research communications
E,4E)-1,5-bis(4-bromophenyl)penta-1,4-dien-3-one
and Hirshfeld surface analysis of a conformationally unsymmetrical bischalcone: (1aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, and bDepartment of Chemistry, College of Education for Women, University of Anbar, Iraq
*Correspondence e-mail: ibra@upm.edu.my
In the title bischalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromophenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromophenyl rings is 51.56 (2)°. In the crystal, molecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π interactions. The conformations of related bischalcones are surveyed and a Hirshfeld surface analysis is used to investigate and quantify the intermolecular contacts.
Keywords: crystal structure; bischalcone; pentadienone bridge; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 1914420
1. Chemical context
Dibenzalacetone, or bischalcone, [(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one] was first prepared by the base-catalyzed Aldol condensation of benzaldehyde and acetone (Conard & Morris, 1932): it results in a highly involving the α,β-unsaturated pentadienone (–C=C—(C=O)—C=C—) moiety. Bischalcones have a number of uses including anti-inflammatory (Mahapatra et al., 2017) and anti-oxidant (Pandey & Syed, 2009) agents. Different bischalcones consist of two benzene rings substituted with different types of functional groups (electron donor or acceptor) bonded to the ends of the central α,β-unsaturated ketone which provides good configuration for the transfer of intramolecular charge (Fun et al., 2011). In a continuation of our ongoing studies on the non-linear optical properties of various chalcone derivatives (Sim et al., 2017; Kwong et al., 2018), we report herein the synthesis, and Hirshfeld surface analysis of the title compound (I).
2. Structural commentary
The consists of a single molecule, consisting of two 4-bromophenyl rings connected by a penta-1,4-dien-3-one bridge (Fig. 1). The bond lengths and angles of the central chain are consistent with those in related structures (Butcher et al., 2007a; Ruanwas et al., 2011). The overall conformation of (I) can be described by the the torsion angles between the olefinic double bonds and 4-bromophenyl rings [τ1 (C1—C6—C7—C8); τ4 (C13—C12—C11—C10)] and the carbonyl double bond [τ2 (C7—C8—C9—O1); τ3 (C11—C10—C9—O1)] (Fig. 2). The 4-bromophenyl rings in (I) are close to coplanar with their attached olefinic double bonds [τ1 = −10.2 (4)°; τ4 = −6.2 (4)°] but the conformations of the olefinic double bonds are very different: one is in s-trans [τ2 = 160.7 (3)°] conformation and in s-cis [τ3 = −15.2 (4)°] conformation with the central C=O double bond. These torsions result in an overall twisted shape for (I) with the dihedral angle between the 4-bromophenyl ring being 51.56 (2)°.
of (I)3. Supramolecular features
No classical hydrogen bonding is possible in (I) and in the crystal, molecules are linked by C—H⋯π interactions (Table 1): the first of these results in a phenyl–phenyl T-shaped geometry via C1—H1A⋯Cg1i (Fig. 3a). The C14—H14A⋯Cg2ii (Fig. 3b) interactions lead to a zigzag chain along the c-axis direction.
4. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.40, last update February 2019; (Groom et al., 2016)) using (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one as the main skeleton revealed the presence of 27 structures containing a similar bischalcone moiety to the title compound but with different substituents on the terminal phenyl rings. The different substituents (R1 and R2) together with the torsion angles of the penta-4,4-dien-3-one connecting bridge are compiled in Table 2. For the conformationally symmetrical compounds (i.e. both C=C—C=O bonds are either s-cis or s-trans), the olefinic double bonds are close to coplanar with their attached phenyl rings as indicated by their τ1 and τ4 torsion angles, which fall in the range of 0.0–17.8°, except for the compounds AMEXUN and HUDLEY, which have somewhat larger τ1 and τ4 values of 22.5–27.4°. The olefinic double bonds for the symmetrical compounds are mostly in s-cis conformations with the carbonyl double bond (τ2/τ3 torsion angles of 0.1–21.9°). However, both the olefinic double bonds of compounds GOLGOD and GOLGOD02 are in s-trans conformations with the carbonyl double bond (τ2/τ3 = 152.2–153.4°). Furthermore, it may be noted that the symmetrical conformation at the penta-4,4-dien-3-one connection bridge is not affected by the different substituents at the R1 and R2 positions in EDUSEE, SAFZOO and XOHVUN. Most of the unsymmetrical compounds (one C=C—C=O bond s-cis and one s-trans) have τ1 and τ4 values of 0.5–17.2°, which indicates that the olefinic double bonds are close to coplanar to their attached phenyl ring. The outliers are MESXEQ and WIHBUL, which have τ1 and τ4 values of 18.2–51.8° and 21.4–51.8°, respectively. The torsion angles τ2 and τ3 for the unsymmetrical compounds, including (I), are in the ranges 160.2–178.7° and 0.5–23.7°, respectively, which indicate s-trans and s-cis conformations between the olefinic double bonds and the carbonyl double bond.
5. Hirshfeld surface analysis
The Hirshfeld surfaces mapped with normalized contact distance dnorm and the two-dimensional fingerprint plots for (I) were generated using CrystalExplorer17.5 (Turner et al., 2017). The darkest red spots on the Hirshfeld surface mapped with dnorm (Fig. 4a) correspond to the C14—H14A⋯Cg2ii interaction. Even through the C1—H1A⋯Cg1i interaction is not visible in the dnorm surface mapping, this interaction can be seen as a unique pattern of a red `circle' on the shape-index surface mapping (Fig. 4b). Besides the C—H⋯π interactions, the dnorm surface mapping indicated a short contact between atom O1 and C5 with a distance of 0.06 Å shorter than the sum of the van der Waals radii of O and C atoms (3.22 Å; Fig. 5a). Together with this short contact, another weak C7—H7A⋯O1 interaction was also revealed as light spots on the dnorm surface (Fig. 5b).
As illustrated in Fig. 6, the corresponding fingerprint plots for (I) are shown with characteristic pseudo-symmetric wings in the de and di diagonal axes. The H⋯C/C⋯H contacts are the most populated contacts and contribute 34.1% to the total intermolecular contacts, followed by H⋯H (22.1%), H⋯Br/Br⋯H (20.4%) and H⋯O/O⋯H (9.2%) contacts (Fig. 6). As the C—H⋯π bonds are the main interaction in the crystal, the most populated H⋯C/C⋯H contacts appear as two symmetrical narrow wings at diagonal axes de + di ≃ 2.7 Å (Fig. 6b). The H⋯H contacts appear in the central region of the fingerprint plots with de = di = 2.4 Å (Fig. 6c). With the presence of relatively larger bromine atoms in the structure, the H⋯Br/Br⋯H contacts appear as symmetrical broad wing at diagonal axes of de + di ≃ 3.0 Å (Fig. 6d). Two symmetric spikes in the fingerprint plots with a short spike at de + di ≃ 2.7 Å represent the H⋯O/O⋯H contacts (Fig. 6e), indicating the presence of the weak C7—H7A⋯O1 interaction. The percentage contributions for other contacts are less than 15% in the Hirshfeld surface mapping.
6. Synthesis and crystallization
A mixture of 4-bromobenzaldehyde (4.9 g, 12.5 mmol) and acetone (0.363 g, 6.25 mmol) dissolved in absolute ethanol (30 ml) was slowly added to an aqueous solution of potassium hydroxide (4.0 g in 20 ml water). The mixture was vigorously stirred at room temperature for two h and then 20 ml chilled water was added. The resulting yellow precipitate was recovered by vacuum filtration and washed with cold water (100 ml). The crude product was recrystallized from absolute ethanol solution as yellow blocks.
(1E,4E)-1,5-Bis(4-bromophenyl)penta-1,4-dien-3-one; pure yellow solid (4.6 g, 88.6%), m.p. 484 K; IR νmax 594, 687, 813, 979, 1066, 1181, 1320, 1398, 1480, 1581, 1643 cm−1, UV–Vis λmax. 227 and 317 nm, 1H NMR: δH (500MHz, CDCl3) 7.02 (2H, H-1), 7.45 (4H, H-2), 7.54 (4H, H-3), 7.67 (2H, H-4); 13C NMR: δC (125MHz, CDCl3) 124.62, 125.69, 129.25, 131.74, 133.29, 141.83, 188.22; HRMS (ES): MH+, found: 392 C17H12Br2O+ requires: 391.92.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1914420
https://doi.org/10.1107/S2056989019006480/hb7821sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006480/hb7821Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019006480/hb7821Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C17H12Br2O | F(000) = 768 |
Mr = 392.09 | Dx = 1.836 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 17.5920 (2) Å | Cell parameters from 11112 reflections |
b = 14.0777 (3) Å | θ = 4–76° |
c = 5.7956 (1) Å | µ = 7.17 mm−1 |
β = 98.742 (1)° | T = 100 K |
V = 1418.63 (4) Å3 | Block, yellow |
Z = 4 | 0.12 × 0.06 × 0.03 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 2372 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 67.1°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −21→18 |
Tmin = 0.64, Tmax = 0.79 | k = −16→16 |
17456 measured reflections | l = −6→6 |
2524 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0179P)2 + 1.9865P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.003 |
2524 reflections | Δρmax = 0.42 e Å−3 |
181 parameters | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.14690 (2) | 0.38377 (2) | −0.19437 (5) | 0.02381 (9) | |
Br2 | 1.00765 (2) | 0.35118 (2) | 0.21721 (5) | 0.02140 (9) | |
O1 | 0.58973 (11) | 0.35870 (14) | 0.9112 (3) | 0.0230 (4) | |
C1 | 0.33281 (15) | 0.33927 (19) | 0.3232 (4) | 0.0190 (5) | |
H1A | 0.341393 | 0.310601 | 0.469408 | 0.023* | |
C2 | 0.25910 (14) | 0.34239 (19) | 0.2021 (4) | 0.0193 (5) | |
H2A | 0.218193 | 0.316997 | 0.266165 | 0.023* | |
C3 | 0.24703 (14) | 0.38441 (19) | −0.0186 (4) | 0.0192 (5) | |
C4 | 0.30666 (15) | 0.42466 (18) | −0.1141 (4) | 0.0193 (5) | |
H4A | 0.297492 | 0.453469 | −0.260084 | 0.023* | |
C5 | 0.38031 (14) | 0.42161 (18) | 0.0103 (4) | 0.0187 (5) | |
H5A | 0.420665 | 0.448675 | −0.053317 | 0.022* | |
C6 | 0.39517 (14) | 0.37826 (18) | 0.2313 (4) | 0.0176 (5) | |
C7 | 0.47449 (15) | 0.37678 (18) | 0.3537 (4) | 0.0187 (5) | |
H7A | 0.512770 | 0.395031 | 0.268379 | 0.022* | |
C8 | 0.49705 (15) | 0.35175 (18) | 0.5758 (4) | 0.0188 (5) | |
H8A | 0.460021 | 0.328563 | 0.659851 | 0.023* | |
C9 | 0.57702 (15) | 0.35856 (18) | 0.6962 (4) | 0.0194 (5) | |
C10 | 0.64033 (14) | 0.36427 (18) | 0.5544 (4) | 0.0186 (5) | |
H10A | 0.630488 | 0.349029 | 0.396510 | 0.022* | |
C11 | 0.71104 (14) | 0.39078 (18) | 0.6484 (4) | 0.0169 (5) | |
H11A | 0.717134 | 0.413278 | 0.800928 | 0.020* | |
C12 | 0.78029 (14) | 0.38804 (18) | 0.5353 (4) | 0.0165 (5) | |
C13 | 0.77978 (14) | 0.34717 (18) | 0.3144 (4) | 0.0166 (5) | |
H13A | 0.733445 | 0.327076 | 0.229449 | 0.020* | |
C14 | 0.84699 (14) | 0.33627 (18) | 0.2209 (4) | 0.0174 (5) | |
H14A | 0.846014 | 0.308769 | 0.074547 | 0.021* | |
C15 | 0.91600 (14) | 0.36684 (18) | 0.3479 (4) | 0.0180 (5) | |
C16 | 0.91859 (14) | 0.40921 (18) | 0.5654 (4) | 0.0180 (5) | |
H16A | 0.964994 | 0.430278 | 0.647991 | 0.022* | |
C17 | 0.85050 (14) | 0.41952 (19) | 0.6572 (4) | 0.0171 (5) | |
H17A | 0.851669 | 0.447926 | 0.802583 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01735 (14) | 0.02515 (16) | 0.02724 (15) | 0.00374 (11) | −0.00210 (10) | 0.00155 (11) |
Br2 | 0.01568 (14) | 0.02560 (16) | 0.02334 (15) | −0.00101 (10) | 0.00433 (10) | −0.00280 (11) |
O1 | 0.0235 (9) | 0.0274 (11) | 0.0181 (9) | −0.0039 (8) | 0.0034 (7) | 0.0004 (7) |
C1 | 0.0212 (13) | 0.0189 (13) | 0.0173 (12) | 0.0008 (10) | 0.0041 (10) | −0.0004 (10) |
C2 | 0.0175 (12) | 0.0185 (13) | 0.0225 (13) | −0.0010 (10) | 0.0054 (10) | 0.0002 (10) |
C3 | 0.0182 (12) | 0.0179 (13) | 0.0209 (12) | 0.0038 (10) | 0.0009 (10) | −0.0009 (10) |
C4 | 0.0252 (13) | 0.0153 (13) | 0.0174 (12) | 0.0039 (11) | 0.0040 (10) | −0.0002 (10) |
C5 | 0.0203 (12) | 0.0163 (13) | 0.0208 (12) | −0.0001 (10) | 0.0074 (10) | −0.0009 (10) |
C6 | 0.0200 (13) | 0.0141 (12) | 0.0192 (12) | 0.0006 (10) | 0.0048 (10) | −0.0035 (10) |
C7 | 0.0183 (12) | 0.0165 (13) | 0.0225 (12) | −0.0013 (10) | 0.0067 (10) | −0.0013 (10) |
C8 | 0.0183 (12) | 0.0169 (13) | 0.0220 (13) | −0.0023 (10) | 0.0054 (10) | −0.0026 (10) |
C9 | 0.0218 (13) | 0.0157 (13) | 0.0213 (13) | 0.0002 (10) | 0.0050 (10) | −0.0005 (10) |
C10 | 0.0194 (13) | 0.0193 (14) | 0.0168 (12) | 0.0009 (10) | 0.0022 (10) | −0.0008 (10) |
C11 | 0.0190 (12) | 0.0144 (13) | 0.0171 (11) | 0.0020 (10) | 0.0022 (9) | 0.0001 (9) |
C12 | 0.0170 (12) | 0.0147 (12) | 0.0175 (12) | 0.0007 (10) | 0.0014 (9) | 0.0031 (10) |
C13 | 0.0151 (12) | 0.0175 (13) | 0.0157 (11) | −0.0007 (10) | −0.0022 (9) | 0.0009 (9) |
C14 | 0.0201 (12) | 0.0166 (13) | 0.0147 (11) | 0.0000 (10) | 0.0005 (10) | −0.0002 (10) |
C15 | 0.0177 (12) | 0.0179 (13) | 0.0187 (12) | 0.0021 (10) | 0.0034 (10) | 0.0034 (10) |
C16 | 0.0166 (12) | 0.0188 (13) | 0.0172 (12) | −0.0013 (10) | −0.0019 (9) | 0.0005 (10) |
C17 | 0.0195 (12) | 0.0173 (13) | 0.0137 (11) | −0.0015 (10) | −0.0007 (9) | 0.0003 (10) |
Br1—C3 | 1.896 (3) | C8—H8A | 0.9300 |
Br2—C15 | 1.895 (2) | C9—C10 | 1.484 (4) |
O1—C9 | 1.232 (3) | C10—C11 | 1.333 (4) |
C1—C2 | 1.378 (4) | C10—H10A | 0.9300 |
C1—C6 | 1.402 (4) | C11—C12 | 1.469 (3) |
C1—H1A | 0.9300 | C11—H11A | 0.9300 |
C2—C3 | 1.396 (4) | C12—C17 | 1.399 (3) |
C2—H2A | 0.9300 | C12—C13 | 1.402 (3) |
C3—C4 | 1.380 (4) | C13—C14 | 1.382 (4) |
C4—C5 | 1.384 (4) | C13—H13A | 0.9300 |
C4—H4A | 0.9300 | C14—C15 | 1.389 (4) |
C5—C6 | 1.407 (4) | C14—H14A | 0.9300 |
C5—H5A | 0.9300 | C15—C16 | 1.389 (4) |
C6—C7 | 1.466 (4) | C16—C17 | 1.390 (4) |
C7—C8 | 1.336 (4) | C16—H16A | 0.9300 |
C7—H7A | 0.9300 | C17—H17A | 0.9300 |
C8—C9 | 1.475 (4) | ||
C2—C1—C6 | 121.6 (2) | C8—C9—C10 | 118.9 (2) |
C2—C1—H1A | 119.2 | C11—C10—C9 | 121.4 (2) |
C6—C1—H1A | 119.2 | C11—C10—H10A | 119.3 |
C1—C2—C3 | 118.7 (2) | C9—C10—H10A | 119.3 |
C1—C2—H2A | 120.6 | C10—C11—C12 | 126.6 (2) |
C3—C2—H2A | 120.6 | C10—C11—H11A | 116.7 |
C4—C3—C2 | 121.5 (2) | C12—C11—H11A | 116.7 |
C4—C3—Br1 | 119.17 (19) | C17—C12—C13 | 118.3 (2) |
C2—C3—Br1 | 119.33 (19) | C17—C12—C11 | 119.7 (2) |
C3—C4—C5 | 119.1 (2) | C13—C12—C11 | 121.8 (2) |
C3—C4—H4A | 120.4 | C14—C13—C12 | 121.1 (2) |
C5—C4—H4A | 120.4 | C14—C13—H13A | 119.5 |
C4—C5—C6 | 121.2 (2) | C12—C13—H13A | 119.5 |
C4—C5—H5A | 119.4 | C13—C14—C15 | 119.3 (2) |
C6—C5—H5A | 119.4 | C13—C14—H14A | 120.4 |
C1—C6—C5 | 117.9 (2) | C15—C14—H14A | 120.4 |
C1—C6—C7 | 123.6 (2) | C16—C15—C14 | 121.3 (2) |
C5—C6—C7 | 118.5 (2) | C16—C15—Br2 | 119.99 (19) |
C8—C7—C6 | 126.3 (2) | C14—C15—Br2 | 118.71 (19) |
C8—C7—H7A | 116.9 | C15—C16—C17 | 118.7 (2) |
C6—C7—H7A | 116.9 | C15—C16—H16A | 120.6 |
C7—C8—C9 | 124.1 (2) | C17—C16—H16A | 120.6 |
C7—C8—H8A | 117.9 | C16—C17—C12 | 121.3 (2) |
C9—C8—H8A | 117.9 | C16—C17—H17A | 119.3 |
O1—C9—C8 | 119.5 (2) | C12—C17—H17A | 119.3 |
O1—C9—C10 | 121.6 (2) | ||
C6—C1—C2—C3 | 0.9 (4) | O1—C9—C10—C11 | −15.2 (4) |
C1—C2—C3—C4 | −1.7 (4) | C8—C9—C10—C11 | 165.4 (2) |
C1—C2—C3—Br1 | 176.9 (2) | C9—C10—C11—C12 | 171.9 (2) |
C2—C3—C4—C5 | 1.2 (4) | C10—C11—C12—C17 | 179.3 (3) |
Br1—C3—C4—C5 | −177.34 (19) | C10—C11—C12—C13 | −6.2 (4) |
C3—C4—C5—C6 | 0.0 (4) | C17—C12—C13—C14 | 1.4 (4) |
C2—C1—C6—C5 | 0.3 (4) | C11—C12—C13—C14 | −173.2 (2) |
C2—C1—C6—C7 | 179.9 (2) | C12—C13—C14—C15 | −0.3 (4) |
C4—C5—C6—C1 | −0.8 (4) | C13—C14—C15—C16 | −0.8 (4) |
C4—C5—C6—C7 | 179.6 (2) | C13—C14—C15—Br2 | 179.91 (19) |
C1—C6—C7—C8 | −10.2 (4) | C14—C15—C16—C17 | 0.9 (4) |
C5—C6—C7—C8 | 169.4 (3) | Br2—C15—C16—C17 | −179.82 (19) |
C6—C7—C8—C9 | −175.0 (2) | C15—C16—C17—C12 | 0.1 (4) |
C7—C8—C9—O1 | 160.7 (3) | C13—C12—C17—C16 | −1.3 (4) |
C7—C8—C9—C10 | −19.8 (4) | C11—C12—C17—C16 | 173.4 (2) |
Cg1 and Cg2 are the centroids of the C1–C16 and C12–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cg1i | 0.93 | 2.86 | 3.539 (3) | 131 |
C14—H14A···Cg2ii | 0.93 | 2.74 | 3.428 (3) | 131 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
Compound | R1 | R2 | τ1 | τ2 | τ3 | τ4 |
Symmetrical | ||||||
AMEXUN (Mark et al., 2016) | 4-(benzyloxy)-3-methoxyphenyl | 4-(benzyloxy)-3-methoxyphenyl | 27.4 | 19.3 | 20.4 | 22.5 |
COGNOD01 (Rawal et al., 2016) | 4-(diethylamino)phenyl | 4-(diethylamino)phenyl | 1.2, 4.0 | 11.0, 4.2 | 1.3, 2.9 | 0.7, 1.6 |
DUMWIS (Fun et al., 2010) | 2,4,5-trimethoxyphenyl | 2,4,5-trimethoxyphenyl | 11.6, 0.4, 11.8 | 0.7, 4.0, 5.5 | 3.0, 8.2, 6.0 | 9.8, 2.9, 3.7 |
EDUSEE (Rawal et al., 2016) | 4-(diethylamino)phenyl | 4-benzonitrile | 15.6, 5.9 | 0.1, 6.4 | 8.1, 7.7 | 3.7, 3.2 |
GOLGOD (Shan et al., 1999) | 4-methoxyphenyl | 4-methoxyphenyl | 3.2 | 153.4 | 152.9 | 2.7 |
GOLGOD02 (Harrison et al., 2006) | 4-methoxyphenyl | 4-methoxyphenyl | 2.4 | 152.2 | 152.2 | 2.4 |
HIDMIQ (Zhou et al., 1999) | 2-methoxyphenyl | 2-methoxyphenyl | 0.2 | 1.4 | 1.2 | 8.8 |
HUDLEY (Feng et al., 2009) | 2,4-dimethylpheny | 2,4-dimethylpheny | 26.1 | 3.1 | 1.1 | 24.6 |
KOFCEO (Arshad et al., 2008) | 4-methylphenyl | 4-methylphenyl | 16.6 | 4.0 | 13 | 180 |
LEJNOE (Butcher et al., 2006) | 4-chlorophenyl | 4-chlorophenyl | 17.8 | 9.8 | 9.8 | 17.8 |
LESGAT (Park et al., 2013) | 2-(trifluoromethyl)phenyl | 2-(trifluoromethyl)phenyl | 0.5 | 0.3 | 2.9 | 13.7 |
SAFZOQ (Samshuddin et al., 2012) | 3-nitropheny | phenyl | 6.1 | 11.3 | 21.9 | 10.4 |
SIMTUE (Nizam Mohideen et al., 2007) | 2-chlorophenyl | 2-chlorophenyl | 8.8 | 3.4 | 0.9 | 0.5 |
UPAWEO (Huang et al., 2011) | 2,6-difluorophenyl | 2,6-difluorophenyl | 2.3 | 4.4 | 0.8 | 178 |
UPAWEO01 (Schwarzer & Weber, 2014a) | 2,6-difluorophenyl | 2,6-difluorophenyl | 2.3 | 4.4 | 0.8 | 0.5 |
WACXON (Hubig et al., 1992) | o-tolyl | o-tolyl | 10.3 | 1.1 | 2.8 | 1.5 |
XOHVOH (Schwarzer & Weber, 2014b) | pentafluorophenyl | pentafluorophenyl | 3.0, 7.9 | 1.0, 5.7 | 1.6, 3.4 | 5.7, 2.3 |
XOHVUN (Schwarzer & Weber, 2014b) | pentafluorophenyl | phenyl | 5.6 | 2.4 | 3.3 | 7.8 |
Unsymmetrical | ||||||
(I) | 4-bromophenyl | 4-bromophenyl | 10.2 | 160.7 | 15.2 | 6.2 |
IFAQAJ (Kapdi et al., 2013) | 3,5-dimethoxyphenyl | 3,5-dimethoxyphenyl | 5.4 | 173.1 | 0.6 | 3.2 |
LEJNOE01 (Maluleka & Mphahlele, 2017) | 4-chlorophenyl | 4-chlorophenyl | 11.2 | 160.2 | 13.6 | 6.6 |
MESXEQ (Dravida et al., 2018) | 2,6-dichlorophenyl | 2,6-dichlorophenyl | 46.8, 48.7, 51.8 | 175.3, 4.3, 178.7 | 7.5, 4.3, 15.5 | 32.7, 48.7, 51.8 |
QAJNOG (Ruanwas et al., 2011) | 2,4,6-trimethoxyphenyl | 2,4,6-trimethoxyphenyl | 6.6, 0.5 | 176.8, 169.4 | 1.2, 0.5 | 3.7, 11.8 |
WIHBUL (Butcher et al., 2007a) | 4-fluorophenyl | 4-fluorophenyl | 18.2, 18.7 | 169.0, 166.3 | 10.4, 8.8 | 21.8, 21.4 |
XIFTOW (Butcher et al., 2007b) | 3,4-dimethoxyphenyl | 3,4-dimethoxyphenyl | 1.6, 1.6 | 162.8, 170.8 | 23.3, 23.7 | 3.1, 20.3 |
ZAPKIN (Chantrapromma et al., 2016) | 4-ethoxyphenyl | 4-ethoxyphenyl | 17.2 | 168.4 | 17.1 | 13.8 |
Multiple sets of torsion angles are stated for compounds COGNOD01, DUMWIS, EDUSEE, XOHVOH, MESXEQ, QAJNOG, WIHBUL and XIFTOW because there is more than one independent molecule in their asymmetric units. A third molecule with full molecule disorder in compound WIHBUL was excluded from this table. |
Acknowledgements
We thank the Universiti Putra Malaysia for the use of their facilities and the University of Anbar, Ministry of Higher Education, in Iraq for a scholarship (NAT).
Funding information
This research was funded by the UPM under the Research University Grant Scheme (RUGS No. 05–01-11–1234RU).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o3213–o3214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973–o1975. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Ruanwas, P., Boonnak, N., Chantrapromma, K. & Fun, H.-K. (2016). Crystallogr. Rep. 61, 1081–1085. Web of Science CSD CrossRef CAS Google Scholar
Conard, C. R. & Morris, A. D. (1932). Org. Synth. 12, 22. Google Scholar
Dravida Thendral, E., Mohamooda Sumaya, U., Gomathi, S., Biruntha, K. & Usha, G. (2018). IUCr Data 3, x171822. Google Scholar
Feng, Z., Li, J. & Lin, Y. (2009). Acta Cryst. E65, o2275. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651–o2652. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Huang, J.-D., Tang, Q.-Q., Chen, X.-Y., Ye, Y. & Wang, Y. (2011). Acta Cryst. E67, o758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hubig, S. M., Drouin, M., Michel, A. & Harvey, P. D. (1992). Inorg. Chem. 31, 5375–5380. CSD CrossRef CAS Web of Science Google Scholar
Kapdi, A. R., Whitwood, A. C., Williamson, D. C., Lynam, J. M., Burns, M. J., Williams, T. J., Reay, A. J., Holmes, J. & Fairlamb, I. J. S. (2013). J. Am. Chem. Soc. 135, 8388–8399. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360. CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahapatra, D. K., Bharti, S. K. & Asati, V. (2017). Curr. Top. Med. Chem. 17, 3146–3169. Web of Science CrossRef CAS PubMed Google Scholar
Maluleka, M. & Mphahlele, M. J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 1049. Google Scholar
Mark, E. L., Huma, A. B. & Jeremy, K. (2016). Private communication (Refcode CCDC 921980). CCDC, Cambridge, England. Google Scholar
Nizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pandey, K. B. & Rizvi, S. I. (2009). Oxid. Med. Cell. Longev. 2, 270–278. Web of Science CrossRef PubMed Google Scholar
Park, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177. CSD CrossRef IUCr Journals Google Scholar
Rawal, M., Garrett, K. E., Johnson, L. E., Kaminsky, W., Jucov, E., Shelton, D. P., Timofeeva, T., Eichinger, B. E., Tillack, A. F., Robinson, B. H., Elder, D. L. & Dalton, L. R. (2016). J. Opt. Soc. Am. B, 33, E160–E170. Web of Science CSD CrossRef CAS Google Scholar
Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33–o34. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2012). Acta Cryst. E68, o74–o75. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwarzer, A. & Weber, E. (2014a). Acta Cryst. C70, 202–206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwarzer, A. & Weber, E. (2014b). Cryst. Growth Des. 14, 2335–2342. Web of Science CSD CrossRef CAS Google Scholar
Shan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896–900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M., McKinnon, J., Wolff, S., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer17. University of Western Australia. Google Scholar
Zhou, H., Lai, C. & Montes, I. (1999). Z. Kristallogr. New Cryst. Struct. 214, 53. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.