenclature, 1970). Angle χ1, which defines the disposition of the side chain with respect to the main chain, can take values in the neighbourhood of −60, +60 or 180°, corresponding to the open conformation I (g−), closed conformation (g+) and open conformation II (t), respectively (Krause et al., 1991). The χ21 values lie near −90 or +90° but the angle often deviates from these ideal values, as a result of interactions between the imidazole ring and other groups in the structure. In the title compound, the following values are seen: χ1 = −52.9 (6); χ1′ = −52.3 (5); χ21 = −72.2 (7); χ21′ = −82.5 (7)°. Hence, both histidinium cations adopt the sterically favourable open conformation in (I).
3. Supramolecular features
The extended structure of (I) is consolidated by a number of hydrogen-bonding (N—H⋯Cl and N—H⋯O) interactions (Table 1). The chloride anions and oxygen atoms play an important role in accepting hydrogen bonds from the amine N atom and the N atoms of the imidazolium ring. These interactions, together with weak C—H⋯Cl and C—H⋯O interactions, generate a three-dimensional network (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) revealed that the geometric parameters of the title compound are similar to those found in bis(creatininium) tetrachloridocadmate(II) (Boufas et al., 2009). The imidazol group conformation of the title compound is in contrast to the bent gauche conformation found in the structure of L-HisH+·Cl−·H2O (Donohue et al., 1956, 1964), but similar to the trans conformation observed in DL-HisH+·Cl−·2H2O (Steiner, 1996)
5. Synthesis and crystallization
The title compound was prepared by dissolving 1 mmol (155.16 mg) of L-histidine in 50.0 ml of water with a mixture of CdCl2·2H2O (1 mmol) and HCl (8 mmol). The resulting mixture was capped and then heated at 353 K in a water bath for 1 h under continuous stirring and then left to slowly evaporate at room temperature. After two weeks, colourless crystals were obtained, which appear to be indefinitely stable when stored in air. Theoretical calculations and spectroscopic data are available as supporting information.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in difference-Fourier maps and subsequently treated as riding atoms in geometrically idealized positions: N—H = 0.86 (NH) or 0.89 (NH3) Å, C—H = 0.93 (cyclic), 0.97 (CH2) or 0.98 (aliphatic C—H) Å with Uiso(H) = kUeq(N,C), where k = 1.5 for the NH3 and methyl groups (which were permitted to rotate but not to tilt) and 1.2 for all other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1915915
https://doi.org/10.1107/S205698901900690X/hb7815sup1.cif
contains datablocks I, _Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901900690X/hb7815Isup2.hkl
experimental and theoritical data of the title compound. DOI: https://doi.org/10.1107/S205698901900690X/hb7815sup3.docx
Data collection: COLLECT(Nonius, 2002); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).[Cd2(C6H9N3O2)2Cl6] | Z = 1 |
Mr = 749.87 | F(000) = 364 |
Triclinic, P1 | Dx = 2.163 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1540 (6) Å | Cell parameters from 6833 reflections |
b = 8.2591 (6) Å | θ = 2.6–27.6° |
c = 10.4459 (8) Å | µ = 2.58 mm−1 |
α = 108.502 (2)° | T = 100 K |
β = 97.499 (2)° | Block, colourless |
γ = 94.512 (2)° | 0.08 × 0.03 × 0.02 mm |
V = 575.54 (8) Å3 |
Bruker Nonius KappaCCD diffractometer | 4856 independent reflections |
Radiation source: fine-focus sealed tube | 4799 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 27.6°, θmin = 2.6° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −10→10 |
Tmin = 0.820, Tmax = 0.950 | l = −13→13 |
7735 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0263P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.057 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 1.33 e Å−3 |
4856 reflections | Δρmin = −0.43 e Å−3 |
274 parameters | Absolute structure: Flack & Bernardinelli (2000) |
3 restraints | Absolute structure parameter: 0.02 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd2 | 0.32732 (4) | 0.13067 (3) | 0.53489 (3) | 0.00958 (10) | |
Cd1 | 0.21319 (4) | −0.04006 (3) | 0.13444 (3) | 0.00944 (10) | |
Cl2 | 0.5118 (2) | 0.10427 (15) | 0.34159 (13) | 0.0111 (3) | |
Cl4 | 0.38809 (19) | −0.29705 (15) | 0.05541 (13) | 0.0118 (2) | |
Cl5 | 0.0240 (2) | 0.02992 (15) | 0.32637 (13) | 0.0107 (3) | |
Cl1 | 0.25293 (19) | 0.42775 (14) | 0.63993 (13) | 0.0131 (3) | |
Cl6 | 0.18541 (19) | −0.11633 (15) | 0.59302 (13) | 0.0138 (3) | |
Cl3 | 0.2694 (2) | 0.17319 (16) | 0.01896 (15) | 0.0161 (3) | |
O3 | 0.5872 (5) | 0.1400 (4) | 0.6964 (4) | 0.0117 (7) | |
C4 | −0.3126 (9) | −0.3001 (7) | −0.4445 (6) | 0.0096 (12) | |
O4 | 0.7438 (5) | 0.3680 (4) | 0.6649 (4) | 0.0133 (8) | |
O1 | −0.0490 (5) | −0.2181 (4) | −0.0211 (4) | 0.0115 (7) | |
N1 | −0.4829 (6) | −0.1360 (5) | −0.1962 (4) | 0.0126 (9) | |
H1A | −0.447402 | −0.043754 | −0.218017 | 0.019* | |
H1B | −0.522967 | −0.102932 | −0.115773 | 0.019* | |
H1C | −0.576801 | −0.202840 | −0.260150 | 0.019* | |
O2 | −0.2172 (6) | 0.0068 (4) | 0.0144 (4) | 0.0133 (8) | |
C8 | 0.8474 (9) | 0.3019 (6) | 0.8662 (6) | 0.0101 (11) | |
H22 | 0.891581 | 0.194267 | 0.870762 | 0.012* | |
N5 | 0.8879 (7) | 0.3255 (6) | 1.1983 (5) | 0.0115 (10) | |
H22A | 0.860404 | 0.215366 | 1.170454 | 0.014* | |
N2 | −0.4575 (7) | −0.3273 (6) | −0.6510 (5) | 0.0124 (10) | |
H2 | −0.502332 | −0.302327 | −0.721887 | 0.015* | |
N3 | −0.3875 (7) | −0.4694 (6) | −0.5153 (5) | 0.0130 (10) | |
H3 | −0.378659 | −0.553255 | −0.483665 | 0.016* | |
N4 | 1.0146 (6) | 0.4309 (5) | 0.8826 (4) | 0.0107 (9) | |
H11A | 1.054037 | 0.413115 | 0.802492 | 0.013* | |
H11B | 1.108038 | 0.420170 | 0.943384 | 0.013* | |
H11C | 0.981433 | 0.536510 | 0.911830 | 0.013* | |
C3 | −0.2016 (8) | −0.2381 (6) | −0.3028 (5) | 0.0097 (11) | |
H3A | −0.138831 | −0.122866 | −0.284998 | 0.012* | |
H3B | −0.103314 | −0.311671 | −0.298755 | 0.012* | |
C6 | −0.4754 (9) | −0.4837 (7) | −0.6399 (6) | 0.0135 (12) | |
H6 | −0.537559 | −0.584164 | −0.706536 | 0.016* | |
C9 | 0.7299 (8) | 0.3710 (6) | 0.9811 (6) | 0.0097 (11) | |
H33A | 0.669343 | 0.465858 | 0.966065 | 0.012* | |
H33B | 0.630052 | 0.280691 | 0.974320 | 0.012* | |
C1 | −0.1857 (10) | −0.1393 (7) | −0.0503 (6) | 0.0117 (13) | |
C5 | −0.3564 (9) | −0.2120 (7) | −0.5316 (6) | 0.0147 (13) | |
H5 | −0.323972 | −0.094758 | −0.513781 | 0.018* | |
C2 | −0.3185 (8) | −0.2340 (6) | −0.1874 (6) | 0.0090 (11) | |
H2A | −0.362841 | −0.351433 | −0.192256 | 0.011* | |
C10 | 0.8396 (9) | 0.4311 (7) | 1.1223 (6) | 0.0095 (12) | |
N6 | 0.9961 (7) | 0.5842 (6) | 1.3260 (5) | 0.0129 (10) | |
H33 | 1.051801 | 0.670205 | 1.395165 | 0.015* | |
C12 | 0.9823 (9) | 0.4198 (7) | 1.3198 (6) | 0.0137 (12) | |
H66 | 1.030715 | 0.378824 | 1.388932 | 0.016* | |
C7 | 0.7185 (9) | 0.2673 (7) | 0.7288 (6) | 0.0086 (12) | |
C11 | 0.9078 (9) | 0.5944 (6) | 1.2053 (6) | 0.0136 (12) | |
H55 | 0.896359 | 0.694526 | 1.183723 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd2 | 0.0101 (2) | 0.00984 (15) | 0.0073 (2) | −0.00029 (13) | −0.00021 (15) | 0.00184 (13) |
Cd1 | 0.0105 (2) | 0.00944 (15) | 0.0071 (2) | 0.00022 (13) | −0.00009 (15) | 0.00171 (13) |
Cl2 | 0.0106 (7) | 0.0129 (5) | 0.0080 (6) | −0.0004 (5) | −0.0004 (5) | 0.0020 (5) |
Cl4 | 0.0112 (7) | 0.0124 (5) | 0.0097 (6) | 0.0026 (5) | 0.0001 (5) | 0.0013 (4) |
Cl5 | 0.0106 (7) | 0.0127 (5) | 0.0071 (6) | 0.0004 (5) | 0.0007 (5) | 0.0016 (5) |
Cl1 | 0.0155 (7) | 0.0120 (5) | 0.0111 (6) | 0.0024 (5) | 0.0040 (6) | 0.0021 (5) |
Cl6 | 0.0123 (7) | 0.0171 (5) | 0.0111 (6) | −0.0051 (5) | −0.0026 (5) | 0.0069 (5) |
Cl3 | 0.0145 (7) | 0.0195 (5) | 0.0185 (7) | 0.0018 (5) | 0.0022 (6) | 0.0123 (5) |
O3 | 0.012 (2) | 0.0110 (14) | 0.0090 (18) | −0.0013 (13) | −0.0035 (15) | 0.0016 (13) |
C4 | 0.008 (3) | 0.013 (2) | 0.007 (3) | 0.001 (2) | 0.002 (2) | 0.001 (2) |
O4 | 0.015 (2) | 0.0168 (16) | 0.0083 (19) | 0.0010 (15) | −0.0007 (16) | 0.0057 (14) |
O1 | 0.012 (2) | 0.0102 (14) | 0.0091 (18) | 0.0019 (14) | −0.0026 (15) | 0.0000 (13) |
N1 | 0.012 (2) | 0.0147 (18) | 0.011 (2) | 0.0012 (17) | 0.0015 (19) | 0.0044 (17) |
O2 | 0.016 (2) | 0.0105 (14) | 0.0098 (19) | 0.0018 (13) | −0.0032 (16) | 0.0005 (13) |
C8 | 0.012 (3) | 0.009 (2) | 0.009 (3) | −0.003 (2) | −0.002 (2) | 0.004 (2) |
N5 | 0.011 (3) | 0.0110 (18) | 0.010 (3) | 0.0024 (17) | 0.003 (2) | 0.0005 (17) |
N2 | 0.014 (3) | 0.019 (2) | 0.006 (2) | 0.0066 (19) | 0.004 (2) | 0.0040 (19) |
N3 | 0.011 (3) | 0.017 (2) | 0.012 (2) | 0.0009 (17) | 0.001 (2) | 0.0072 (18) |
N4 | 0.014 (2) | 0.0109 (16) | 0.007 (2) | 0.0009 (16) | 0.0019 (18) | 0.0030 (15) |
C3 | 0.010 (3) | 0.012 (2) | 0.006 (3) | 0.0005 (19) | 0.001 (2) | 0.0022 (19) |
C6 | 0.010 (3) | 0.016 (2) | 0.012 (3) | −0.002 (2) | 0.001 (2) | 0.003 (2) |
C9 | 0.009 (3) | 0.009 (2) | 0.010 (3) | 0.0004 (18) | 0.003 (2) | 0.0012 (19) |
C1 | 0.013 (3) | 0.010 (2) | 0.012 (3) | −0.001 (2) | 0.001 (2) | 0.005 (2) |
C5 | 0.017 (3) | 0.014 (2) | 0.013 (3) | 0.004 (2) | 0.002 (3) | 0.004 (2) |
C2 | 0.009 (3) | 0.012 (2) | 0.006 (3) | 0.003 (2) | 0.002 (2) | 0.002 (2) |
C10 | 0.009 (3) | 0.010 (2) | 0.009 (3) | 0.001 (2) | 0.003 (2) | 0.003 (2) |
N6 | 0.012 (3) | 0.015 (2) | 0.008 (3) | −0.0009 (19) | 0.001 (2) | −0.0014 (19) |
C12 | 0.014 (3) | 0.016 (3) | 0.009 (3) | 0.002 (2) | 0.001 (2) | 0.002 (2) |
C7 | 0.010 (3) | 0.008 (2) | 0.006 (3) | 0.001 (2) | 0.002 (2) | −0.001 (2) |
C11 | 0.017 (3) | 0.012 (2) | 0.012 (3) | 0.000 (2) | 0.003 (2) | 0.004 (2) |
Cd1—O1 | 2.361 (4) | N5—C10 | 1.388 (6) |
Cd1—Cl3 | 2.4662 (12) | N5—H22A | 0.8600 |
Cd1—Cl5 | 2.5061 (14) | N2—C6 | 1.331 (7) |
Cd1—Cl4 | 2.5155 (12) | N2—C5 | 1.374 (8) |
Cd1—Cl2 | 2.7244 (14) | N2—H2 | 0.8600 |
Cd2—O3 | 2.320 (3) | N3—C6 | 1.335 (7) |
Cd2—Cl1 | 2.4812 (11) | N3—H3 | 0.8600 |
Cd2—Cl6 | 2.4864 (12) | N4—H11A | 0.8900 |
Cd2—Cl2 | 2.5155 (14) | N4—H11B | 0.8900 |
Cd2—Cl5 | 2.7344 (14) | N4—H11C | 0.8900 |
Cd2—Cd1 | 3.9162 (5) | C3—C2 | 1.548 (8) |
O3—C7 | 1.280 (7) | C3—H3A | 0.9700 |
C4—C5 | 1.355 (7) | C3—H3B | 0.9700 |
C4—N3 | 1.383 (7) | C6—H6 | 0.9300 |
C4—C3 | 1.494 (8) | C9—C10 | 1.486 (8) |
O4—C7 | 1.236 (6) | C9—H33A | 0.9700 |
O1—C1 | 1.274 (7) | C9—H33B | 0.9700 |
N1—C2 | 1.489 (6) | C1—C2 | 1.543 (9) |
N1—H1A | 0.8900 | C5—H5 | 0.9300 |
N1—H1B | 0.8900 | C2—H2A | 0.9800 |
N1—H1C | 0.8900 | C10—C11 | 1.362 (8) |
O2—C1 | 1.236 (7) | N6—C12 | 1.334 (7) |
C8—N4 | 1.492 (7) | N6—C11 | 1.366 (7) |
C8—C7 | 1.531 (8) | N6—H33 | 0.8600 |
C8—C9 | 1.542 (8) | C12—H66 | 0.9300 |
C8—H22 | 0.9800 | C11—H55 | 0.9300 |
N5—C12 | 1.319 (8) | ||
O1—Cd1—Cl3 | 99.31 (8) | C8—N4—H11A | 109.5 |
O1—Cd1—Cl5 | 91.97 (9) | C8—N4—H11B | 109.5 |
Cl3—Cd1—Cl5 | 118.96 (4) | H11A—N4—H11B | 109.5 |
O1—Cd1—Cl4 | 84.88 (8) | C8—N4—H11C | 109.5 |
Cl3—Cd1—Cl4 | 113.33 (4) | H11A—N4—H11C | 109.5 |
Cl5—Cd1—Cl4 | 127.41 (4) | H11B—N4—H11C | 109.5 |
O1—Cd1—Cl2 | 166.16 (8) | C4—C3—C2 | 115.5 (5) |
Cl3—Cd1—Cl2 | 94.41 (4) | C4—C3—H3A | 108.4 |
Cl5—Cd1—Cl2 | 82.99 (4) | C2—C3—H3A | 108.4 |
Cl4—Cd1—Cl2 | 87.97 (4) | C4—C3—H3B | 108.4 |
O3—Cd2—Cl1 | 97.93 (9) | C2—C3—H3B | 108.4 |
O3—Cd2—Cl6 | 85.65 (9) | H3A—C3—H3B | 107.5 |
Cl1—Cd2—Cl6 | 121.93 (4) | N2—C6—N3 | 107.2 (5) |
O3—Cd2—Cl2 | 95.70 (10) | N2—C6—H6 | 126.4 |
Cl1—Cd2—Cl2 | 112.59 (4) | N3—C6—H6 | 126.4 |
Cl6—Cd2—Cl2 | 124.74 (4) | C10—C9—C8 | 115.2 (5) |
O3—Cd2—Cl5 | 165.13 (8) | C10—C9—H33A | 108.5 |
Cl1—Cd2—Cl5 | 96.33 (4) | C8—C9—H33A | 108.5 |
Cl6—Cd2—Cl5 | 83.27 (4) | C10—C9—H33B | 108.5 |
Cl2—Cd2—Cl5 | 82.61 (4) | C8—C9—H33B | 108.5 |
Cd2—Cl2—Cd1 | 96.64 (5) | H33A—C9—H33B | 107.5 |
Cd1—Cl5—Cd2 | 96.62 (5) | O2—C1—O1 | 127.5 (6) |
C7—O3—Cd2 | 117.6 (3) | O2—C1—C2 | 116.9 (5) |
C5—C4—N3 | 105.7 (5) | O1—C1—C2 | 115.5 (5) |
C5—C4—C3 | 129.8 (5) | C4—C5—N2 | 107.6 (5) |
N3—C4—C3 | 124.5 (4) | C4—C5—H5 | 126.2 |
C1—O1—Cd1 | 114.9 (3) | N2—C5—H5 | 126.2 |
C2—N1—H1A | 109.5 | N1—C2—C1 | 108.2 (4) |
C2—N1—H1B | 109.5 | N1—C2—C3 | 110.9 (4) |
H1A—N1—H1B | 109.5 | C1—C2—C3 | 107.0 (5) |
C2—N1—H1C | 109.5 | N1—C2—H2A | 110.2 |
H1A—N1—H1C | 109.5 | C1—C2—H2A | 110.2 |
H1B—N1—H1C | 109.5 | C3—C2—H2A | 110.2 |
N4—C8—C7 | 110.6 (4) | C11—C10—N5 | 105.7 (5) |
N4—C8—C9 | 109.8 (4) | C11—C10—C9 | 129.2 (4) |
C7—C8—C9 | 108.1 (5) | N5—C10—C9 | 125.1 (5) |
N4—C8—H22 | 109.4 | C12—N6—C11 | 109.2 (5) |
C7—C8—H22 | 109.4 | C12—N6—H33 | 125.4 |
C9—C8—H22 | 109.4 | C11—N6—H33 | 125.4 |
C12—N5—C10 | 109.6 (5) | N5—C12—N6 | 108.0 (5) |
C12—N5—H22A | 125.2 | N5—C12—H66 | 126.0 |
C10—N5—H22A | 125.2 | N6—C12—H66 | 126.0 |
C6—N2—C5 | 109.5 (5) | O4—C7—O3 | 126.8 (6) |
C6—N2—H2 | 125.3 | O4—C7—C8 | 118.0 (5) |
C5—N2—H2 | 125.3 | O3—C7—C8 | 115.0 (4) |
C6—N3—C4 | 110.1 (4) | C10—C11—N6 | 107.4 (4) |
C6—N3—H3 | 125.0 | C10—C11—H55 | 126.3 |
C4—N3—H3 | 125.0 | N6—C11—H55 | 126.3 |
C5—C4—N3—C6 | −0.7 (7) | C4—C3—C2—N1 | −52.9 (6) |
C3—C4—N3—C6 | −178.8 (5) | C4—C3—C2—C1 | −170.8 (4) |
C5—C4—C3—C2 | 110.2 (7) | C12—N5—C10—C11 | −0.8 (7) |
N3—C4—C3—C2 | −72.2 (7) | C12—N5—C10—C9 | −179.0 (6) |
C5—N2—C6—N3 | 0.1 (7) | C8—C9—C10—C11 | 99.8 (7) |
C4—N3—C6—N2 | 0.4 (7) | C8—C9—C10—N5 | −82.5 (7) |
N4—C8—C9—C10 | −52.3 (5) | C10—N5—C12—N6 | 0.5 (7) |
C7—C8—C9—C10 | −173.0 (4) | C11—N6—C12—N5 | 0.1 (7) |
Cd1—O1—C1—O2 | −18.4 (8) | Cd2—O3—C7—O4 | −16.1 (8) |
Cd1—O1—C1—C2 | 157.2 (3) | Cd2—O3—C7—C8 | 159.6 (4) |
N3—C4—C5—N2 | 0.7 (7) | N4—C8—C7—O4 | −13.9 (7) |
C3—C4—C5—N2 | 178.7 (6) | C9—C8—C7—O4 | 106.4 (6) |
C6—N2—C5—C4 | −0.5 (7) | N4—C8—C7—O3 | 169.9 (4) |
O2—C1—C2—N1 | −11.4 (7) | C9—C8—C7—O3 | −69.8 (5) |
O1—C1—C2—N1 | 172.5 (5) | N5—C10—C11—N6 | 0.9 (7) |
O2—C1—C2—C3 | 108.2 (6) | C9—C10—C11—N6 | 178.9 (6) |
O1—C1—C2—C3 | −67.8 (6) | C12—N6—C11—C10 | −0.6 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.89 | 2.01 | 2.881 (5) | 167 |
N1—H1C···Cl6i | 0.89 | 2.44 | 3.070 (4) | 128 |
N2—H2···Cl4i | 0.86 | 2.37 | 3.215 (5) | 167 |
N3—H3···O4ii | 0.86 | 1.99 | 2.751 (6) | 146 |
N4—H11A···Cl1iii | 0.89 | 2.38 | 3.229 (4) | 160 |
N4—H11B···Cl3iv | 0.89 | 2.70 | 3.426 (5) | 140 |
N4—H11C···O1v | 0.89 | 1.96 | 2.846 (6) | 171 |
N5—H22A···O2iv | 0.86 | 1.94 | 2.699 (6) | 147 |
N6—H33···Cl6v | 0.86 | 2.28 | 3.137 (5) | 174 |
C2—H2A···O4ii | 0.98 | 2.56 | 3.252 (7) | 128 |
C5—H5···Cl2i | 0.93 | 2.79 | 3.424 (6) | 126 |
C9—H33B···Cl3vi | 0.97 | 2.81 | 3.686 (6) | 151 |
C11—H55···Cl5v | 0.93 | 2.71 | 3.405 (6) | 132 |
C11—H55···O1v | 0.93 | 2.53 | 3.245 (7) | 134 |
C12—H66···Cl1iv | 0.93 | 2.78 | 3.618 (6) | 151 |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, y−1, z−1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x, y, z+1. |
Acknowledgements
The authors thank Patricia Bénard-Rocherullé and Roisnel Thierry, Sciences Chimiques de Rennes (UMR CNRS 6226)University Rennes 1, France, for providing diffraction facilities.
Funding information
Funding for this research was provided by: 20 Aout 1955 University and LGMM Laboratory .
References
Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H. & Mlayah, A. (2008). J. Mol. Struct. 888, 180–186. CAS Google Scholar
Boufas, S., Mouas, T.-N. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, m930–m931. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Deschamps, P., Kulkarni, P. P., Gautam-Basak, M. & Sarkar, B. (2005). Coord. Chem. Rev. 249, 895–909. Web of Science CrossRef CAS Google Scholar
Donohue, J. & Caron, A. (1964). Acta Cryst. 17, 1178–1180. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Donohue, J., Lavine, L. R. & Rollett, J. S. (1956). Acta Cryst. 9, 655–662. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herak, R., Prelesnik, B., Kamberi, B. & Ćelap, M. B. (1981). Acta Cryst. B37, 1989–1992. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Islam, M. K., Tsuboya, C., Miyashita, Y., Okamoto, K. & Kanamori, K. (2007). Acta Cryst. E63, m1052–m1054. Web of Science CSD CrossRef IUCr Journals Google Scholar
IUPAC–IUB Commission on Biochemical Nomenclature. (1970). J. Mol. Biol. 52, 1–17. CrossRef PubMed Google Scholar
Jarboui, A., Ousleti, A., Adil, K., Guidara, A. & Hlel, F. (2011). Ionics, 17, 145–155. Web of Science CSD CrossRef CAS Google Scholar
Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M. & Smith, J. A. C. (1996). Nature, 379, 638–638. Google Scholar
Krause, J. A., Baures, P. W. & Eggleston, D. S. (1991). Acta Cryst. B47, 506–511. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kurawa, M. A., Adams, C. J. & Orpen, A. G. (2008). Acta Cryst. E64, m960–m961. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loseva, O. V., Ivanov, A. V., Gerasimenko, A. V., Rodina, T. A. & Filippova, T. S. (2010). Russ. J. Coord. Chem. 36, 1–8. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Rev. B, 37, 785–789. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pennington, W. T., Cordes, A. W., Kyle, D. & Wilson, E. W. (1984). Acta Cryst. C40, 1322–1324. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sakurai, T., Iwasaki, H., Katano, T. & Nakahashi, Y. (1978). Acta Cryst. B34, 660–662. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, Th. (1996). Acta Cryst. C52, 2266–2269. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wu, P.-F., Li, D.-S., Meng, X.-G., Zhong, X.-L., Jiang, C., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1553–m1555. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.