research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­­chalcone: (1E,4E)-1,5-bis­­(4-bromo­phen­yl)penta-1,4-dien-3-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, and bDepartment of Chemistry, College of Education for Women, University of Anbar, Iraq
*Correspondence e-mail: ibra@upm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 April 2019; accepted 7 May 2019; online 10 May 2019)

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.

1. Chemical context

Dibenzalacetone, or bis­chalcone, [(1E,4E)-1,5-di­phenyl­penta-1,4-dien-3-one] was first prepared by the base-catalyzed Aldol condensation of benzaldehyde and acetone (Conard & Morris, 1932[Conard, C. R. & Morris, A. D. (1932). Org. Synth. 12, 22.]): it results in a highly conjugated system involving the α,β-unsaturated penta­dienone (–C=C—(C=O)—C=C—) moiety. Bischalcones have a number of uses including anti-inflammatory (Mahapatra et al., 2017[Mahapatra, D. K., Bharti, S. K. & Asati, V. (2017). Curr. Top. Med. Chem. 17, 3146-3169.]) and anti-oxidant (Pandey & Syed, 2009[Pandey, K. B. & Rizvi, S. I. (2009). Oxid. Med. Cell. Longev. 2, 270-278.]) agents. Different bis­chalcones consist of two benzene rings substituted with different types of functional groups (electron donor or acceptor) bonded to the ends of the central α,β-unsaturated ketone which provides good configuration for the transfer of intra­molecular charge (Fun et al., 2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651-o2652.]). In a continuation of our ongoing studies on the non-linear optical properties of various chalcone derivatives (Sim et al., 2017[Sim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896-900.]; Kwong et al., 2018[Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349-360.]), we report herein the synthesis, structure determination and Hirshfeld surface analysis of the title compound (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of a single mol­ecule, consisting of two 4-bromo­phenyl rings connected by a penta-1,4-dien-3-one bridge (Fig. 1[link]). The bond lengths and angles of the central chain are consistent with those in related structures (Butcher et al., 2007a[Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o3213-o3214.]; Ruanwas et al., 2011[Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33-o34.]). The overall conformation of (I)[link] can be described by the the torsion angles between the olefinic double bonds and 4-bromo­phenyl rings [τ1 (C1—C6—C7—C8); τ4 (C13—C12—C11—C10)] and the carbonyl double bond [τ2 (C7—C8—C9—O1); τ3 (C11—C10—C9—O1)] (Fig. 2[link]). The 4-bromo­phenyl rings in (I)[link] are close to coplanar with their attached olefinic double bonds [τ1 = −10.2 (4)°; τ4 = −6.2 (4)°] but the conformations of the olefinic double bonds are very different: one is in s-trans [τ2 = 160.7 (3)°] conformation and in s-cis [τ3 = −15.2 (4)°] conformation with the central C=O double bond. These torsions result in an overall twisted shape for (I)[link] with the dihedral angle between the 4-bromo­phenyl ring being 51.56 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
General chemical diagram showing torsion angles, τ1, τ2, τ3 and τ4 in the title compound.

3. Supra­molecular features

No classical hydrogen bonding is possible in (I)[link] and in the crystal, mol­ecules are linked by C—H⋯π inter­actions (Table 1[link]): the first of these results in a phen­yl–phenyl T-shaped geometry via C1—H1ACg1i (Fig. 3[link]a). The C14—H14ACg2ii (Fig. 3[link]b) inter­actions lead to a zigzag chain along the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C16 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.93 2.86 3.539 (3) 131
C14—H14ACg2ii 0.93 2.74 3.428 (3) 131
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial packing diagram of the title compound, with (a) C1—H1Aπ and (b) C14—H14Aπ inter­actions (dotted lines). Hydrogen atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.40, last update February 2019; (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])) using (1E,4E)-1,5-di­phenyl­penta-1,4-dien-3-one as the main skeleton revealed the presence of 27 structures containing a similar bis­chalcone moiety to the title compound but with different substituents on the terminal phenyl rings. The different substituents (R1 and R2) together with the torsion angles of the penta-4,4-dien-3-one connecting bridge are compiled in Table 2[link]. For the conformationally symmetrical compounds (i.e. both C=C—C=O bonds are either s-cis or s-trans), the olefinic double bonds are close to coplanar with their attached phenyl rings as indicated by their τ1 and τ4 torsion angles, which fall in the range of 0.0–17.8°, except for the compounds AMEXUN and HUDLEY, which have somewhat larger τ1 and τ4 values of 22.5–27.4°. The olefinic double bonds for the symmetrical compounds are mostly in s-cis conformations with the carbonyl double bond (τ2/τ3 torsion angles of 0.1–21.9°). However, both the olefinic double bonds of compounds GOLGOD and GOLGOD02 are in s-trans conformations with the carbonyl double bond (τ2/τ3 = 152.2–153.4°). Furthermore, it may be noted that the symmetrical conformation at the penta-4,4-dien-3-one connection bridge is not affected by the different substituents at the R1 and R2 positions in EDUSEE, SAFZOO and XOHVUN. Most of the unsymmetrical compounds (one C=C—C=O bond s-cis and one s-trans) have τ1 and τ4 values of 0.5–17.2°, which indicates that the olefinic double bonds are close to coplanar to their attached phenyl ring. The outliers are MESXEQ and WIHBUL, which have τ1 and τ4 values of 18.2–51.8° and 21.4–51.8°, respectively. The torsion angles τ2 and τ3 for the unsymmetrical compounds, including (I)[link], are in the ranges 160.2–178.7° and 0.5–23.7°, respectively, which indicate s-trans and s-cis conformations between the olefinic double bonds and the carbonyl double bond.

Table 2
Torsion angles τ1, τ2, τ3 and τ4 (°)

Compound R1 R2 τ1 τ2 τ3 τ4
Symmetrical            
AMEXUN (Mark et al., 2016[Mark, E. L., Huma, A. B. & Jeremy, K. (2016). Private communication (Refcode CCDC 921980). CCDC, Cambridge, England.]) 4-(benz­yloxy)-3-meth­oxy­phen­yl 4-(benz­yloxy)-3-meth­oxy­phen­yl 27.4 19.3 20.4 22.5
COGNOD01 (Rawal et al., 2016[Rawal, M., Garrett, K. E., Johnson, L. E., Kaminsky, W., Jucov, E., Shelton, D. P., Timofeeva, T., Eichinger, B. E., Tillack, A. F., Robinson, B. H., Elder, D. L. & Dalton, L. R. (2016). J. Opt. Soc. Am. B, 33, E160-E170.]) 4-(di­ethyl­amino)­phen­yl 4-(di­ethyl­amino)­phen­yl 1.2, 4.0 11.0, 4.2 1.3, 2.9 0.7, 1.6
DUMWIS (Fun et al., 2010[Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307-o308.]) 2,4,5-tri­meth­oxy­phen­yl 2,4,5-tri­meth­oxy­phen­yl 11.6, 0.4, 11.8 0.7, 4.0, 5.5 3.0, 8.2, 6.0 9.8, 2.9, 3.7
EDUSEE (Rawal et al., 2016[Rawal, M., Garrett, K. E., Johnson, L. E., Kaminsky, W., Jucov, E., Shelton, D. P., Timofeeva, T., Eichinger, B. E., Tillack, A. F., Robinson, B. H., Elder, D. L. & Dalton, L. R. (2016). J. Opt. Soc. Am. B, 33, E160-E170.]) 4-(di­ethyl­amino)­phen­yl 4-benzo­nitrile 15.6, 5.9 0.1, 6.4 8.1, 7.7 3.7, 3.2
GOLGOD (Shan et al., 1999[Shan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381.]) 4-meth­oxy­phen­yl 4-meth­oxy­phen­yl 3.2 153.4 152.9 2.7
GOLGOD02 (Harrison et al., 2006[Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522-o1523.]) 4-meth­oxy­phen­yl 4-meth­oxy­phen­yl 2.4 152.2 152.2 2.4
HIDMIQ (Zhou et al., 1999[Zhou, H., Lai, C. & Montes, I. (1999). Z. Kristallogr. New Cryst. Struct. 214, 53.]) 2-meth­oxy­phen­yl 2-meth­oxy­phen­yl 0.2 1.4 1.2 8.8
HUDLEY (Feng et al., 2009[Feng, Z., Li, J. & Lin, Y. (2009). Acta Cryst. E65, o2275.]) 2,4-di­methyl­pheny 2,4-di­methyl­pheny 26.1 3.1 1.1 24.6
KOFCEO (Arshad et al., 2008[Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.]) 4-methyl­phen­yl 4-methyl­phen­yl 16.6 4.0 13 180
LEJNOE (Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973-o1975.]) 4-chloro­phen­yl 4-chloro­phen­yl 17.8 9.8 9.8 17.8
LESGAT (Park et al., 2013[Park, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.]) 2-(tri­fluoro­meth­yl)phen­yl 2-(tri­fluoro­meth­yl)phen­yl 0.5 0.3 2.9 13.7
SAFZOQ (Samshuddin et al., 2012[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2012). Acta Cryst. E68, o74-o75.]) 3-nitro­pheny phen­yl 6.1 11.3 21.9 10.4
SIMTUE (Nizam Mohideen et al., 2007[Nizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.]) 2-chloro­phen­yl 2-chloro­phen­yl 8.8 3.4 0.9 0.5
UPAWEO (Huang et al., 2011[Huang, J.-D., Tang, Q.-Q., Chen, X.-Y., Ye, Y. & Wang, Y. (2011). Acta Cryst. E67, o758.]) 2,6-di­fluoro­phen­yl 2,6-di­fluoro­phen­yl 2.3 4.4 0.8 178
UPAWEO01 (Schwarzer & Weber, 2014a[Schwarzer, A. & Weber, E. (2014a). Acta Cryst. C70, 202-206.]) 2,6-di­fluoro­phen­yl 2,6-di­fluoro­phen­yl 2.3 4.4 0.8 0.5
WACXON (Hubig et al., 1992[Hubig, S. M., Drouin, M., Michel, A. & Harvey, P. D. (1992). Inorg. Chem. 31, 5375-5380.]) o-tol­yl o-tol­yl 10.3 1.1 2.8 1.5
XOHVOH (Schwarzer & Weber, 2014b[Schwarzer, A. & Weber, E. (2014b). Cryst. Growth Des. 14, 2335-2342.]) penta­fluoro­phen­yl penta­fluoro­phen­yl 3.0, 7.9 1.0, 5.7 1.6, 3.4 5.7, 2.3
XOHVUN (Schwarzer & Weber, 2014b[Schwarzer, A. & Weber, E. (2014b). Cryst. Growth Des. 14, 2335-2342.]) penta­fluoro­phen­yl phen­yl 5.6 2.4 3.3 7.8
             
Unsymmetrical            
(I) 4-bromo­phen­yl 4-bromo­phen­yl 10.2 160.7 15.2 6.2
IFAQAJ (Kapdi et al., 2013[Kapdi, A. R., Whitwood, A. C., Williamson, D. C., Lynam, J. M., Burns, M. J., Williams, T. J., Reay, A. J., Holmes, J. & Fairlamb, I. J. S. (2013). J. Am. Chem. Soc. 135, 8388-8399.]) 3,5-di­meth­oxy­phen­yl 3,5-di­meth­oxy­phen­yl 5.4 173.1 0.6 3.2
LEJNOE01 (Maluleka & Mphahlele, 2017[Maluleka, M. & Mphahlele, M. J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 1049.]) 4-chloro­phen­yl 4-chloro­phen­yl 11.2 160.2 13.6 6.6
MESXEQ (Dravida et al., 2018[Dravida Thendral, E., Mohamooda Sumaya, U., Gomathi, S., Biruntha, K. & Usha, G. (2018). IUCr Data 3, x171822.]) 2,6-di­chloro­phen­yl 2,6-di­chloro­phen­yl 46.8, 48.7, 51.8 175.3, 4.3, 178.7 7.5, 4.3, 15.5 32.7, 48.7, 51.8
QAJNOG (Ruanwas et al., 2011[Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33-o34.]) 2,4,6-tri­meth­oxy­phen­yl 2,4,6-tri­meth­oxy­phen­yl 6.6, 0.5 176.8, 169.4 1.2, 0.5 3.7, 11.8
WIHBUL (Butcher et al., 2007a[Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o3213-o3214.]) 4-fluoro­phen­yl 4-fluoro­phen­yl 18.2, 18.7 169.0, 166.3 10.4, 8.8 21.8, 21.4
XIFTOW (Butcher et al., 2007b[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3115.]) 3,4-di­meth­oxy­phen­yl 3,4-di­meth­oxy­phen­yl 1.6, 1.6 162.8, 170.8 23.3, 23.7 3.1, 20.3
ZAPKIN (Chantrapromma et al., 2016[Chantrapromma, S., Ruanwas, P., Boonnak, N., Chantrapromma, K. & Fun, H.-K. (2016). Crystallogr. Rep. 61, 1081-1085.]) 4-eth­oxy­phen­yl 4-eth­oxy­phen­yl 17.2 168.4 17.1 13.8
Multiple sets of torsion angles are stated for compounds COGNOD01, DUMWIS, EDUSEE, XOHVOH, MESXEQ, QAJNOG, WIHBUL and XIFTOW because there is more than one independent mol­ecule in their asymmetric units. A third mol­ecule with full mol­ecule disorder in compound WIHBUL was excluded from this table.

5. Hirshfeld surface analysis

The Hirshfeld surfaces mapped with normalized contact distance dnorm and the two-dimensional fingerprint plots for (I)[link] were generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M., McKinnon, J., Wolff, S., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer17. University of Western Australia.]). The darkest red spots on the Hirshfeld surface mapped with dnorm (Fig. 4[link]a) correspond to the C14—H14ACg2ii inter­action. Even through the C1—H1ACg1i inter­action is not visible in the dnorm surface mapping, this inter­action can be seen as a unique pattern of a red `circle' on the shape-index surface mapping (Fig. 4[link]b). Besides the C—H⋯π inter­actions, the dnorm surface mapping indicated a short contact between atom O1 and C5 with a distance of 0.06 Å shorter than the sum of the van der Waals radii of O and C atoms (3.22 Å; Fig. 5[link]a). Together with this short contact, another weak C7—H7A⋯O1 inter­action was also revealed as light spots on the dnorm surface (Fig. 5[link]b).

[Figure 4]
Figure 4
The Hirshfeld surface mapped with (a) dnorm and (b) shape-index for the title compound showing the C—H⋯π inter­actions.
[Figure 5]
Figure 5
The Hirshfeld surface mapped with dnorm showing (a) the C5⋯O1 short contact and (b) the weak C7—H7A⋯O1 inter­action.

As illustrated in Fig. 6[link], the corresponding fingerprint plots for (I)[link] are shown with characteristic pseudo-symmetric wings in the de and di diagonal axes. The H⋯C/C⋯H contacts are the most populated contacts and contribute 34.1% to the total inter­molecular contacts, followed by H⋯H (22.1%), H⋯Br/Br⋯H (20.4%) and H⋯O/O⋯H (9.2%) contacts (Fig. 6[link]). As the C—H⋯π bonds are the main inter­action in the crystal, the most populated H⋯C/C⋯H contacts appear as two symmetrical narrow wings at diagonal axes de + di ≃ 2.7 Å (Fig. 6[link]b). The H⋯H contacts appear in the central region of the fingerprint plots with de = di = 2.4 Å (Fig. 6[link]c). With the presence of relatively larger bromine atoms in the structure, the H⋯Br/Br⋯H contacts appear as symmetrical broad wing at diagonal axes of de + di ≃ 3.0 Å (Fig. 6[link]d). Two symmetric spikes in the fingerprint plots with a short spike at de + di ≃ 2.7 Å represent the H⋯O/O⋯H contacts (Fig. 6[link]e), indicating the presence of the weak C7—H7A⋯O1 inter­action. The percentage contributions for other contacts are less than 15% in the Hirshfeld surface mapping.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound for different inter­molecular contacts and their percentage contributions to the Hirshfeld surface. de and di are the distances from the Hirshfeld surface to the nearest atom inter­ior and exterior, respectively, to the surface.

6. Synthesis and crystallization

A mixture of 4-bromo­benzaldehyde (4.9 g, 12.5 mmol) and acetone (0.363 g, 6.25 mmol) dissolved in absolute ethanol (30 ml) was slowly added to an aqueous solution of potassium hydroxide (4.0 g in 20 ml water). The mixture was vigorously stirred at room temperature for two h and then 20 ml chilled water was added. The resulting yellow precipitate was recovered by vacuum filtration and washed with cold water (100 ml). The crude product was recrystallized from absolute ethanol solution as yellow blocks.

(1E,4E)-1,5-Bis­(4-bromo­phen­yl)penta-1,4-dien-3-one; pure yellow solid (4.6 g, 88.6%), m.p. 484 K; IR νmax 594, 687, 813, 979, 1066, 1181, 1320, 1398, 1480, 1581, 1643 cm−1, UV–Vis λmax. 227 and 317 nm, 1H NMR: δH (500MHz, CDCl3) 7.02 (2H, H-1), 7.45 (4H, H-2), 7.54 (4H, H-3), 7.67 (2H, H-4); 13C NMR: δC (125MHz, CDCl3) 124.62, 125.69, 129.25, 131.74, 133.29, 141.83, 188.22; HRMS (ES): MH+, found: 392 C17H12Br2O+ requires: 391.92.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C17H12Br2O
Mr 392.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.5920 (2), 14.0777 (3), 5.7956 (1)
β (°) 98.742 (1)
V3) 1418.63 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.17
Crystal size (mm) 0.12 × 0.06 × 0.03
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.64, 0.79
No. of measured, independent and observed [I > 2σ(I)] reflections 17456, 2524, 2372
Rint 0.031
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.15
No. of reflections 2524
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.40
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(1E,4E)-1,5-Bis(4-bromophenyl)penta-1,4-dien-3-one top
Crystal data top
C17H12Br2OF(000) = 768
Mr = 392.09Dx = 1.836 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 17.5920 (2) ÅCell parameters from 11112 reflections
b = 14.0777 (3) Åθ = 4–76°
c = 5.7956 (1) ŵ = 7.17 mm1
β = 98.742 (1)°T = 100 K
V = 1418.63 (4) Å3Block, yellow
Z = 40.12 × 0.06 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 67.1°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2118
Tmin = 0.64, Tmax = 0.79k = 1616
17456 measured reflectionsl = 66
2524 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0179P)2 + 1.9865P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.003
2524 reflectionsΔρmax = 0.42 e Å3
181 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14690 (2)0.38377 (2)0.19437 (5)0.02381 (9)
Br21.00765 (2)0.35118 (2)0.21721 (5)0.02140 (9)
O10.58973 (11)0.35870 (14)0.9112 (3)0.0230 (4)
C10.33281 (15)0.33927 (19)0.3232 (4)0.0190 (5)
H1A0.3413930.3106010.4694080.023*
C20.25910 (14)0.34239 (19)0.2021 (4)0.0193 (5)
H2A0.2181930.3169970.2661650.023*
C30.24703 (14)0.38441 (19)0.0186 (4)0.0192 (5)
C40.30666 (15)0.42466 (18)0.1141 (4)0.0193 (5)
H4A0.2974920.4534690.2600840.023*
C50.38031 (14)0.42161 (18)0.0103 (4)0.0187 (5)
H5A0.4206650.4486750.0533170.022*
C60.39517 (14)0.37826 (18)0.2313 (4)0.0176 (5)
C70.47449 (15)0.37678 (18)0.3537 (4)0.0187 (5)
H7A0.5127700.3950310.2683790.022*
C80.49705 (15)0.35175 (18)0.5758 (4)0.0188 (5)
H8A0.4600210.3285630.6598510.023*
C90.57702 (15)0.35856 (18)0.6962 (4)0.0194 (5)
C100.64033 (14)0.36427 (18)0.5544 (4)0.0186 (5)
H10A0.6304880.3490290.3965100.022*
C110.71104 (14)0.39078 (18)0.6484 (4)0.0169 (5)
H11A0.7171340.4132780.8009280.020*
C120.78029 (14)0.38804 (18)0.5353 (4)0.0165 (5)
C130.77978 (14)0.34717 (18)0.3144 (4)0.0166 (5)
H13A0.7334450.3270760.2294490.020*
C140.84699 (14)0.33627 (18)0.2209 (4)0.0174 (5)
H14A0.8460140.3087690.0745470.021*
C150.91600 (14)0.36684 (18)0.3479 (4)0.0180 (5)
C160.91859 (14)0.40921 (18)0.5654 (4)0.0180 (5)
H16A0.9649940.4302780.6479910.022*
C170.85050 (14)0.41952 (19)0.6572 (4)0.0171 (5)
H17A0.8516690.4479260.8025830.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01735 (14)0.02515 (16)0.02724 (15)0.00374 (11)0.00210 (10)0.00155 (11)
Br20.01568 (14)0.02560 (16)0.02334 (15)0.00101 (10)0.00433 (10)0.00280 (11)
O10.0235 (9)0.0274 (11)0.0181 (9)0.0039 (8)0.0034 (7)0.0004 (7)
C10.0212 (13)0.0189 (13)0.0173 (12)0.0008 (10)0.0041 (10)0.0004 (10)
C20.0175 (12)0.0185 (13)0.0225 (13)0.0010 (10)0.0054 (10)0.0002 (10)
C30.0182 (12)0.0179 (13)0.0209 (12)0.0038 (10)0.0009 (10)0.0009 (10)
C40.0252 (13)0.0153 (13)0.0174 (12)0.0039 (11)0.0040 (10)0.0002 (10)
C50.0203 (12)0.0163 (13)0.0208 (12)0.0001 (10)0.0074 (10)0.0009 (10)
C60.0200 (13)0.0141 (12)0.0192 (12)0.0006 (10)0.0048 (10)0.0035 (10)
C70.0183 (12)0.0165 (13)0.0225 (12)0.0013 (10)0.0067 (10)0.0013 (10)
C80.0183 (12)0.0169 (13)0.0220 (13)0.0023 (10)0.0054 (10)0.0026 (10)
C90.0218 (13)0.0157 (13)0.0213 (13)0.0002 (10)0.0050 (10)0.0005 (10)
C100.0194 (13)0.0193 (14)0.0168 (12)0.0009 (10)0.0022 (10)0.0008 (10)
C110.0190 (12)0.0144 (13)0.0171 (11)0.0020 (10)0.0022 (9)0.0001 (9)
C120.0170 (12)0.0147 (12)0.0175 (12)0.0007 (10)0.0014 (9)0.0031 (10)
C130.0151 (12)0.0175 (13)0.0157 (11)0.0007 (10)0.0022 (9)0.0009 (9)
C140.0201 (12)0.0166 (13)0.0147 (11)0.0000 (10)0.0005 (10)0.0002 (10)
C150.0177 (12)0.0179 (13)0.0187 (12)0.0021 (10)0.0034 (10)0.0034 (10)
C160.0166 (12)0.0188 (13)0.0172 (12)0.0013 (10)0.0019 (9)0.0005 (10)
C170.0195 (12)0.0173 (13)0.0137 (11)0.0015 (10)0.0007 (9)0.0003 (10)
Geometric parameters (Å, º) top
Br1—C31.896 (3)C8—H8A0.9300
Br2—C151.895 (2)C9—C101.484 (4)
O1—C91.232 (3)C10—C111.333 (4)
C1—C21.378 (4)C10—H10A0.9300
C1—C61.402 (4)C11—C121.469 (3)
C1—H1A0.9300C11—H11A0.9300
C2—C31.396 (4)C12—C171.399 (3)
C2—H2A0.9300C12—C131.402 (3)
C3—C41.380 (4)C13—C141.382 (4)
C4—C51.384 (4)C13—H13A0.9300
C4—H4A0.9300C14—C151.389 (4)
C5—C61.407 (4)C14—H14A0.9300
C5—H5A0.9300C15—C161.389 (4)
C6—C71.466 (4)C16—C171.390 (4)
C7—C81.336 (4)C16—H16A0.9300
C7—H7A0.9300C17—H17A0.9300
C8—C91.475 (4)
C2—C1—C6121.6 (2)C8—C9—C10118.9 (2)
C2—C1—H1A119.2C11—C10—C9121.4 (2)
C6—C1—H1A119.2C11—C10—H10A119.3
C1—C2—C3118.7 (2)C9—C10—H10A119.3
C1—C2—H2A120.6C10—C11—C12126.6 (2)
C3—C2—H2A120.6C10—C11—H11A116.7
C4—C3—C2121.5 (2)C12—C11—H11A116.7
C4—C3—Br1119.17 (19)C17—C12—C13118.3 (2)
C2—C3—Br1119.33 (19)C17—C12—C11119.7 (2)
C3—C4—C5119.1 (2)C13—C12—C11121.8 (2)
C3—C4—H4A120.4C14—C13—C12121.1 (2)
C5—C4—H4A120.4C14—C13—H13A119.5
C4—C5—C6121.2 (2)C12—C13—H13A119.5
C4—C5—H5A119.4C13—C14—C15119.3 (2)
C6—C5—H5A119.4C13—C14—H14A120.4
C1—C6—C5117.9 (2)C15—C14—H14A120.4
C1—C6—C7123.6 (2)C16—C15—C14121.3 (2)
C5—C6—C7118.5 (2)C16—C15—Br2119.99 (19)
C8—C7—C6126.3 (2)C14—C15—Br2118.71 (19)
C8—C7—H7A116.9C15—C16—C17118.7 (2)
C6—C7—H7A116.9C15—C16—H16A120.6
C7—C8—C9124.1 (2)C17—C16—H16A120.6
C7—C8—H8A117.9C16—C17—C12121.3 (2)
C9—C8—H8A117.9C16—C17—H17A119.3
O1—C9—C8119.5 (2)C12—C17—H17A119.3
O1—C9—C10121.6 (2)
C6—C1—C2—C30.9 (4)O1—C9—C10—C1115.2 (4)
C1—C2—C3—C41.7 (4)C8—C9—C10—C11165.4 (2)
C1—C2—C3—Br1176.9 (2)C9—C10—C11—C12171.9 (2)
C2—C3—C4—C51.2 (4)C10—C11—C12—C17179.3 (3)
Br1—C3—C4—C5177.34 (19)C10—C11—C12—C136.2 (4)
C3—C4—C5—C60.0 (4)C17—C12—C13—C141.4 (4)
C2—C1—C6—C50.3 (4)C11—C12—C13—C14173.2 (2)
C2—C1—C6—C7179.9 (2)C12—C13—C14—C150.3 (4)
C4—C5—C6—C10.8 (4)C13—C14—C15—C160.8 (4)
C4—C5—C6—C7179.6 (2)C13—C14—C15—Br2179.91 (19)
C1—C6—C7—C810.2 (4)C14—C15—C16—C170.9 (4)
C5—C6—C7—C8169.4 (3)Br2—C15—C16—C17179.82 (19)
C6—C7—C8—C9175.0 (2)C15—C16—C17—C120.1 (4)
C7—C8—C9—O1160.7 (3)C13—C12—C17—C161.3 (4)
C7—C8—C9—C1019.8 (4)C11—C12—C17—C16173.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C16 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.932.863.539 (3)131
C14—H14A···Cg2ii0.932.743.428 (3)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Torsion angles τ1, τ2, τ3 and τ4 (°) top
CompoundR1R2τ1τ2τ3τ4
Symmetrical
AMEXUN (Mark et al., 2016)4-(benzyloxy)-3-methoxyphenyl4-(benzyloxy)-3-methoxyphenyl27.419.320.422.5
COGNOD01 (Rawal et al., 2016)4-(diethylamino)phenyl4-(diethylamino)phenyl1.2, 4.011.0, 4.21.3, 2.90.7, 1.6
DUMWIS (Fun et al., 2010)2,4,5-trimethoxyphenyl2,4,5-trimethoxyphenyl11.6, 0.4, 11.80.7, 4.0, 5.53.0, 8.2, 6.09.8, 2.9, 3.7
EDUSEE (Rawal et al., 2016)4-(diethylamino)phenyl4-benzonitrile15.6, 5.90.1, 6.48.1, 7.73.7, 3.2
GOLGOD (Shan et al., 1999)4-methoxyphenyl4-methoxyphenyl3.2153.4152.92.7
GOLGOD02 (Harrison et al., 2006)4-methoxyphenyl4-methoxyphenyl2.4152.2152.22.4
HIDMIQ (Zhou et al., 1999)2-methoxyphenyl2-methoxyphenyl0.21.41.28.8
HUDLEY (Feng et al., 2009)2,4-dimethylpheny2,4-dimethylpheny26.13.11.124.6
KOFCEO (Arshad et al., 2008)4-methylphenyl4-methylphenyl16.64.013180
LEJNOE (Butcher et al., 2006)4-chlorophenyl4-chlorophenyl17.89.89.817.8
LESGAT (Park et al., 2013)2-(trifluoromethyl)phenyl2-(trifluoromethyl)phenyl0.50.32.913.7
SAFZOQ (Samshuddin et al., 2012)3-nitrophenyphenyl6.111.321.910.4
SIMTUE (Nizam Mohideen et al., 2007)2-chlorophenyl2-chlorophenyl8.83.40.90.5
UPAWEO (Huang et al., 2011)2,6-difluorophenyl2,6-difluorophenyl2.34.40.8178
UPAWEO01 (Schwarzer & Weber, 2014a)2,6-difluorophenyl2,6-difluorophenyl2.34.40.80.5
WACXON (Hubig et al., 1992)o-tolylo-tolyl10.31.12.81.5
XOHVOH (Schwarzer & Weber, 2014b)pentafluorophenylpentafluorophenyl3.0, 7.91.0, 5.71.6, 3.45.7, 2.3
XOHVUN (Schwarzer & Weber, 2014b)pentafluorophenylphenyl5.62.43.37.8
Unsymmetrical
(I)4-bromophenyl4-bromophenyl10.2160.715.26.2
IFAQAJ (Kapdi et al., 2013)3,5-dimethoxyphenyl3,5-dimethoxyphenyl5.4173.10.63.2
LEJNOE01 (Maluleka & Mphahlele, 2017)4-chlorophenyl4-chlorophenyl11.2160.213.66.6
MESXEQ (Dravida et al., 2018)2,6-dichlorophenyl2,6-dichlorophenyl46.8, 48.7, 51.8175.3, 4.3, 178.77.5, 4.3, 15.532.7, 48.7, 51.8
QAJNOG (Ruanwas et al., 2011)2,4,6-trimethoxyphenyl2,4,6-trimethoxyphenyl6.6, 0.5176.8, 169.41.2, 0.53.7, 11.8
WIHBUL (Butcher et al., 2007a)4-fluorophenyl4-fluorophenyl18.2, 18.7169.0, 166.310.4, 8.821.8, 21.4
XIFTOW (Butcher et al., 2007b)3,4-dimethoxyphenyl3,4-dimethoxyphenyl1.6, 1.6162.8, 170.823.3, 23.73.1, 20.3
ZAPKIN (Chantrapromma et al., 2016)4-ethoxyphenyl4-ethoxyphenyl17.2168.417.113.8
Multiple sets of torsion angles are stated for compounds COGNOD01, DUMWIS, EDUSEE, XOHVOH, MESXEQ, QAJNOG, WIHBUL and XIFTOW because there is more than one independent molecule in their asymmetric units. A third molecule with full molecule disorder in compound WIHBUL was excluded from this table.
 

Acknowledgements

We thank the Universiti Putra Malaysia for the use of their facilities and the University of Anbar, Ministry of Higher Education, in Iraq for a scholarship (NAT).

Funding information

This research was funded by the UPM under the Research University Grant Scheme (RUGS No. 05–01-11–1234RU).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007a). Acta Cryst. E63, o3213–o3214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973–o1975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N., Chantrapromma, K. & Fun, H.-K. (2016). Crystallogr. Rep. 61, 1081–1085.  Web of Science CSD CrossRef CAS Google Scholar
First citationConard, C. R. & Morris, A. D. (1932). Org. Synth. 12, 22.  Google Scholar
First citationDravida Thendral, E., Mohamooda Sumaya, U., Gomathi, S., Biruntha, K. & Usha, G. (2018). IUCr Data 3, x171822.  Google Scholar
First citationFeng, Z., Li, J. & Lin, Y. (2009). Acta Cryst. E65, o2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651–o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, J.-D., Tang, Q.-Q., Chen, X.-Y., Ye, Y. & Wang, Y. (2011). Acta Cryst. E67, o758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHubig, S. M., Drouin, M., Michel, A. & Harvey, P. D. (1992). Inorg. Chem. 31, 5375–5380.  CSD CrossRef CAS Web of Science Google Scholar
First citationKapdi, A. R., Whitwood, A. C., Williamson, D. C., Lynam, J. M., Burns, M. J., Williams, T. J., Reay, A. J., Holmes, J. & Fairlamb, I. J. S. (2013). J. Am. Chem. Soc. 135, 8388–8399.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur Shivaraj, R., Patil Parutagouda, S., Quah Ching, K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahapatra, D. K., Bharti, S. K. & Asati, V. (2017). Curr. Top. Med. Chem. 17, 3146–3169.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaluleka, M. & Mphahlele, M. J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 1049.  Google Scholar
First citationMark, E. L., Huma, A. B. & Jeremy, K. (2016). Private communication (Refcode CCDC 921980). CCDC, Cambridge, England.  Google Scholar
First citationNizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandey, K. B. & Rizvi, S. I. (2009). Oxid. Med. Cell. Longev. 2, 270–278.  Web of Science CrossRef PubMed Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.  CSD CrossRef IUCr Journals Google Scholar
First citationRawal, M., Garrett, K. E., Johnson, L. E., Kaminsky, W., Jucov, E., Shelton, D. P., Timofeeva, T., Eichinger, B. E., Tillack, A. F., Robinson, B. H., Elder, D. L. & Dalton, L. R. (2016). J. Opt. Soc. Am. B, 33, E160–E170.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33–o34.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2012). Acta Cryst. E68, o74–o75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwarzer, A. & Weber, E. (2014a). Acta Cryst. C70, 202–206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwarzer, A. & Weber, E. (2014b). Cryst. Growth Des. 14, 2335–2342.  Web of Science CSD CrossRef CAS Google Scholar
First citationShan, Y., Zhou, H. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, A., Chidan Kumar, C. S., Kwong, H. C., Then, L. Y., Win, Y.-F., Quah, C. K., Naveen, S., Chandraju, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 896–900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M., McKinnon, J., Wolff, S., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationZhou, H., Lai, C. & Montes, I. (1999). Z. Kristallogr. New Cryst. Struct. 214, 53.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds