research communications
Bis[μ-bis(2,6-diisopropylphenyl) phosphato-κ2O:O′]bis[(2,2′-bipyridine-κ2N,N′)lithium] toluene disolvate and its in of ∊-caprolactone and L-dilactide
aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bMoscow Institute of Physics and Technology, Department of Biological and Medical Physics, 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russian Federation, cG.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow, 117997, Russian Federation, dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and eN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru
The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2′-bipyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the consists of half a complex molecule and one molecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO′-bridging coordination mode and the 2,2′-bipyridine ligand is chelating to the Li+ cation, generating a distorted tetrahedral LiN2O2 The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π interactions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the of ∊-caprolactone and L-dilactide.
Keywords: lithium; diaryl phosphate; bipyridine; coordination compound; crystal structure; ring-opening polymerization; cyclic esters.
CCDC reference: 1915965
1. Chemical context
Various d- and f-metal complexes with disubstituted organophosphate ligands are currently being studied, for example, as model compounds to explore the role of biometals in biological systems, including complexes that mimic the functions, structure and reactivity of active centers of enzymes in order to create models of biologically centers (Kövári & Krämer, 1996; Lipscomb & Sträter, 1996; Hegg & Burstyn, 1998; Hegg et al., 1999; Atkinson & Lindoy, 2000; Deck et al., 2002; Reichenbach-Klinke & König, 2002; Fry et al., 2005; Dey et al., 2012; Sato et al., 2012), as catalysts for various catalytic processes, e.g. alkene cyclopropanation and carbene insertions (Lacasse et al., 2005; Hrdina et al., 2013), polymerization of conjugated dienes (Anwander, 2002; Friebe et al., 2006; Kobayashi & Anwander, 2001; Minyaev et al., 2018a,b,c; Nifant'ev et al., 2013, 2014; Zhang et al., 2010) acrylonitrile (Minyaev et al., 2018d) and dilactide (Nifant'ev et al., 2013) and inhibition of thermal decomposition of polydimethylsiloxanes (Minyaev et al., 2018a,e). Synthetic precursors for these complexes are the corresponding alkali metal organophosphate derivatives, whose structures are still poorly explored.
Recently we have reported on the structure of the lithium salt {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH), (I), having the same ligand (Minyaev et al., 2015) as in the title compound. Attempts to use this salt to produce Tb and Eu phosphate complexes with luminescent properties have led to complexes having coordinated methanol molecules and possessing very low quantum yields (unpublished results). The presence of the MeOH molecules and therefore undesirable Ln—O—H bonds usually noticeably decreases the because of quenching luminescence (Bünzli & Piguet, 2005; Bünzli, 2017; Yan et al., 1995; Sy et al., 2016). At the same time, the phosphate ligand in the complexes has not displayed properties of an `antenna' ligand for luminescence sensitization (Bünzli & Piguet, 2005; Bünzli et al., 2007; Sy et al., 2016; Guillou et al., 2016; Hewitt & Butler, 2018; Roitershtein et al., 2018). A 2,2′-bipyridine (bipy) molecule can serve as such an `antenna', which usually increases the dramatically. We have found that salt (I) can be easily converted into the complex {Li2(bipy-κ2N,N′)2[(2,6-iPr2C6H3-O)2POO-μ-κO:κO′]2}(C7H8)2 (II) (Fig. 1), the of which is reported herein. It has no coordinated MeOH molecule, but has the `built-in' bipy ligand. Therefore, complex (II) might be successfully utilized in the synthesis of luminescent rare-earth organophosphate complexes.
On the other hand, it is known that diaryl-substituted phosphoric acids in the presence of 3-phenylpropan-1-ol as an initiator are capable of catalysing ∊-caprolactone (∊-CL) and L-lactide (LLA) into poly(∊-caprolactone) (PCL) and poly(L-lactide) (PLLA) at high temperatures (453 K, bulk sample; Liu et al., 2019). It might be noted that ROP of ∊-CL and LLA can also be carried out at lower temperatures: 353 K for ∊-CL (bulk sample, the same initiator and catalysts; Saito et al., 2015) and 383 K for DL-lactide [30% of toluene by volume, glycolic acid derivatives of bio-metals (Mg, Zn, Al) were used as catalysts; Nifant'ev et al., 2018].
(ROP) ofWe have tested salts (I) and (II) as precatalysts for ∊-CL and LLA polymerization under two different condition sets: (1) 373 K, ∼30% of toluene by volume and (2) 453 K, bulk sample (Fig. 2), using benzyl alcohol as an initiator. The monomer/precatalyst molar ratio is taken as 25:1 (with respect to one lithium phosphate unit) in order to monitor the reaction mixtures and to study the resulting short oligomers by 1H NMR spectroscopy.
The ROP of ∊-CL catalysed by (I) proceeds at different equivalents of an activator under mild conditions, providing PCL with a high conversion of ∊-CL (Table 1, entries 1–3). The 100% conversion and a higher polymerization degree (Pn), which is a number of oligomerized monomer units, has been observed in the presence of two equivalents of PhCH2OH activator (entry 3). However, even in the absence of PhCH2OH (entry 1), the MeOH molecules in complex (I) act as an activator as well. According to the 1H NMR data for PCL obtained, there are two types of the RO terminal group, namely, MeO and PhCH2O. Based on NMR integral intensities, their sum corresponds to the amount of the –CH2—OH terminal group. The MeO/PhCH2O ratio decreases upon increasing the taken amount of PhCH2OH, and the corresponding ratio is 1.00/0.00 for entry 1, 0.73/0.27 for entry 2 and 0.58/0.42 for entry 3. Thus, compound (I) does not require an additional activator because of the presence of the internal one, namely, MeOH molecules. Unlike for (I), polymerization of ∊-CL by (II) without an activator does not occur (entry 4). Activation by benzyl alcohol does not lead to a noticeable yield of PCL having only the PhCH2O– and –CH2—OH terminal groups (entries 5 and 6). The addition of two equivalents of the PhCH2OH activator provides higher conversions in the cases of both complexes (I) and (II) (entries 3 and 6).
Unlike ∊-CL the ROP of LLA has failed under the same conditions. For example, conversion of LLA to PLLA at the [LLA]/[(II)]/[PhCH2OH] ratio of 25:0.5:2 is only 6%. Therefore, of LLA and ∊-CL has been studied further at a higher temperature (Table 2). Conversions of ∊-CL in the case of complex (II) (entry 2) is even higher than that for (I), but the polymerization degree is higher than expected Pn = 25, which may be explained by the faster reaction rate of the catalyst with the monomer, compared to the activation rate. The ROP of LLA proceeds under these conditions, but providing a rather low conversion to PLLA and the formation of shorter oligomers than expected (entries 3 and 4).
|
In summary, catalytic tests have displayed that systems based on complexes (I) and (II) are capable of catalysing ROP of cyclic using ∊-caprolactone and L-dilactide as model substrates, but the of the systems is rather poor. Complex (I) does not require an initiator for polymerization of ∊-CL.
2. Structural commentary
The title compound (II) crystallizes in the monoclinic P21/n). Its (see Fig. S1 in the supporting information) contains one non-coordinating toluene molecule and half the complex {Li2(bipy)2[(2,6-iPr2C6H3-O)2PO2]2}, which is located on an inversion centre (Fig. 3) [symmetry code: (i) −x + 1, −y + 1, −z + 2]. The complex has an unusual Li2P2O4 core (Fig. S2 in the supporting information), in which all the O and P atoms lie in the same plane, but the Li atoms deviate from the plane by 0.338 (4) Å. According to the Cambridge Structural Database (CSD version 5.40 with updates, Groom et al., 2016), there are 27 crystal structures of alkali metal derivatives with (R1O)(R2O)PO2− anions (R1, R2 = alkyl, aryl). Only the two-dimensional coordination polymer structure of Na[O2P(O-C6H4-4-NO2)2] (CSD refcodes AGACIW/AGACIW01; Gerus & Lis, 2013; Starynowicz & Lis, 2014) displays an Na2P2O4 structural motif similar to the Li2P2O4 core found in (II). On the other hand, there are a number of lithium carboxylates demonstrating a very similar Li2C2O4 core with the RCO2− ligand in the same μ2-κO:κO′-bridging mode (see the CSD).
(The [Li(bipy)]+ cation in (II) is nearly flat with the highest deviations from the plane being 0.102 (2) Å for N2, 0.115 (2) Å for C31 and 0.133 (2) Å for C34. To be more precise, the coordinated bipy ligand is slightly twisted about the C29—C30 bond; the dihedral angle between two planes formed by the N1/C25–C29 and N2/C30–C34 atoms is 8.41 (12)°. Selected bond distances are given in Table 3. The P—OAr bond distances are longer by 0.13–0.14 Å than the other two P—O distances. The P and Li atoms adopt distorted tetrahedral environments with the bond angles ranging from 77.49 (14)° for N1—Li1—N2 to 120.5 (2)° for O1—Li1—O2i and from 98.16 (8)° for O3—P1—O4 to 120.32 (9)° for O1—P1—O2. The smallest O—P—O angle corresponds to the OAr—P—OAr angle between the two bulky aryl ligands. These observations for the P—O distances and O—P—O bond angles are also seen for the closely related salt (I) (Minyaev et al., 2015), for rare-earth complexes bearing the same phosphate ligand (Minyaev et al., 2017, 2018a,b,c) and for bis(2,6-diisopropylphenyl)phosphoric acid (with the exception of the P—OH bond-distance value; Gupta et al., 2018). An explanation for this has been given earlier (Minyaev et al., 2017).
3. Supramolecular features
The extended structure of (II), for which packing plots are shown in Figs. S3–S5 of the supporting information, features weak C—H⋯O and C—H⋯π interactions (Table 4). Any aromatic π–π stacking must be extremely weak, as the shortest centroid–centroid separation of aromatic rings is 4.1743 (13) Å.
|
4. Synthesis and crystallization
4.1. General remarks
All synthetic manipulations were performed under a purified argon atmosphere, using Schlenk glassware, dry box techniques and absolute solvents. Hexane was distilled from Na/K alloy, toluene was distilled from sodium/benzophenone ketyl, 2,2′-bipyridine was recrystallized from absolute toluene prior to use. The salt [(2,6-iPr2C6H3O)2PO2Li(MeOH)3](MeOH) was synthesized according to the literature procedure (Minyaev et al., 2015). (3S,6S)-3,6-Dimethyl-1,4-dioxane-2,5-dione (L-lactide, Sigma–Aldrich, 99%) was purified by double under dynamic vacuum. ∊-Caprolactone (∊-CL) was distilled from CaH2 under vacuum. CDCl3 (Cambridge Isotope Laboratories, Inc., D 99.8%) was used as purchased for registering the NMR spectra of polymer samples, and was distilled from CaH2 under argon prior to recording the NMR spectra of (II). The 1H NMR spectra of polymers were recorded on a Bruker AVANCE 400 spectrometer at 297K, the 1H and 31P{1H} NMR spectra of (II) were registered on a Bruker AV-600 instrument; chemical shifts are reported in ppm relative to the solvent residual peak. (SEC) analysis of polymer samples was performed at 323 K using an Agilent PL-GPC 220 gel permeation equipped with a PLgel column, with DMF as eluents (1 ml min−1) and poly(ethylene oxide) standards.
4.2. Synthesis and crystallization of (II)
A solution of 2,2′-bipyridine (187 mg, 1.2 mmol) in toluene (5 ml) was added dropwise to a stirred solution of (2,6-iPr2C 6H3O)2PO2Li(MeOH)4 (553 mg, 1 mmol) in toluene (20 ml). During the addition of bipyridine, the reaction mixture became opaque as a result of the precipitation of microcrystalline {Li2(bipy)2[(2,6-iPr2C6H3O)2PO2]2}(C7H8)2. After the addition was complete, the mixture was stirred for 1 h, and allowed to settle. The resulting solution was decanted. The white crystalline solid was washed with hexane (2 × 3 ml) and dried under dynamic vacuum. The yield was 84% (565 mg, 0.42 mmol) of white solid. 1H NMR (600 MHz, CDCl3): δ = 0.95 [48H, d, 3JHH =6.84Hz, –CH(CH3)2], 2.37 (6H, s, C6H5—CH3), 3.59 [8H, septet, --CH(CH3)2], 6.93–6.97 (12H, m, OiPr2C6H3), 7.17 (2H, t, Hpara in C6H5—CH3), 7.19 (4H, d, Hortho in C6H5—CH3), 7.20 (4H, dd, 3JHH = 5.25Hz and 7.27Hz, H5-bipy), 7.26 (4H, t, Hmeta in C6H5—CH3), 7.77 (4H, t, H4-bipy), 8.09 (4H, d, 3JHH = 8.00Hz, H3-bipy), 8.34 (4H, d, 3JHH = 3.76Hz, H6-bipy). 31P{1H} NMR (242.9 MHz, CDCl3): δ = 10.82. According to 1H NMR data, prolonged vacuum drying of (II) may lead to a nearly complete loss of the non-coordinating toluene molecules.
Colourless prisms of (II) were formed upon recrystallization of the obtained microcrystalline solid from a warm (∼333 K) nearly
in toluene by slow cooling to ∼268 K.4.3. Polymerization procedures
Method 1. In a dry box, complex (I) (0.1 mmol, 55 mg) or complex (II) (0.05 mmol, 67 mg), a monomer (2.5 mmol, 285 mg for ∊-CL or 360 mg for LLA), and toluene (0.15 ml) or a solution of PhCH2OH (11 or 22 mg) in toluene (0.15 ml) were placed at room temperature (∼298 K) in a vial, which was then sealed and taken out of the box. The mixture was stirred for 3 h at 373 K. After that, a sample of the mixture was taken to register a 1H NMR spectrum to determine the monomer conversion. The remaining mixture was quenched with methanol (tenfold volume) containing 5 equiv. of acetic acid (with respect to Li phosphate), washed with methanol, dried under vacuum, taken for SEC and 1H NMR studies.
Method 2 was performed as Method 1 with the following exceptions: (1) toluene was not added, (2) the mixture was stirred for 1 h at 453 K.
The monomer conversion was determined by 1H NMR (in CDCl3) of reaction mixtures, basing on integration of the following resonance signals: CH2OC=O at 4.22 ppm for ∊-CL and at 4.05 ppm for PCL, CH(CH3)OC=O at 5.04 ppm for LLA and at 5.15 ppm for PLLA. The end-group analysis was based on the following resonance signals of terminal-groups: 3.67 ppm for CH3—O—CO–, 5.11 ppm for Ph—CH2—O—CO–, 3.63 ppm for –CH2–CH2—OH in PCL and 4.37 ppm for –CO—CHCH3—OH in PLLA.
5. Refinement
Crystal data, data collection and structure . The positions of hydrogen atoms (with the exception of the disordered fragment) were found from a difference-Fourier map but positioned geometrically (C—H distance = 0.95 Å for aromatic, 0.98 Å for methyl and 1.00 Å for methine H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups. Reflection 10 was affected by the beam stop and was therefore omitted from the refinement.
details are summarized in Table 5
|
One isopropyl group is disordered over two orientations (atoms C23A, C24A and C23B, C24B) with a corresponding disorder ratio of 0.621 (4):0.379 (4). Similarity displacement ellipsoid constraints were applied for these atoms. The C—C bond distances in the disordered isopropyl fragment were restrained to be equal within 0.002 Å.
Supporting information
CCDC reference: 1915965
https://doi.org/10.1107/S2056989019006960/hb7820sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006960/hb7820Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019006960/hb7820Isup3.cdx
supporting information. DOI: https://doi.org/10.1107/S2056989019006960/hb7820sup4.doc
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015a); molecular graphics: SHELXTL (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b) and publCIF (Westrip, 2010).[Li2(C24H34O4P)2(C10H8N2)2]·2C7H8 | F(000) = 1440 |
Mr = 1345.47 | Dx = 1.211 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.2151 (9) Å | Cell parameters from 1860 reflections |
b = 12.9374 (9) Å | θ = 2.2–22.3° |
c = 19.5918 (13) Å | µ = 0.12 mm−1 |
β = 106.935 (2)° | T = 120 K |
V = 3689.3 (4) Å3 | Prism, colourless |
Z = 2 | 0.32 × 0.28 × 0.19 mm |
Bruker APEXII CCD diffractometer | 11176 independent reflections |
Radiation source: fine-focus sealed tube | 6434 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ω scans | θmax = 30.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −21→19 |
Tmin = 0.953, Tmax = 0.990 | k = −10→18 |
24668 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0601P)2] where P = (Fo2 + 2Fc2)/3 |
11176 reflections | (Δ/σ)max = 0.001 |
455 parameters | Δρmax = 0.73 e Å−3 |
4 restraints | Δρmin = −0.73 e Å−3 |
Experimental. moisture sensitive |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.55033 (3) | 0.44259 (4) | 0.90237 (3) | 0.01448 (12) | |
Li1 | 0.3838 (2) | 0.5809 (3) | 0.9278 (2) | 0.0213 (8) | |
O1 | 0.47626 (9) | 0.51925 (12) | 0.89620 (8) | 0.0205 (3) | |
O2 | 0.59889 (9) | 0.39677 (12) | 0.97272 (7) | 0.0194 (3) | |
O3 | 0.50419 (9) | 0.35531 (11) | 0.84357 (7) | 0.0151 (3) | |
O4 | 0.62494 (9) | 0.48621 (11) | 0.86559 (7) | 0.0153 (3) | |
C1 | 0.55407 (13) | 0.27551 (16) | 0.82381 (11) | 0.0152 (4) | |
C2 | 0.58278 (13) | 0.28822 (17) | 0.76235 (11) | 0.0164 (4) | |
C3 | 0.63163 (14) | 0.20661 (18) | 0.74391 (12) | 0.0208 (5) | |
H3 | 0.653041 | 0.213333 | 0.703161 | 0.025* | |
C4 | 0.64958 (15) | 0.11659 (19) | 0.78325 (12) | 0.0236 (5) | |
H4 | 0.684560 | 0.063138 | 0.770430 | 0.028* | |
C5 | 0.61646 (15) | 0.10444 (18) | 0.84148 (12) | 0.0228 (5) | |
H5 | 0.627340 | 0.041411 | 0.867470 | 0.027* | |
C6 | 0.56727 (14) | 0.18322 (17) | 0.86273 (11) | 0.0177 (4) | |
C7 | 0.55802 (14) | 0.38231 (18) | 0.71434 (11) | 0.0191 (5) | |
H7 | 0.521466 | 0.430478 | 0.735337 | 0.023* | |
C8 | 0.49753 (15) | 0.34927 (18) | 0.63976 (11) | 0.0224 (5) | |
H8A | 0.441843 | 0.315344 | 0.644160 | 0.034* | |
H8B | 0.531840 | 0.301087 | 0.618549 | 0.034* | |
H8C | 0.480482 | 0.410406 | 0.609224 | 0.034* | |
C9 | 0.64346 (15) | 0.43998 (19) | 0.70861 (12) | 0.0245 (5) | |
H9A | 0.680625 | 0.461248 | 0.756296 | 0.037* | |
H9B | 0.624670 | 0.501254 | 0.678475 | 0.037* | |
H9C | 0.679786 | 0.394355 | 0.687399 | 0.037* | |
C10 | 0.52375 (15) | 0.16555 (18) | 0.92242 (12) | 0.0227 (5) | |
H10 | 0.507992 | 0.234472 | 0.938782 | 0.027* | |
C11 | 0.43471 (17) | 0.1045 (2) | 0.89337 (14) | 0.0424 (7) | |
H11A | 0.392397 | 0.143469 | 0.854634 | 0.064* | |
H11B | 0.406301 | 0.093086 | 0.931661 | 0.064* | |
H11C | 0.448332 | 0.037645 | 0.875163 | 0.064* | |
C12 | 0.58768 (17) | 0.1106 (2) | 0.98601 (12) | 0.0346 (6) | |
H12A | 0.644544 | 0.150448 | 1.003758 | 0.052* | |
H12B | 0.602071 | 0.041610 | 0.971541 | 0.052* | |
H12C | 0.557751 | 0.104102 | 1.023847 | 0.052* | |
C13 | 0.71014 (13) | 0.53203 (17) | 0.89999 (11) | 0.0162 (4) | |
C14 | 0.78864 (13) | 0.46933 (18) | 0.91914 (11) | 0.0184 (4) | |
C15 | 0.87306 (14) | 0.51964 (19) | 0.94558 (12) | 0.0228 (5) | |
H15 | 0.927832 | 0.479722 | 0.958659 | 0.027* | |
C16 | 0.87908 (15) | 0.62598 (19) | 0.95322 (12) | 0.0244 (5) | |
H16 | 0.937313 | 0.658343 | 0.971142 | 0.029* | |
C17 | 0.79982 (14) | 0.68476 (18) | 0.93462 (11) | 0.0221 (5) | |
H17 | 0.804246 | 0.757661 | 0.940415 | 0.027* | |
C18 | 0.71337 (14) | 0.63940 (17) | 0.90749 (11) | 0.0173 (4) | |
C19 | 0.78642 (14) | 0.35270 (18) | 0.91193 (12) | 0.0209 (5) | |
H19 | 0.721679 | 0.332070 | 0.886973 | 0.025* | |
C20 | 0.84666 (16) | 0.3149 (2) | 0.86683 (13) | 0.0292 (6) | |
H20A | 0.827961 | 0.349214 | 0.820239 | 0.044* | |
H20B | 0.839597 | 0.239936 | 0.860157 | 0.044* | |
H20C | 0.911081 | 0.331194 | 0.891170 | 0.044* | |
C21 | 0.81396 (16) | 0.3008 (2) | 0.98530 (13) | 0.0282 (5) | |
H21A | 0.770589 | 0.320787 | 1.011415 | 0.042* | |
H21B | 0.876017 | 0.322934 | 1.012125 | 0.042* | |
H21C | 0.812898 | 0.225598 | 0.979355 | 0.042* | |
C22 | 0.62759 (15) | 0.70588 (18) | 0.88586 (11) | 0.0223 (5) | |
H22B | 0.575884 | 0.662177 | 0.864565 | 0.027* | 0.621 (4) |
H22A | 0.576724 | 0.666758 | 0.891825 | 0.027* | 0.379 (4) |
C23A | 0.6322 (3) | 0.7908 (4) | 0.8323 (3) | 0.0502 (8) | 0.621 (4) |
H23A | 0.680451 | 0.840435 | 0.855262 | 0.075* | 0.621 (4) |
H23B | 0.572964 | 0.826494 | 0.816431 | 0.075* | 0.621 (4) |
H23C | 0.646298 | 0.759649 | 0.791122 | 0.075* | 0.621 (4) |
C24A | 0.6142 (3) | 0.7537 (4) | 0.9543 (2) | 0.0502 (8) | 0.621 (4) |
H24A | 0.598060 | 0.699241 | 0.983290 | 0.075* | 0.621 (4) |
H24B | 0.564707 | 0.805030 | 0.941420 | 0.075* | 0.621 (4) |
H24C | 0.671314 | 0.787308 | 0.981735 | 0.075* | 0.621 (4) |
C23B | 0.6103 (5) | 0.7301 (8) | 0.8058 (2) | 0.0502 (8) | 0.379 (4) |
H23D | 0.597206 | 0.665816 | 0.778271 | 0.075* | 0.379 (4) |
H23E | 0.665026 | 0.762883 | 0.798606 | 0.075* | 0.379 (4) |
H23F | 0.557789 | 0.777087 | 0.789744 | 0.075* | 0.379 (4) |
C24B | 0.6330 (5) | 0.8089 (5) | 0.9258 (5) | 0.0502 (8) | 0.379 (4) |
H24D | 0.653973 | 0.796311 | 0.977356 | 0.075* | 0.379 (4) |
H24E | 0.572053 | 0.841151 | 0.913091 | 0.075* | 0.379 (4) |
H24F | 0.676336 | 0.855109 | 0.912496 | 0.075* | 0.379 (4) |
N1 | 0.31930 (12) | 0.70375 (15) | 0.85729 (9) | 0.0211 (4) | |
N2 | 0.24866 (12) | 0.52388 (15) | 0.88267 (10) | 0.0219 (4) | |
C25 | 0.35823 (15) | 0.7887 (2) | 0.83969 (12) | 0.0256 (5) | |
H25 | 0.421899 | 0.799352 | 0.862153 | 0.031* | |
C26 | 0.31201 (17) | 0.8618 (2) | 0.79114 (13) | 0.0289 (6) | |
H26 | 0.343001 | 0.921075 | 0.781101 | 0.035* | |
C27 | 0.21972 (16) | 0.84689 (19) | 0.75752 (12) | 0.0265 (5) | |
H27 | 0.185535 | 0.895560 | 0.723836 | 0.032* | |
C28 | 0.17841 (15) | 0.75913 (18) | 0.77422 (12) | 0.0224 (5) | |
H28 | 0.114974 | 0.746887 | 0.751798 | 0.027* | |
C29 | 0.22933 (14) | 0.68876 (17) | 0.82367 (11) | 0.0176 (4) | |
C30 | 0.18882 (14) | 0.59147 (18) | 0.84163 (11) | 0.0185 (4) | |
C31 | 0.09483 (15) | 0.57103 (19) | 0.81733 (12) | 0.0244 (5) | |
H31 | 0.053842 | 0.619906 | 0.788514 | 0.029* | |
C32 | 0.06218 (17) | 0.4787 (2) | 0.83577 (13) | 0.0306 (6) | |
H32 | −0.001704 | 0.463751 | 0.820308 | 0.037* | |
C33 | 0.12327 (18) | 0.4085 (2) | 0.87683 (13) | 0.0321 (6) | |
H33 | 0.102711 | 0.343797 | 0.889342 | 0.039* | |
C34 | 0.21567 (17) | 0.4349 (2) | 0.89937 (12) | 0.0281 (5) | |
H34 | 0.257714 | 0.387029 | 0.928266 | 0.034* | |
C35 | 0.3720 (2) | 0.5927 (2) | 0.63362 (14) | 0.0377 (7) | |
C36 | 0.30727 (17) | 0.5334 (2) | 0.58269 (15) | 0.0360 (6) | |
H36 | 0.255945 | 0.504449 | 0.594142 | 0.043* | |
C37 | 0.31846 (17) | 0.5173 (2) | 0.51625 (14) | 0.0326 (6) | |
H37 | 0.274745 | 0.477307 | 0.481915 | 0.039* | |
C38 | 0.39274 (17) | 0.5591 (2) | 0.49934 (14) | 0.0341 (6) | |
H38 | 0.399718 | 0.547967 | 0.453268 | 0.041* | |
C39 | 0.45656 (18) | 0.6164 (2) | 0.54835 (15) | 0.0366 (6) | |
H39 | 0.508186 | 0.644195 | 0.536704 | 0.044* | |
C40 | 0.44553 (18) | 0.6334 (2) | 0.61384 (15) | 0.0361 (6) | |
H40 | 0.489572 | 0.674366 | 0.647204 | 0.043* | |
C41 | 0.3599 (2) | 0.6122 (3) | 0.70541 (17) | 0.0556 (9) | |
H41A | 0.360353 | 0.686795 | 0.714079 | 0.083* | |
H41B | 0.410290 | 0.579522 | 0.742045 | 0.083* | |
H41C | 0.301230 | 0.582977 | 0.707261 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0136 (2) | 0.0155 (3) | 0.0140 (3) | −0.0004 (2) | 0.0035 (2) | −0.0007 (2) |
Li1 | 0.0173 (17) | 0.028 (2) | 0.020 (2) | 0.0027 (16) | 0.0067 (15) | −0.0010 (16) |
O1 | 0.0170 (7) | 0.0212 (8) | 0.0247 (9) | 0.0034 (6) | 0.0081 (6) | −0.0004 (7) |
O2 | 0.0193 (7) | 0.0245 (9) | 0.0129 (7) | −0.0005 (6) | 0.0020 (6) | 0.0018 (6) |
O3 | 0.0130 (7) | 0.0152 (8) | 0.0156 (7) | −0.0001 (6) | 0.0020 (6) | −0.0017 (6) |
O4 | 0.0123 (7) | 0.0170 (8) | 0.0154 (7) | −0.0029 (6) | 0.0025 (6) | −0.0004 (6) |
C1 | 0.0111 (9) | 0.0150 (10) | 0.0181 (11) | −0.0008 (8) | 0.0018 (8) | −0.0030 (8) |
C2 | 0.0141 (9) | 0.0174 (11) | 0.0160 (10) | −0.0028 (8) | 0.0019 (8) | −0.0020 (8) |
C3 | 0.0184 (10) | 0.0250 (12) | 0.0188 (11) | 0.0013 (9) | 0.0050 (9) | −0.0010 (9) |
C4 | 0.0206 (11) | 0.0227 (13) | 0.0259 (12) | 0.0043 (9) | 0.0043 (9) | −0.0040 (10) |
C5 | 0.0245 (11) | 0.0157 (11) | 0.0239 (12) | 0.0008 (9) | 0.0003 (9) | 0.0022 (9) |
C6 | 0.0170 (10) | 0.0183 (11) | 0.0151 (10) | −0.0030 (8) | 0.0005 (8) | 0.0012 (8) |
C7 | 0.0190 (10) | 0.0215 (12) | 0.0166 (11) | 0.0001 (9) | 0.0050 (9) | 0.0013 (9) |
C8 | 0.0241 (11) | 0.0240 (13) | 0.0189 (11) | 0.0006 (10) | 0.0057 (9) | 0.0033 (9) |
C9 | 0.0265 (11) | 0.0269 (13) | 0.0207 (12) | −0.0052 (10) | 0.0078 (9) | 0.0024 (10) |
C10 | 0.0294 (12) | 0.0171 (11) | 0.0230 (12) | −0.0031 (10) | 0.0099 (10) | 0.0040 (9) |
C11 | 0.0343 (14) | 0.061 (2) | 0.0309 (15) | −0.0164 (14) | 0.0086 (12) | 0.0118 (14) |
C12 | 0.0383 (14) | 0.0443 (17) | 0.0191 (13) | −0.0018 (13) | 0.0052 (11) | 0.0041 (11) |
C13 | 0.0145 (10) | 0.0200 (11) | 0.0140 (10) | −0.0045 (8) | 0.0041 (8) | −0.0017 (8) |
C14 | 0.0158 (10) | 0.0218 (12) | 0.0171 (11) | 0.0000 (9) | 0.0039 (8) | 0.0009 (9) |
C15 | 0.0144 (10) | 0.0269 (13) | 0.0240 (12) | −0.0001 (9) | 0.0009 (9) | −0.0013 (10) |
C16 | 0.0178 (10) | 0.0291 (14) | 0.0243 (12) | −0.0088 (10) | 0.0028 (9) | −0.0014 (10) |
C17 | 0.0251 (11) | 0.0189 (12) | 0.0210 (12) | −0.0058 (9) | 0.0047 (9) | −0.0008 (9) |
C18 | 0.0175 (10) | 0.0173 (11) | 0.0172 (11) | −0.0011 (8) | 0.0053 (8) | −0.0007 (8) |
C19 | 0.0143 (10) | 0.0206 (12) | 0.0251 (12) | 0.0007 (9) | 0.0013 (9) | −0.0040 (9) |
C20 | 0.0269 (12) | 0.0307 (14) | 0.0295 (14) | 0.0029 (11) | 0.0075 (10) | −0.0070 (11) |
C21 | 0.0286 (12) | 0.0240 (13) | 0.0302 (14) | 0.0026 (10) | 0.0059 (10) | 0.0032 (10) |
C22 | 0.0193 (11) | 0.0180 (12) | 0.0275 (13) | −0.0004 (9) | 0.0035 (9) | 0.0003 (9) |
C23A | 0.0322 (15) | 0.048 (2) | 0.066 (2) | 0.0117 (15) | 0.0076 (14) | 0.0011 (16) |
C24A | 0.0322 (15) | 0.048 (2) | 0.066 (2) | 0.0117 (15) | 0.0076 (14) | 0.0011 (16) |
C23B | 0.0322 (15) | 0.048 (2) | 0.066 (2) | 0.0117 (15) | 0.0076 (14) | 0.0011 (16) |
C24B | 0.0322 (15) | 0.048 (2) | 0.066 (2) | 0.0117 (15) | 0.0076 (14) | 0.0011 (16) |
N1 | 0.0174 (9) | 0.0262 (11) | 0.0183 (10) | −0.0017 (8) | 0.0029 (7) | −0.0031 (8) |
N2 | 0.0252 (10) | 0.0229 (10) | 0.0172 (10) | 0.0027 (8) | 0.0056 (8) | −0.0003 (8) |
C25 | 0.0199 (11) | 0.0327 (14) | 0.0229 (12) | −0.0091 (10) | 0.0041 (9) | −0.0054 (10) |
C26 | 0.0353 (13) | 0.0264 (14) | 0.0259 (13) | −0.0088 (11) | 0.0102 (11) | −0.0004 (10) |
C27 | 0.0319 (13) | 0.0229 (13) | 0.0234 (12) | 0.0012 (10) | 0.0060 (10) | 0.0020 (10) |
C28 | 0.0197 (11) | 0.0244 (13) | 0.0218 (12) | 0.0017 (9) | 0.0039 (9) | −0.0001 (9) |
C29 | 0.0161 (10) | 0.0207 (11) | 0.0160 (10) | 0.0009 (9) | 0.0047 (8) | −0.0018 (8) |
C30 | 0.0192 (10) | 0.0216 (12) | 0.0138 (10) | 0.0015 (9) | 0.0033 (8) | −0.0026 (8) |
C31 | 0.0203 (11) | 0.0272 (13) | 0.0241 (12) | −0.0005 (10) | 0.0038 (9) | −0.0001 (10) |
C32 | 0.0254 (12) | 0.0349 (15) | 0.0310 (14) | −0.0101 (11) | 0.0074 (10) | −0.0024 (11) |
C33 | 0.0429 (15) | 0.0262 (14) | 0.0283 (14) | −0.0120 (12) | 0.0118 (12) | −0.0003 (11) |
C34 | 0.0384 (14) | 0.0222 (13) | 0.0227 (12) | 0.0009 (11) | 0.0073 (10) | 0.0046 (10) |
C35 | 0.0534 (17) | 0.0288 (15) | 0.0322 (15) | 0.0207 (13) | 0.0146 (13) | 0.0017 (12) |
C36 | 0.0292 (13) | 0.0405 (17) | 0.0412 (16) | 0.0106 (12) | 0.0146 (12) | 0.0075 (13) |
C37 | 0.0274 (13) | 0.0322 (15) | 0.0331 (15) | 0.0061 (11) | 0.0009 (11) | 0.0022 (12) |
C38 | 0.0342 (14) | 0.0330 (15) | 0.0340 (15) | 0.0113 (12) | 0.0082 (11) | 0.0113 (12) |
C39 | 0.0356 (14) | 0.0263 (15) | 0.0473 (18) | 0.0072 (12) | 0.0111 (13) | 0.0100 (12) |
C40 | 0.0352 (14) | 0.0201 (13) | 0.0485 (18) | 0.0050 (11) | 0.0048 (13) | 0.0028 (12) |
C41 | 0.078 (2) | 0.049 (2) | 0.049 (2) | 0.0113 (18) | 0.0318 (18) | −0.0008 (16) |
Li1—O1 | 1.873 (4) | C21—H21B | 0.9800 |
Li1—O2i | 1.911 (4) | C21—H21C | 0.9800 |
Li1—N1 | 2.147 (4) | C22—C23A | 1.534 (3) |
Li1—N2 | 2.119 (4) | C22—C24B | 1.536 (4) |
P1—O1 | 1.4795 (15) | C22—C24A | 1.544 (3) |
P1—O2 | 1.4846 (15) | C22—C23B | 1.545 (4) |
P1—O3 | 1.6198 (15) | C22—H22B | 0.9599 |
P1—O4 | 1.6132 (14) | C22—H22A | 0.9600 |
O3—C1 | 1.401 (2) | C23A—H23A | 0.9800 |
O4—C13 | 1.406 (2) | C23A—H23B | 0.9800 |
C1—C6 | 1.399 (3) | C23A—H23C | 0.9800 |
C1—C2 | 1.405 (3) | C24A—H24A | 0.9800 |
C2—C3 | 1.398 (3) | C24A—H24B | 0.9800 |
C2—C7 | 1.517 (3) | C24A—H24C | 0.9800 |
C3—C4 | 1.379 (3) | C23B—H23D | 0.9800 |
C3—H3 | 0.9500 | C23B—H23E | 0.9800 |
C4—C5 | 1.384 (3) | C23B—H23F | 0.9800 |
C4—H4 | 0.9500 | C24B—H24D | 0.9800 |
C5—C6 | 1.398 (3) | C24B—H24E | 0.9800 |
C5—H5 | 0.9500 | C24B—H24F | 0.9800 |
C6—C10 | 1.520 (3) | N1—C25 | 1.341 (3) |
C7—C9 | 1.531 (3) | N1—C29 | 1.349 (3) |
C7—C8 | 1.543 (3) | N2—C34 | 1.334 (3) |
C7—H7 | 1.0000 | N2—C30 | 1.347 (3) |
C8—H8A | 0.9800 | C25—C26 | 1.380 (3) |
C8—H8B | 0.9800 | C25—H25 | 0.9500 |
C8—H8C | 0.9800 | C26—C27 | 1.380 (3) |
C9—H9A | 0.9800 | C26—H26 | 0.9500 |
C9—H9B | 0.9800 | C27—C28 | 1.383 (3) |
C9—H9C | 0.9800 | C27—H27 | 0.9500 |
C10—C12 | 1.516 (3) | C28—C29 | 1.389 (3) |
C10—C11 | 1.528 (3) | C28—H28 | 0.9500 |
C10—H10 | 1.0000 | C29—C30 | 1.488 (3) |
C11—H11A | 0.9800 | C30—C31 | 1.395 (3) |
C11—H11B | 0.9800 | C31—C32 | 1.382 (3) |
C11—H11C | 0.9800 | C31—H31 | 0.9500 |
C12—H12A | 0.9800 | C32—C33 | 1.379 (4) |
C12—H12B | 0.9800 | C32—H32 | 0.9500 |
C12—H12C | 0.9800 | C33—C34 | 1.388 (3) |
C13—C18 | 1.396 (3) | C33—H33 | 0.9500 |
C13—C14 | 1.402 (3) | C34—H34 | 0.9500 |
C14—C15 | 1.398 (3) | C35—C40 | 1.390 (4) |
C14—C19 | 1.515 (3) | C35—C36 | 1.408 (4) |
C15—C16 | 1.384 (3) | C35—C41 | 1.492 (4) |
C15—H15 | 0.9500 | C36—C37 | 1.377 (4) |
C16—C17 | 1.382 (3) | C36—H36 | 0.9500 |
C16—H16 | 0.9500 | C37—C38 | 1.377 (4) |
C17—C18 | 1.396 (3) | C37—H37 | 0.9500 |
C17—H17 | 0.9500 | C38—C39 | 1.368 (4) |
C18—C22 | 1.517 (3) | C38—H38 | 0.9500 |
C19—C20 | 1.527 (3) | C39—C40 | 1.359 (4) |
C19—C21 | 1.530 (3) | C39—H39 | 0.9500 |
C19—H19 | 1.0000 | C40—H40 | 0.9500 |
C20—H20A | 0.9800 | C41—H41A | 0.9800 |
C20—H20B | 0.9800 | C41—H41B | 0.9800 |
C20—H20C | 0.9800 | C41—H41C | 0.9800 |
C21—H21A | 0.9800 | ||
O1—P1—O2 | 120.32 (9) | C19—C21—H21B | 109.5 |
O1—P1—O4 | 110.33 (9) | H21A—C21—H21B | 109.5 |
O2—P1—O4 | 109.25 (8) | C19—C21—H21C | 109.5 |
O1—P1—O3 | 104.31 (8) | H21A—C21—H21C | 109.5 |
O2—P1—O3 | 112.17 (9) | H21B—C21—H21C | 109.5 |
O4—P1—O3 | 98.16 (8) | C18—C22—C23A | 112.9 (2) |
O1—Li1—O2i | 120.5 (2) | C18—C22—C24B | 115.8 (3) |
O1—Li1—N2 | 116.4 (2) | C18—C22—C24A | 107.8 (2) |
O2i—Li1—N2 | 107.90 (17) | C23A—C22—C24A | 110.5 (3) |
O1—Li1—N1 | 110.41 (18) | C18—C22—C23B | 106.1 (3) |
O2i—Li1—N1 | 116.5 (2) | C24B—C22—C23B | 108.0 (5) |
N2—Li1—N1 | 77.49 (14) | C18—C22—H22B | 108.5 |
P1—O1—Li1 | 152.40 (16) | C23A—C22—H22B | 108.7 |
P1—O2—Li1i | 140.35 (15) | C24A—C22—H22B | 108.3 |
C1—O3—P1 | 123.55 (12) | C18—C22—H22A | 109.0 |
C13—O4—P1 | 127.15 (12) | C24B—C22—H22A | 108.7 |
C6—C1—O3 | 118.77 (18) | C23B—C22—H22A | 109.0 |
C6—C1—C2 | 122.40 (19) | C22—C23A—H23A | 109.5 |
O3—C1—C2 | 118.64 (19) | C22—C23A—H23B | 109.5 |
C3—C2—C1 | 117.0 (2) | H23A—C23A—H23B | 109.5 |
C3—C2—C7 | 120.03 (19) | C22—C23A—H23C | 109.5 |
C1—C2—C7 | 122.83 (19) | H23A—C23A—H23C | 109.5 |
C4—C3—C2 | 121.8 (2) | H23B—C23A—H23C | 109.5 |
C4—C3—H3 | 119.1 | C22—C24A—H24A | 109.5 |
C2—C3—H3 | 119.1 | C22—C24A—H24B | 109.5 |
C3—C4—C5 | 119.8 (2) | H24A—C24A—H24B | 109.5 |
C3—C4—H4 | 120.1 | C22—C24A—H24C | 109.5 |
C5—C4—H4 | 120.1 | H24A—C24A—H24C | 109.5 |
C4—C5—C6 | 121.2 (2) | H24B—C24A—H24C | 109.5 |
C4—C5—H5 | 119.4 | C22—C23B—H23D | 109.5 |
C6—C5—H5 | 119.4 | C22—C23B—H23E | 109.5 |
C5—C6—C1 | 117.65 (19) | H23D—C23B—H23E | 109.5 |
C5—C6—C10 | 120.7 (2) | C22—C23B—H23F | 109.5 |
C1—C6—C10 | 121.48 (19) | H23D—C23B—H23F | 109.5 |
C2—C7—C9 | 111.94 (17) | H23E—C23B—H23F | 109.5 |
C2—C7—C8 | 109.67 (18) | C22—C24B—H24D | 109.5 |
C9—C7—C8 | 110.52 (17) | C22—C24B—H24E | 109.5 |
C2—C7—H7 | 108.2 | H24D—C24B—H24E | 109.5 |
C9—C7—H7 | 108.2 | C22—C24B—H24F | 109.5 |
C8—C7—H7 | 108.2 | H24D—C24B—H24F | 109.5 |
C7—C8—H8A | 109.5 | H24E—C24B—H24F | 109.5 |
C7—C8—H8B | 109.5 | C25—N1—C29 | 117.0 (2) |
H8A—C8—H8B | 109.5 | C25—N1—Li1 | 128.29 (18) |
C7—C8—H8C | 109.5 | C29—N1—Li1 | 114.59 (18) |
H8A—C8—H8C | 109.5 | C34—N2—C30 | 118.0 (2) |
H8B—C8—H8C | 109.5 | C34—N2—Li1 | 125.9 (2) |
C7—C9—H9A | 109.5 | C30—N2—Li1 | 115.35 (19) |
C7—C9—H9B | 109.5 | N1—C25—C26 | 124.4 (2) |
H9A—C9—H9B | 109.5 | N1—C25—H25 | 117.8 |
C7—C9—H9C | 109.5 | C26—C25—H25 | 117.8 |
H9A—C9—H9C | 109.5 | C25—C26—C27 | 118.5 (2) |
H9B—C9—H9C | 109.5 | C25—C26—H26 | 120.8 |
C12—C10—C6 | 112.57 (19) | C27—C26—H26 | 120.8 |
C12—C10—C11 | 110.5 (2) | C26—C27—C28 | 118.1 (2) |
C6—C10—C11 | 109.20 (19) | C26—C27—H27 | 120.9 |
C12—C10—H10 | 108.1 | C28—C27—H27 | 120.9 |
C6—C10—H10 | 108.1 | C27—C28—C29 | 120.2 (2) |
C11—C10—H10 | 108.1 | C27—C28—H28 | 119.9 |
C10—C11—H11A | 109.5 | C29—C28—H28 | 119.9 |
C10—C11—H11B | 109.5 | N1—C29—C28 | 121.8 (2) |
H11A—C11—H11B | 109.5 | N1—C29—C30 | 115.93 (19) |
C10—C11—H11C | 109.5 | C28—C29—C30 | 122.27 (19) |
H11A—C11—H11C | 109.5 | N2—C30—C31 | 121.9 (2) |
H11B—C11—H11C | 109.5 | N2—C30—C29 | 115.84 (18) |
C10—C12—H12A | 109.5 | C31—C30—C29 | 122.3 (2) |
C10—C12—H12B | 109.5 | C32—C31—C30 | 119.1 (2) |
H12A—C12—H12B | 109.5 | C32—C31—H31 | 120.5 |
C10—C12—H12C | 109.5 | C30—C31—H31 | 120.5 |
H12A—C12—H12C | 109.5 | C33—C32—C31 | 119.3 (2) |
H12B—C12—H12C | 109.5 | C33—C32—H32 | 120.3 |
C18—C13—C14 | 123.13 (19) | C31—C32—H32 | 120.3 |
C18—C13—O4 | 117.97 (18) | C32—C33—C34 | 118.1 (2) |
C14—C13—O4 | 118.63 (19) | C32—C33—H33 | 120.9 |
C15—C14—C13 | 116.7 (2) | C34—C33—H33 | 120.9 |
C15—C14—C19 | 119.44 (19) | N2—C34—C33 | 123.6 (2) |
C13—C14—C19 | 123.87 (18) | N2—C34—H34 | 118.2 |
C16—C15—C14 | 121.8 (2) | C33—C34—H34 | 118.2 |
C16—C15—H15 | 119.1 | C40—C35—C36 | 117.5 (2) |
C14—C15—H15 | 119.1 | C40—C35—C41 | 121.9 (3) |
C17—C16—C15 | 119.6 (2) | C36—C35—C41 | 120.5 (3) |
C17—C16—H16 | 120.2 | C37—C36—C35 | 119.9 (3) |
C15—C16—H16 | 120.2 | C37—C36—H36 | 120.0 |
C16—C17—C18 | 121.5 (2) | C35—C36—H36 | 120.0 |
C16—C17—H17 | 119.3 | C36—C37—C38 | 120.3 (3) |
C18—C17—H17 | 119.3 | C36—C37—H37 | 119.9 |
C13—C18—C17 | 117.3 (2) | C38—C37—H37 | 119.9 |
C13—C18—C22 | 122.26 (19) | C39—C38—C37 | 120.5 (3) |
C17—C18—C22 | 120.4 (2) | C39—C38—H38 | 119.7 |
C14—C19—C20 | 111.86 (19) | C37—C38—H38 | 119.7 |
C14—C19—C21 | 110.88 (18) | C40—C39—C38 | 119.5 (3) |
C20—C19—C21 | 110.90 (19) | C40—C39—H39 | 120.3 |
C14—C19—H19 | 107.7 | C38—C39—H39 | 120.3 |
C20—C19—H19 | 107.7 | C39—C40—C35 | 122.2 (3) |
C21—C19—H19 | 107.7 | C39—C40—H40 | 118.9 |
C19—C20—H20A | 109.5 | C35—C40—H40 | 118.9 |
C19—C20—H20B | 109.5 | C35—C41—H41A | 109.5 |
H20A—C20—H20B | 109.5 | C35—C41—H41B | 109.5 |
C19—C20—H20C | 109.5 | H41A—C41—H41B | 109.5 |
H20A—C20—H20C | 109.5 | C35—C41—H41C | 109.5 |
H20B—C20—H20C | 109.5 | H41A—C41—H41C | 109.5 |
C19—C21—H21A | 109.5 | H41B—C41—H41C | 109.5 |
O2—P1—O1—Li1 | −23.9 (4) | C14—C13—C18—C22 | 179.49 (19) |
O4—P1—O1—Li1 | −152.5 (3) | O4—C13—C18—C22 | 5.5 (3) |
O3—P1—O1—Li1 | 103.0 (3) | C16—C17—C18—C13 | 0.1 (3) |
O2i—Li1—O1—P1 | 39.6 (5) | C16—C17—C18—C22 | −178.57 (19) |
N2—Li1—O1—P1 | −94.1 (3) | C15—C14—C19—C20 | −55.2 (3) |
N1—Li1—O1—P1 | −179.9 (2) | C13—C14—C19—C20 | 124.0 (2) |
O1—P1—O2—Li1i | −15.3 (3) | C15—C14—C19—C21 | 69.1 (3) |
O4—P1—O2—Li1i | 113.7 (2) | C13—C14—C19—C21 | −111.6 (2) |
O3—P1—O2—Li1i | −138.5 (2) | C13—C18—C22—C23A | −124.4 (3) |
O1—P1—O3—C1 | 170.24 (15) | C17—C18—C22—C23A | 54.2 (4) |
O2—P1—O3—C1 | −57.97 (17) | C13—C18—C22—C24B | 153.2 (5) |
O4—P1—O3—C1 | 56.74 (16) | C17—C18—C22—C24B | −28.2 (5) |
O1—P1—O4—C13 | 99.30 (17) | C13—C18—C22—C24A | 113.3 (3) |
O2—P1—O4—C13 | −35.08 (19) | C17—C18—C22—C24A | −68.1 (3) |
O3—P1—O4—C13 | −152.07 (16) | C13—C18—C22—C23B | −87.0 (4) |
P1—O3—C1—C6 | 88.2 (2) | C17—C18—C22—C23B | 91.6 (4) |
P1—O3—C1—C2 | −96.6 (2) | C29—N1—C25—C26 | 1.5 (3) |
C6—C1—C2—C3 | −4.5 (3) | Li1—N1—C25—C26 | 176.9 (2) |
O3—C1—C2—C3 | −179.41 (17) | N1—C25—C26—C27 | −0.7 (4) |
C6—C1—C2—C7 | 171.78 (18) | C25—C26—C27—C28 | −0.1 (3) |
O3—C1—C2—C7 | −3.2 (3) | C26—C27—C28—C29 | 0.1 (3) |
C1—C2—C3—C4 | 1.2 (3) | C25—N1—C29—C28 | −1.5 (3) |
C7—C2—C3—C4 | −175.14 (19) | Li1—N1—C29—C28 | −177.53 (19) |
C2—C3—C4—C5 | 1.9 (3) | C25—N1—C29—C30 | 177.25 (19) |
C3—C4—C5—C6 | −2.0 (3) | Li1—N1—C29—C30 | 1.2 (3) |
C4—C5—C6—C1 | −1.1 (3) | C27—C28—C29—N1 | 0.7 (3) |
C4—C5—C6—C10 | 174.4 (2) | C27—C28—C29—C30 | −177.9 (2) |
O3—C1—C6—C5 | 179.35 (17) | C34—N2—C30—C31 | 0.6 (3) |
C2—C1—C6—C5 | 4.4 (3) | Li1—N2—C30—C31 | −170.00 (19) |
O3—C1—C6—C10 | 3.9 (3) | C34—N2—C30—C29 | −179.11 (19) |
C2—C1—C6—C10 | −171.00 (19) | Li1—N2—C30—C29 | 10.3 (3) |
C3—C2—C7—C9 | −63.0 (3) | N1—C29—C30—N2 | −7.6 (3) |
C1—C2—C7—C9 | 120.9 (2) | C28—C29—C30—N2 | 171.1 (2) |
C3—C2—C7—C8 | 60.0 (2) | N1—C29—C30—C31 | 172.6 (2) |
C1—C2—C7—C8 | −116.1 (2) | C28—C29—C30—C31 | −8.7 (3) |
C5—C6—C10—C12 | 44.7 (3) | N2—C30—C31—C32 | −0.1 (3) |
C1—C6—C10—C12 | −140.0 (2) | C29—C30—C31—C32 | 179.6 (2) |
C5—C6—C10—C11 | −78.4 (3) | C30—C31—C32—C33 | −0.9 (4) |
C1—C6—C10—C11 | 96.8 (3) | C31—C32—C33—C34 | 1.4 (4) |
P1—O4—C13—C18 | −92.1 (2) | C30—N2—C34—C33 | −0.1 (3) |
P1—O4—C13—C14 | 93.6 (2) | Li1—N2—C34—C33 | 169.4 (2) |
C18—C13—C14—C15 | −1.2 (3) | C32—C33—C34—N2 | −0.9 (4) |
O4—C13—C14—C15 | 172.78 (18) | C40—C35—C36—C37 | 0.2 (4) |
C18—C13—C14—C19 | 179.5 (2) | C41—C35—C36—C37 | 179.0 (3) |
O4—C13—C14—C19 | −6.5 (3) | C35—C36—C37—C38 | 0.0 (4) |
C13—C14—C15—C16 | 0.6 (3) | C36—C37—C38—C39 | 0.4 (4) |
C19—C14—C15—C16 | 180.0 (2) | C37—C38—C39—C40 | −1.0 (4) |
C14—C15—C16—C17 | 0.3 (3) | C38—C39—C40—C35 | 1.2 (4) |
C15—C16—C17—C18 | −0.6 (3) | C36—C35—C40—C39 | −0.8 (4) |
C14—C13—C18—C17 | 0.8 (3) | C41—C35—C40—C39 | −179.6 (3) |
O4—C13—C18—C17 | −173.17 (17) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Cg1 is the centroid of N1/C25–C29, Cg2 is the centroid of N2/C30–C34, Cg3 is the centroid of C1–C6 and Cg5 is the centroid of C35–C40. |
D—H···A | D—H | H···A | D···A | D—H···A |
C28—H28···O3ii | 0.95 | 2.60 | 3.295 (3) | 130 |
C8—H8C···Cg5 | 0.98 | 2.60 | 3.502 (3) | 152 |
C19—H19···Cg3 | 1.00 | 2.73 | 3.630 (2) | 150 |
C41—H41A···Cg1 | 0.98 | 2.83 | 3.450 (4) | 122 |
C26—H26···Cg2ii | 0.95 | 2.94 | 3.605 (3) | 128 |
C31—H31···Cg3ii | 0.95 | 2.69 | 3.591 (3) | 159 |
Symmetry code: (ii) −x+1/2, y+1/2, −z+3/2. |
Mn is the number average molar mass; Đ is the polydispersity index; Pn is the polymerization degree; Conv. is conversion of ε-CL into PCL and defined as [PCL]/([ε-CL]+[PCL]). Conditions: [ε-CL]/[complex]/[PhCH2OH] = 25:1 for (I) and 0.5 for (II): 0–2; toluene volume is 30%; T = 373 K, time = 3 h. |
Entry | Complex | Equiv. of PhCH2OH | Mn , ·103a | Ða | Pna | Conv.b (%) | Mn, ·103b | Pnb |
1 | (I) | 0 | 2.35 | 1.09 | 20 | 72 | 2.20 | 19 |
2 | (I) | 1 | 1.54 | 1.15 | 13 | 72 | 2.09 | 18 |
3 | (I) | 2 | 2.10 | 1.17 | 18 | 100 | 2.57 | 22 |
4 | (II) | 0 | – | – | – | 0 | – | – |
5 | (II) | 1 | 1.84 | 1.02 | 15 | 25 | 1.71 | 14 |
6 | (II) | 2 | 1.36 | 1.12 | 11 | 41 | 1.82 | 15 |
Notes: (a) found by size-exclusion chromatography (SEC) measurements; (b) determined by 1H NMR studies. Mn and Pn were calculated based on the end-group analysis. |
Conditions: [monomer]/[complex]/[PhCH2OH] = 25:1:2 for (I) and 25:0.5:2 for (II); no solvent; T = 453 K, time = 1 h. |
Entry | Complex | Monomer | Mn, ·103a | Ða | Pna | Conv.b (%) | Mn, ·103b | Pnb |
1 | (I) | ε-CL | 0.85 | 1.05 | 7 | 26 | 0.69 | 6 |
2 | (II) | ε-CL | 3.79 | 1.27 | 32 | 73 | 4.21 | 36 |
3 | (I) | LLA | 1.79 | 1.12 | 12 | 62 | 1.55 | 10 |
4 | (II) | LLA | 2.03 | 1.18 | 13 | 45 | 2.27 | 15 |
Notes: (a) found by SEC measurements; (b) determined by 1H NMR studies. |
Acknowledgements
Equipment from the collective exploitation center "New petrochemical processes, polymer composites and adhesives" of TIPS RAS was used.
Funding information
Funding for this research was provided by: the State Program of TIPS RAS.
References
Anwander, R. (2002). in Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH. Google Scholar
Atkinson, I. M. & Lindoy, L. F. (2000). Coord. Chem. Rev. 200–202, 207–215. CrossRef CAS Google Scholar
Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058–5063. Google Scholar
Bünzli, J.-C. G., Comby, S., Chauvin, A.-S. & Vandevyver, C. D. B. (2007). J. Rare Earths, 25, 257–274. Google Scholar
Bünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077. Web of Science PubMed Google Scholar
Deck, K. M., Tseng, T. A. & Burstyn, J. N. (2002). Inorg. Chem. 41, 669–677. CrossRef PubMed CAS Google Scholar
Dey, R., Bhattacharya, D., Karmakar, P. & Ghoshal, D. (2012). Polyhedron, 48, 157–166. CSD CrossRef CAS Google Scholar
Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154. Web of Science CrossRef CAS Google Scholar
Fry, F. H., Fischmann, A. J., Belousoff, M. J., Spiccia, L. & Brügger, J. (2005). Inorg. Chem. 44, 941–950. CrossRef PubMed CAS Google Scholar
Gerus, A. & Lis, T. (2013). Acta Cryst. E69, m464–m465. CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillou, O., Daiguebonne, C., Calvez, G. & Bernot, K. (2016). Acc. Chem. Res. 49, 844–856. Web of Science CrossRef CAS PubMed Google Scholar
Gupta, V., Santra, B., Mandal, D., Das, S., Narayanan, R. S., Kalita, P., Rao, D. K., Schulzke, C., Pati, S. K., Chandrasekhar, V. & Jana, A. (2018). Chem. Commun. 54, 11913–11916. CSD CrossRef CAS Google Scholar
Hegg, E. L. & Burstyn, J. N. (1998). Coord. Chem. Rev. 173, 133–165. Web of Science CrossRef CAS Google Scholar
Hegg, E. L., Mortimore, S. H., Cheung, C. L., Huyett, J. E., Powell, D. R. & Burstyn, J. N. (1999). Inorg. Chem. 38, 2961–2968. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hewitt, S. H. & Butler, S. J. (2018). Chem. Commun. 54, 6635–6647. Web of Science CrossRef CAS Google Scholar
Hrdina, R., Guénée, L., Moraleda, D. & Lacour, J. (2013). Organometallics, 32, 473–479. CSD CrossRef CAS Google Scholar
Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag. Google Scholar
Kövári, E. & Krämer, R. (1996). J. Am. Chem. Soc. 118, 12704–12709. Google Scholar
Lacasse, M.-C., Poulard, C. & Charette, A. B. (2005). J. Am. Chem. Soc. 127, 12440–12441. CSD CrossRef PubMed CAS Google Scholar
Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434. CrossRef PubMed CAS Web of Science Google Scholar
Liu, J., Zhang, C., Li, Z., Zhang, L., Xu, J., Wang, H., Xu, S., Guo, T., Yang, K. & Guo, K. (2019). Eur. Polym. J. 113, 197–207. CrossRef CAS Google Scholar
Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682. Web of Science CSD CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475–1487. Web of Science CSD CrossRef CAS Google Scholar
Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820–827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443–446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598. Web of Science CSD CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Nifant'ev, I. E. & Churakov, A. V. (2018d). Acta Cryst. E74, 543–547. CSD CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Nifant'ev, I. E., Churakov, A. V., Dmitrienko, A. O. & Lyssenko, K. A. (2018e). Acta Cryst. E74, 1433–1438. CSD CrossRef IUCr Journals Google Scholar
Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Komarov, P. D., Tavtorkin, A. N., Minyaev, M. E. & Ivchenko, P. V. (2018). Mendeleev Commun. 28, 412–414. CAS Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227. CAS Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230. Web of Science CAS PubMed Google Scholar
Reichenbach-Klinke, R. & König, B. (2002). J. Chem. Soc. Dalton Trans. pp. 121–130. Google Scholar
Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199–10213. CSD CrossRef CAS PubMed Google Scholar
Saito, T., Aizawa, Y., Tajima, K., Isono, T. & Satoh, T. (2015). Polym. Chem. 6, 4374–4384. CrossRef CAS Google Scholar
Sato, K., Ohnuki, T., Takahashi, H., Miyashita, Y., Nozaki, K. & Kanamori, K. (2012). Inorg. Chem. 51, 5026–5036. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Starynowicz, P. & Lis, T. (2014). Acta Cryst. B70, 723–731. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sy, M., Nonat, A., Hildebrandt, N. & Charbonnière, L. J. (2016). Chem. Commun. 52, 5080–5095. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, Y., Faber, A. J. & de Waal, H. (1995). J. Non-Cryst. Solids, 181, 283–290. CrossRef CAS Google Scholar
Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond 137 49–108. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.