research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

aDepartamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cInstituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 May 2019; accepted 11 May 2019; online 17 May 2019)

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.

1. Chemical context

Recently, the crystal structure determination of the chloro analogue of the title compound was described (Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]). This was evaluated as a part of on-going studies into the conformational and electronic characteristics of various β-thio­carbonyl, β-bis-thio­carbonyl and β-thio-β-oxacarbonyl compounds, and their selenium counterparts, employing infrared spectroscopy, computational chemistry and X-ray crystallographic methods (Vinhato et al., 2013[Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738-746.]; Zukerman-Schpector et al., 2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]; Caracelli et al., 2015[Caracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657-o658.]; Traesel et al., 2018[Traesel, H. J., Olivato, P. R., Valença, J., Rodrigues, D. N. S., Zukerman-Schpector, J. & Dal Colle, M. (2018). J. Mol. Struct. 1157, 29-39.]). In particular, the evaluation of the anti-inflammatory activity of what could be selective COX-2 inhibitors (Cerqueira et al., 2017[Cerqueira, C. R., Olivato, P. R., Rodrigues, D. N. S., Zukerman-Schpector, J., Tiekink, E. R. T. & Dal Colle, M. (2017). J. Mol. Struct. 1133, 49-65.]) motivates these investigations, which are supported by mol­ecular docking studies designed to ascertain the mechanism(s) of inhibition (Baptistini, 2015[Baptistini, N. (2015). Ph. D. Thesis, Federal University of São Carlos, São Carlos, Brazil. available online at: https://repositorio. ufscar. br/handle/ufscar/7554.]). Subsequently, crystals of the title bromo analogue (I)[link] were obtained: the crystal structure is reported herein along with an analysis of the calculated Hirshfeld surfaces, non-covalent inter­action plots (for selected inter­actions) as well as a computational chemistry study.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], is isostructural with the previously described chloro analogue, (II) (Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]). Here, the central chiral methine-C8 atom is connected to (4-bromo­phen­yl)sulfanyl, phenyl­ethanone and meth­oxy groups. There is a twist in the ethanone residue as seen in the value of the O1—C8—C9—O2 torsion angle of −20.8 (7)°, with the oxygen atoms being approximately syn. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, indicative of an inclined relative disposition. Globally, the bromo­benzene ring is orientated towards the ethanone residue.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 25% probability level.

The geometric parameters in (I)[link] can be compared with those of (II): the twist about the central C8—C9 bond is approximately the same in (II), i.e. the the O1—C8—C9—O2 torsion angle is 19.3 (7)°, as is the dihedral angle of 42.9 (2)° between the aromatic rings. The overlay diagram in Fig. 2[link] highlights the close similarity between the mol­ecular structures of (I)[link] and (II).

[Figure 2]
Figure 2
Overlay diagram of (I)[link] (red image) and (II) (blue image).

3. Supra­molecular features

The main feature of the mol­ecular packing of (I)[link] is the presence of C—H⋯O inter­actions where the carbonyl-O2 atom accepts two contacts from methyl-C7-H and methine-C8-H atoms derived from the same mol­ecule to generate six-membered {⋯O⋯HCOCH} synthons, Table 1[link]. The result is a supra­molecular chain propagating along [001] with an helical topology (21 symmetry), Fig. 3[link](a). The chains pack without directional inter­actions between them, Fig. 3[link](b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.96 2.47 3.296 (9) 144
C8—H8⋯O2i 0.98 2.44 3.331 (6) 150
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Mol­ecular packing in (I)[link]: (a) view of the helical supra­molecular chain parallel to the c axis sustained by C—H⋯O inter­actions shown as orange dashed lines and (b) view of the unit-cell contents shown in projection down the c axis; one chain is highlighted in space-filling mode.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed in accord with protocols described recently (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) employing Crystal Explorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). Over and above the analysis of the important surface contacts in the crystal of (I)[link], the results are compared with those for the recently determined isostructural chloro analogue (II) (Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]). The crystal of (I)[link] has similar inter­molecular C—H⋯O inter­actions (Table 1[link]) and short inter­atomic H⋯H, C⋯H and C⋯C contacts (Table 2[link]) as in isostructural (II), as detailed below.

Table 2
Summary of short inter­atomic contacts (Å) in (I)[link] and (II)

Contact Distance Symmetry operation
  (I)  
H7B⋯H14 2.15 1 − x, − y, −[{1\over 2}] + z
H7C⋯C6 2.74 1 − x, 2 − y, [{1\over 2}] + z
H12⋯Br1 3.02 [{1\over 2}] − x, −1 + y, [{1\over 2}] + z
C6⋯C9 3.355 (8) 1 − x, 1 − y, −[{1\over 2}] + z
     
  (II)  
H7B⋯H14 2.10 1 − x, − y, [{1\over 2}] + z
H7B⋯C14 2.76 1 − x, − y, [{1\over 2}] + z
H7C⋯C6 2.73 1 − x, 1 − y, [{1\over 2}] + z
C6⋯C9 3.334 (9) 1 − x, − y, [{1\over 2}] + z
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values.

The inter­molecular contacts in (I)[link], Tables 1[link] and 2[link], are characterized as the pair of bright-red spots near the carbonyl-O2 atom, and each of the methyl-H7A and methine-H8 atoms on the Hirshfeld surfaces mapped over dnorm in the images of Fig. 4[link]. Further, inter­actions are indicated by the faint-red spots near the methyl-H7B and H7C, phenyl-H14, bromo­benzene-C6 and carbonyl-C9 atoms in Fig. 4[link]. On the Hirshfeld surfaces mapped over the calculated electrostatic potential in the images of Fig. 5[link], the donors and acceptors of inter­molecular inter­actions are viewed as blue and red regions around the participating atoms corresponding to positive and negative potentials, respectively. The environment around a reference mol­ecule within the dnorm-mapped Hirshfeld surface highlighting the inter­molecular C—H⋯O inter­actions and short inter­atomic H⋯H, C⋯H/H⋯C and C⋯C contacts is illus­trated in Fig. 6[link].

[Figure 4]
Figure 4
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.084 to +1.422 arbitrary units.
[Figure 5]
Figure 5
Two views of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range −0.074 to + 0.053 atomic units. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 6]
Figure 6
A view of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.084 to +1.422 arbitrary units highlighting inter­molecular C—H⋯O, C⋯C, H⋯H and C⋯H/H⋯C contacts by black, red, yellow and sky-blue dashed lines, respectively.

From the overall two-dimensional fingerprint plot in Fig. 7[link](a), and also those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C and Br⋯H/H⋯Br contacts in Fig. 7[link](b)–(f), respectively, it is evident that the plots are basically identical in shape to those calculated for the chloro analogue (II) with only slight differences in the distribution of points (Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]). The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces of (I)[link] and (II) are summarized in Table 3[link]; these values again highlight the similarities between (I)[link] and (II).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link] and (II)

Contact Percentage contribution  
  (I), X = Br (II), X = Cl
H⋯H 39.3 39.1
O⋯H/H⋯O 11.0 10.7
C⋯H/H⋯C 23.2 23.0
X⋯H/H⋯X 12.8 13.3
S⋯H/H⋯S 4.4 4.3
X⋯S/S⋯X 2.1 2.3
X⋯O/O⋯X 2.1 2.1
C⋯O/O⋯C 1.5 1.5
C⋯X/X⋯C 1.5 1.8
C⋯S/S⋯C 1.2 1.1
C⋯C 0.6 0.6
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)–(f) those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C and Br⋯H/H⋯Br contacts.

The C—H⋯O contacts significant in the crystal of (I)[link], Table 1[link], are represented as the pair of spikes at de + di ∼2.3 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 7[link](c). The short inter­atomic H⋯H, C⋯H/H⋯C and C⋯C contacts (Table 2[link]) are characterized as pair of beak-shape tips at de + di ∼2.1 Å, Fig. 7[link](b), and forceps at de + di ∼2.8 Å, Fig. 7[link](d), and vase-shaped distribution of points at de + di ∼3.3 Å, Fig. 7[link](e), in the respective delineated fingerprint plots. In addition to these contacts, the crystal also features short inter­atomic Br⋯H/H⋯Br contacts appearing as the pair of forceps-like tips at de + di ∼3.0 Å in the delineated fingerprint plot of Fig. 7[link](f). The small contribution from other remaining inter­atomic contacts summarized in Table 3[link] have a negligible effect on the packing.

5. Inter­action energies

The pairwise inter­action energies between the mol­ecules within the crystal are calculated by the summation of four energy components comprising electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). These energies were obtained by using the wave function calculated at the HF/STO-3G level theory for each of (I)[link] and (II). The individual energy components as well as total inter­action energy relative to reference mol­ecule within the mol­ecular cluster were calculated. Table 4[link] summarizes qu­anti­tatively the strength and nature of inter­molecular inter­actions in the crystals of (I)[link] and (II).

Table 4
Summary of inter­action energies (kJ mol−1) calculated for (I)[link] and (II)

Contact R (Å) Eele Epol Edis Erep Etot
(I)            
C7—H7A⋯O2i +            
C8—H8⋯O2i +            
H7B⋯H14i +            
C6⋯C9i 6.40 −20.0 −12.1 −53.2 34.0 −48.0
H7C⋯C6ii 8.75 −7.0 −1.2 −16.7 9.3 −15.4
H12⋯Br1ii 10.83 −4.1 −0.9 −12.9 6.4 −11.2
(II)            
C7—H7A⋯O2iii +            
C8—H8⋯O2iii +            
H7B⋯H14iii +            
C6⋯C9iii +            
H7B⋯C14iii 6.13 −19.5 −11.8 −52.7 35.1 −46.6
H7C⋯C6iv 9.06 −6.6 −1.4 −14.5 8.2 −14.0
Notes: Symmetry operations: (i) 1 − x, 1 − y, −[{1\over 2}] + z; (ii) 1 − x, 2 − y, [{1\over 2}] + z; (iii) 1 − x, − y, [{1\over 2}] + z; (iv) 1 − x, 1 − y, [{1\over 2}] + z.

It is observed from the inter­action energies calculated between the reference mol­ecule and the symmetry-related mol­ecules at R = 6.40 and 6.13 Å (where R is the separation of the centres of gravity of the mol­ecules), respectively (Table 4[link]), that the almost identical values of the electrostatic energy component are due to inter­molecular C—H⋯O inter­actions whereas the dispersive components are dominant owing to the short inter­atomic contacts between the same mol­ecules. The other short inter­atomic C⋯H/H⋯C contact between the methyl-H7C and phenyl-C6 atoms in (I)[link] and (II), and the H12⋯Br1 contact in (I)[link] have a major contribution from dispersion components.

The magnitudes of inter­molecular energies are represented graphically in the energy frameworks for (I)[link] and (II) viewed down the c axes are shown in Fig. 8[link]. Here, the supra­molecular architecture of the crystals is represented as cylinders joining centroids of mol­ecular pairs. The red, green and blue coloration represent the energy components Eele, Edisp and Etot, respectively. The radius of the cylinder is proportional to the magnitude of inter­action energy which are adjusted to the same scale factor (3 kJ mol−1) within 4 × 4 × 4 unit cells. From the energy frameworks for (I)[link] and (II) illustrated in Fig. 8[link], it is clearly evident that the supra­molecular associations viewed down the c axis are identical, reflecting the isostructural relationship between (I)[link] and (II).

[Figure 8]
Figure 8
A comparison of the energy frameworks, plotted with the same scale, composed of (a) electrostatic potential force, (b) dispersion force and (c) total energy for the mol­ecules of (I)[link], upper images, and (II), lower images, all viewed down the c-axis direction. same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 x 4 x 4 unit cells.

6. Non-covalent inter­action plots

The non-covalent inter­action plot (NCIplot) analysis was used in the present study in order to confirm the attractive nature of some of the specified inter­molecular contacts (Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]). This method is based on the electron density and its derivatives allowing the visualization of the gradient isosurfaces. The colour-based isosurfaces correspond to the values of sign(λ2)ρ(r), where ρ is the electron density and λ2 is the second eigenvalue of the Hessian matrix of ρ (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]). The isosurfaces for the inter­actions between the carbonyl-O2 and each of the methyl-H7B and phenyl-H14 atoms, the H7B and H14 atoms, and the chloro­benzene-C6 and methyl-H7C atoms are shown in the upper views of Fig. 9[link](a)–(c), respectively. The green isosurface observed in each of these indicates a weakly attractive inter­action as opposed to attractive (blue isosurface) or repulsive (red). The lower views of Fig. 9[link], where the plots of the RDG versus sign(λ2)ρ(r) are depicted, the non-covalent inter­action peaks appear at density values equal or lower than 0.01 a.u., consistent with weakly attractive inter­actions.

[Figure 9]
Figure 9
Non-covalent inter­action plots for inter­molecular inter­actions between (a) each of the methyl-C7- and methine-C—H atoms and the carbonyl-O2 atom, (b) the methyl-H7B and phenyl-H14 atoms and (c) bromo­benzene-C6 and methyl-H7C atoms.

7. Database survey

There are three literature structures related to (I)[link], namely the already mentioned (II) (NIBTAW; Caracelli et al., 2018[Caracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703-708.]), the S-bound 4-meth­oxy­benzene derivative [(III); JUPLOZ; Caracelli et al., 2015[Caracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657-o658.]] and the S-bound 4-tolyl species [NOVGIQ; (IV); Zukerman-Schpector et al., 2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]] derivatives. All four compounds crystallize in the ortho­rhom­bic space group Pca21 and are isostructural. The differences between the mol­ecules of (I)–(IV) relates to the relative orientations of the S-bound meth­oxy­benzene ring in (III). This comes about owing to a twist about the C8—S1 bond as manifested in the C4—S1—C8—C9 torsion angles of 57.1 (4), 57.3 (5), 46.6 (3) and 57.9 (3)° for (I)–(IV), respectively. This difference notwithstanding, the angles between the S-bound benzene rings and the phenyl rings in (I)–(IV) span a relatively narrow range of values, i.e. 43.2 (2), 42.9 (2), 40.11 (16) and 44.03 (16)°, respectively.

8. Synthesis and crystallization

Firstly, 4′-bromo­thio­phenol (10.0 g, 52.9 mmol) was reacted with bromine (3.1 ml, 56.0 mmol) in di­chloro­methane (400 ml) on a hydrated silica gel support (50 g of SiO2 and water (30 ml) to give 4′-bromo­phenyl di­sulfide (8.0 g, yield 80%). A brown solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002[Ali, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]). Then, a solution of 2-meth­oxy aceto­phenone (Sigma–Aldrich; 1.0 ml, 7.3 mmol) in THF (25 ml), was added dropwise to a cooled (195 K) solution of diiso­propyl­amine (1.1 ml, 8.0 mmol) and n-butyl­lithium (5.4 ml, 7.3 mmol) in THF (30 ml). After 30 mins, a solution of 4′-bromo­phenyl di­sulfide (2.8 g, 7.3 mmol) with hexa­methyl­phospho­ramide (HMPA) (1.3 ml, ca 7.3 mmol) dissolved in THF (35 ml) was added dropwise to the enolate solution (Zoretic & Soja, 1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]). After stirring for 3 h, water (70 ml) was added at room temperature and extraction with diethyl ether ensued. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH was reached and then dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with n-hexane was used in order to remove the non-polar reactant (di­sulfide), then with dry acetone to give a mixture of both aceto­phenones (product and reactant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give the pure product (0.6 g, yield = 70%). Irregular colourless crystals suitable for X-ray diffraction of (I)[link] were obtained by the same pathway. M.p. 357.0–357.5 K. 1H NMR (CDCl3, 500 MHz, δ ppm): 3.67 (s, 3H), 5.87 (s, 1H), 7.20–7.23 (m, 2H), 7.39–7.41 (m, 2H), 7.44–7.47 (m, 2H), 7.57–7.62 (m, 1H), 7.92–7.94 (m, 2H). 13C NMR (CDCl3, 125 MHz, δ p.p.m.): 190.16, 135.73, 134.18, 133.53, 132.13, 129.92, 128.81, 128.57, 123.41, 89.28, 56.10. Microanalysis calculated for C15H13BrO2S (%): C 53.42, H 3.89. Found (%): C 53.19, H 3.85. High-Resolution MS [M+, M2+] calculated: 335.9820, 337.9799; found: 335.9797, 337.9778.

9. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The absolute structure was determined based on differences in Friedel pairs included in the data set (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 5
Experimental details

Crystal data
Chemical formula C15H13BrO2S
Mr 337.21
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 293
a, b, c (Å) 18.0683 (13), 8.0190 (6), 9.8513 (5)
V3) 1427.35 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.02
Crystal size (mm) 0.47 × 0.20 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.545, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 6329, 2820, 1903
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 0.90
No. of reflections 2820
No. of parameters 173
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.36
Absolute structure Flack x determined using 702 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.013 (11)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

2-[(4-Bromophenyl)sulfanyl]-2-methoxy-1-phenylethan-1-one top
Crystal data top
C15H13BrO2SDx = 1.569 Mg m3
Mr = 337.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1496 reflections
a = 18.0683 (13) Åθ = 2.8–23.5°
b = 8.0190 (6) ŵ = 3.02 mm1
c = 9.8513 (5) ÅT = 293 K
V = 1427.35 (16) Å3Irregular, colourless
Z = 40.47 × 0.20 × 0.14 mm
F(000) = 680
Data collection top
Bruker APEXII CCD
diffractometer
1903 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.4°, θmin = 2.3°
Tmin = 0.545, Tmax = 0.745h = 2222
6329 measured reflectionsk = 107
2820 independent reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
2820 reflectionsΔρmax = 0.24 e Å3
173 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack x determined using 702 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3809 (4)0.7980 (8)0.2687 (6)0.0481 (16)
C20.3282 (4)0.7230 (8)0.3471 (6)0.0547 (17)
H20.28440.68460.30860.066*
C30.3411 (4)0.7049 (8)0.4862 (6)0.0573 (18)
H30.30590.65310.54060.069*
C40.4057 (3)0.7634 (8)0.5432 (5)0.0442 (14)
C50.4582 (4)0.8394 (7)0.4612 (6)0.0481 (15)
H50.50200.87930.49890.058*
C60.4456 (4)0.8561 (8)0.3225 (5)0.0470 (15)
H60.48080.90630.26710.056*
C70.6000 (4)0.6921 (10)0.7438 (8)0.074 (2)
H7A0.60410.65130.83510.111*
H7C0.58220.80490.74530.111*
H7B0.64770.68890.70090.111*
C80.4826 (3)0.5677 (7)0.7324 (5)0.0446 (14)
H80.49100.54170.82840.053*
C90.4446 (3)0.4212 (7)0.6661 (5)0.0417 (14)
C100.3832 (3)0.3328 (7)0.7355 (6)0.0424 (13)
C110.3535 (3)0.1926 (8)0.6732 (7)0.0547 (17)
H110.37200.15800.58970.066*
C120.2968 (4)0.1035 (8)0.7336 (7)0.0660 (18)
H120.27730.01020.69040.079*
C130.2689 (4)0.1533 (9)0.8592 (7)0.067 (2)
H130.23080.09380.90050.080*
C140.2986 (4)0.2922 (9)0.9210 (7)0.069 (2)
H140.28000.32731.00430.083*
C150.3551 (4)0.3791 (10)0.8614 (7)0.0613 (18)
H150.37510.47080.90600.074*
O10.5500 (2)0.5910 (6)0.6703 (4)0.0573 (11)
O20.4633 (2)0.3773 (6)0.5525 (4)0.0623 (12)
S10.41992 (10)0.7500 (2)0.72103 (15)0.0551 (4)
Br10.36371 (4)0.82410 (9)0.07901 (8)0.0718 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (4)0.045 (4)0.039 (3)0.011 (3)0.008 (3)0.001 (3)
C20.046 (4)0.060 (5)0.059 (4)0.001 (3)0.001 (3)0.005 (3)
C30.062 (4)0.054 (5)0.056 (4)0.002 (4)0.005 (3)0.012 (3)
C40.050 (3)0.044 (4)0.039 (3)0.007 (3)0.006 (3)0.000 (2)
C50.048 (4)0.045 (4)0.052 (3)0.001 (3)0.006 (3)0.000 (3)
C60.048 (4)0.047 (4)0.045 (3)0.005 (3)0.009 (3)0.005 (2)
C70.073 (5)0.091 (6)0.058 (5)0.028 (4)0.002 (4)0.001 (4)
C80.051 (4)0.050 (4)0.032 (2)0.004 (3)0.002 (3)0.005 (3)
C90.054 (4)0.041 (4)0.030 (3)0.012 (3)0.005 (3)0.003 (2)
C100.049 (3)0.038 (3)0.041 (3)0.005 (3)0.010 (3)0.005 (3)
C110.055 (4)0.055 (4)0.055 (4)0.006 (3)0.005 (3)0.008 (3)
C120.055 (4)0.069 (5)0.074 (4)0.012 (4)0.012 (4)0.003 (4)
C130.052 (5)0.071 (5)0.077 (5)0.009 (3)0.004 (4)0.028 (4)
C140.074 (5)0.079 (6)0.056 (4)0.010 (4)0.005 (4)0.002 (4)
C150.071 (5)0.072 (5)0.042 (3)0.012 (4)0.003 (3)0.004 (3)
O10.058 (3)0.070 (3)0.044 (2)0.009 (2)0.003 (2)0.001 (2)
O20.081 (3)0.068 (3)0.037 (2)0.004 (2)0.007 (2)0.009 (2)
S10.0774 (11)0.0497 (9)0.0382 (7)0.0083 (9)0.0041 (9)0.0035 (7)
Br10.0797 (5)0.0905 (5)0.0450 (3)0.0229 (4)0.0087 (4)0.0030 (4)
Geometric parameters (Å, º) top
C1—C61.365 (9)C8—C91.510 (7)
C1—C21.366 (9)C8—S11.853 (6)
C1—Br11.905 (6)C8—H80.9800
C2—C31.398 (8)C9—O21.221 (6)
C2—H20.9300C9—C101.482 (8)
C3—C41.378 (9)C10—C111.389 (8)
C3—H30.9300C10—C151.391 (9)
C4—C51.388 (8)C11—C121.384 (9)
C4—S11.773 (5)C11—H110.9300
C5—C61.392 (8)C12—C131.395 (10)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—C141.378 (9)
C7—O11.414 (8)C13—H130.9300
C7—H7A0.9600C14—C151.369 (10)
C7—H7C0.9600C14—H140.9300
C7—H7B0.9600C15—H150.9300
C8—O11.375 (6)
C6—C1—C2121.8 (5)O1—C8—H8108.7
C6—C1—Br1118.9 (5)C9—C8—H8108.7
C2—C1—Br1119.3 (5)S1—C8—H8108.7
C1—C2—C3118.9 (7)O2—C9—C10119.5 (5)
C1—C2—H2120.5O2—C9—C8119.6 (5)
C3—C2—H2120.5C10—C9—C8120.8 (5)
C4—C3—C2120.4 (6)C11—C10—C15118.0 (6)
C4—C3—H3119.8C11—C10—C9118.1 (5)
C2—C3—H3119.8C15—C10—C9123.8 (5)
C3—C4—C5119.4 (5)C12—C11—C10120.9 (6)
C3—C4—S1120.3 (5)C12—C11—H11119.5
C5—C4—S1120.2 (5)C10—C11—H11119.5
C4—C5—C6120.1 (6)C11—C12—C13120.1 (6)
C4—C5—H5120.0C11—C12—H12119.9
C6—C5—H5120.0C13—C12—H12119.9
C1—C6—C5119.3 (6)C14—C13—C12118.9 (6)
C1—C6—H6120.4C14—C13—H13120.6
C5—C6—H6120.4C12—C13—H13120.6
O1—C7—H7A109.5C15—C14—C13120.8 (7)
O1—C7—H7C109.5C15—C14—H14119.6
H7A—C7—H7C109.5C13—C14—H14119.6
O1—C7—H7B109.5C14—C15—C10121.3 (7)
H7A—C7—H7B109.5C14—C15—H15119.4
H7C—C7—H7B109.5C10—C15—H15119.4
O1—C8—C9108.4 (4)C8—O1—C7114.6 (5)
O1—C8—S1114.0 (4)C4—S1—C8101.3 (3)
C9—C8—S1108.1 (4)
C6—C1—C2—C30.2 (10)O2—C9—C10—C15176.3 (6)
Br1—C1—C2—C3179.8 (5)C8—C9—C10—C151.9 (8)
C1—C2—C3—C40.6 (10)C15—C10—C11—C121.2 (9)
C2—C3—C4—C50.5 (9)C9—C10—C11—C12179.2 (5)
C2—C3—C4—S1176.7 (5)C10—C11—C12—C130.4 (9)
C3—C4—C5—C60.1 (9)C11—C12—C13—C140.2 (10)
S1—C4—C5—C6177.2 (5)C12—C13—C14—C150.7 (11)
C2—C1—C6—C50.3 (9)C13—C14—C15—C101.6 (11)
Br1—C1—C6—C5179.3 (4)C11—C10—C15—C141.7 (10)
C4—C5—C6—C10.5 (9)C9—C10—C15—C14179.6 (6)
O1—C8—C9—O220.8 (7)C9—C8—O1—C7163.5 (5)
S1—C8—C9—O2103.2 (5)S1—C8—O1—C776.1 (6)
O1—C8—C9—C10160.9 (4)C3—C4—S1—C8102.0 (5)
S1—C8—C9—C1075.0 (5)C5—C4—S1—C880.9 (5)
O2—C9—C10—C115.7 (8)O1—C8—S1—C463.5 (4)
C8—C9—C10—C11176.0 (5)C9—C8—S1—C457.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.962.473.296 (9)144
C8—H8···O2i0.982.443.331 (6)150
Symmetry code: (i) x+1, y+1, z+1/2.
Summary of short interatomic contacts (Å) in (I) and (II) top
ContactDistanceSymmetry operation
(I)
H7B···H142.151 - x, - y, -1/2 + z
H7C···C62.741 - x, 2 - y, 1/2 + z
H12···Br13.021/2 - x, -1 + y, 1/2 + z
C6···C93.355 (8)1 - x, 1 - y, -1/2 + z
(II)
H7B···H142.101 - x, - y, 1/2 + z
H7B···C142.761 - x, - y, 1/2 + z
H7C···C62.731 - x, 1 - y, 1/2 + z
C6···C93.334 (9)1 - x, - y, 1/2 + z
Notes: (a) The interatomic distances are calculated in Crystal Explorer (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and (II) top
ContactPercentage contribution
(I), X = Br(II), X = Cl
H···H39.339.1
O···H/H···O11.010.7
C···H/H···C23.223.0
X···H/H···X12.813.3
S···H/H···S4.44.3
X···S/S···X2.12.3
X···O/O···X2.12.1
C···O/O···C1.51.5
C···X/X···C1.51.8
C···S/S···C1.21.1
C···C0.60.6
Summary of interaction energies (kJ mol-1) calculated for (I) and (II) top
ContactR (Å)EeleEpolEdisErepEtot
(I)
C7—H7A···O2i +
C8—H8···O2i +
H7B···H14i +
C6···C9i6.40-20.0-12.1-53.234.0-48.0
H7C···C6ii8.75-7.0-1.2-16.79.3-15.4
H12···Br1ii10.83-4.1-0.9-12.96.4-11.2
(II)
C7—H7A···O2iii +
C8—H8···O2iii +
H7B···H14iii +
C6···C9iii +
H7B···C14iii6.13-19.5-11.8-52.735.1-46.6
H7C···C6iv9.06-6.6-1.4-14.58.2-14.0
Notes: Symmetry operations: (i) 1 - x, 1 - y, -1/2 + z; (ii) 1 - x, 2 - y, 1/2 + z; (iii) 1 - x, - y, 1/2 + z; (iv) 1 - x, 1 - y, 1/2 + z.
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Acknowledgements

Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection.

Funding information

The Brazilian agencies São Paulo Research Foundation (FAPESP), for financial support of this research, Coordination for the Improvement of Higher Education Personnel, for a scholarship to to HJT (CAPES 3300201191P0 and Finance Code 001), and the National Council for Scientific and Technological Development, for fellowships (CNPq: 308480/2016–3 to IC; 303207/2017–5 to JZ-S; 301180/2013–0 to PRO), are gratefully acknowledged. Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant. No. STR-RCTR-RCCM-001–2019).

References

First citationAli, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Web of Science CrossRef CAS Google Scholar
First citationBaptistini, N. (2015). Ph. D. Thesis, Federal University of São Carlos, São Carlos, Brazil. available online at: https://repositorio. ufscar. br/handle/ufscar/7554.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J., Traesel, H. J., Olivato, P. R., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 703–708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCerqueira, C. R., Olivato, P. R., Rodrigues, D. N. S., Zukerman-Schpector, J., Tiekink, E. R. T. & Dal Colle, M. (2017). J. Mol. Struct. 1133, 49–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTraesel, H. J., Olivato, P. R., Valença, J., Rodrigues, D. N. S., Zukerman-Schpector, J. & Dal Colle, M. (2018). J. Mol. Struct. 1157, 29–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3–o4.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds