research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl α-L-rhamno­pyranosyl-(1→2)-α-L-rhamno­pyran­oside monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden, and bDepartment of Organic Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
*Correspondence e-mail: goran.widmalm@su.se

Edited by H. Ishida, Okayama University, Japan (Received 20 March 2019; accepted 14 May 2019; online 24 May 2019)

The title compound, C13H24O9·H2O, a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide mol­ecules and four water mol­ecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexo­pyran­ose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water mol­ecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydro­phobic inter­actions between the methyl groups.

1. Chemical context

The title disaccharide compound is a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri (Kubler-Kielb et al., 2007[Kubler-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). Carbohydr. Res. 342, 643-647.]) and Escherichia coli (Marie et al., 1998[Marie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378-381.]). In the title compound, inter-residue hydrogen bonding is not possible, which thus gives the opportunity to study conformational preferences at the glycosidic linkage devoid of the hydrogen bonds. Furthermore, the major conformation in water differs from that in dimethyl sulfoxide as determined by NMR spectroscopy and mol­ecular dynamics simulations (Pendrill et al., 2016[Pendrill, R., Engström, O., Volpato, A., Zerbetto, M., Polimeno, A. & Widmalm, G. (2016). Phys. Chem. Chem. Phys. 18, 3086-3096.]). These conformations can be compared to the present crystal structure obtained from a water:ethanol (1:1) mixed solution.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains four independent disaccharides of closely similar conformation, shown in Figs. 1[link]–3[link][link], where the hexo­pyran­ose rings have the 1C4 chair conformation. In the disaccharide mol­ecule, there are three major degrees of freedom with the glycosidic torsion angles of φH, ψH and φH(C7), which are defined, respectively, by H1A—C1A—O2B—C2B, C1A—O2B—C2B—H2B and H1B—C1B—O7B—C7B. These torsion angles are (I)[link] φH =39°, ψH = −32° and φH(C7) = 49°, (II) φH = 30°, ψH −35° and φH(C7) = 52°, (III) φH = 36°, ψH = −31° and φH(C7) = 51°, and (IV) φH = 37°, ψH = −32° and φH(C7) = 51°, where (I)–(IV) correspond to the four independent disaccharide mol­ecules 1–4, respectively, in Fig. 2[link]. The average φH, ψH and φH(C7) angles are 35 (4), −33 (2) and 51 (1)°, respectively. The φH torsion angle is governed by the exo-anomeric effect and should be approximately 40° for an α-L-sugar, which is also the case in the title rhamnose-containing disaccharide (Widmalm et al., 1992[Widmalm, G., Byrd, R. A. & Egan, W. (1992). Carbohydr. Res. 229, 195-211.]). The ψH torsion angle depends on the stereochemistry at or close to the glycosidic linkage. In solution it can take both positive and negative values, depending on the solvent that the solute is dissolved in (Pendrill et al., 2016[Pendrill, R., Engström, O., Volpato, A., Zerbetto, M., Polimeno, A. & Widmalm, G. (2016). Phys. Chem. Chem. Phys. 18, 3086-3096.]). Inter­estingly, in the crystal of the title compound, the ψH torsion angle is negative like the major conformer in water solution (Pendrill et al., 2016[Pendrill, R., Engström, O., Volpato, A., Zerbetto, M., Polimeno, A. & Widmalm, G. (2016). Phys. Chem. Chem. Phys. 18, 3086-3096.]). This conformation causes the three methyl groups to be positioned on one side of the mol­ecule. In the crystal of a rhamnose-containing tris­accharide having the glycosidic α-(1 → 2)-linkage (Eriksson & Widmalm, 2012[Eriksson, L. & Widmalm, G. (2012). Acta Cryst. E68, o2221-o2222.]), quite similar torsion angles of φH = 48° and ψH = −29° were observed.

[Figure 1]
Figure 1
The structure of one of the title disaccharide mol­ecules, disaccharide 1, showing the atom-labelling scheme. The third character of the atom label denotes the rhamnose residue A or B in each disaccharide and the fourth character indicates each independent disaccharide entity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The four independent disaccharide mol­ecules, 1–4, in the asymmetric unit together with four adjacent water mol­ecules.
[Figure 3]
Figure 3
Overlays between pairs of the four independent mol­ecules with minimal root-mean-square deviations (RMSD): (a) 1 and 2, (b) 1 and 3, (c) 1 and 4, (d) 2 and 3, (e) 2 and 4, (f) 3 and 4.

3. Supra­molecular features

Hydro­philic inter­actions dominate in a network of O—H⋯O hydrogen bonds that connect the disaccharide and water mol­ecules (Table 1[link]), forming a layer parallel to the bc plane, while hydro­phobic inter­actions between the methyl groups dominate in the bc plane at x = 0.5 (Figs. 2[link] and 4[link]). A DFT optimization of the title structure has been performed with plane waves and pseudo potentials using NWChem (Valiev et al., 2010[Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L. & de Jong, W. A. (2010). Comput. Phys. Commun. 181, 1477-1489.]). The major differences between the optimized and observed structures are that the O—H distances are slightly longer in the optimized structure than the experimental values and some geometrical details, e.g. torsion angles of hydroxyl groups. The hydrogen-bonding scheme obtained from the DFT-optimized structure was similar, with minor differences between the experimental structure and the DFT-optimized version.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A1—H2A2⋯O2 0.84 1.96 2.770 (9) 161
O3A1—H3A2⋯O4A2 0.84 2.59 3.366 (10) 154
O3B1—H3B2⋯O3A3i 0.84 1.95 2.766 (8) 164
O4B1—H4B2⋯O1ii 0.84 1.89 2.693 (10) 158
O2A2—H2A4⋯O1iii 0.84 2.04 2.834 (10) 159
O3A2—H3A4⋯O3ii 0.84 1.85 2.647 (9) 159
O4A2—H4A4⋯O4A1 0.84 2.09 2.862 (8) 152
O3B2—H3B4⋯O3A2iv 0.84 2.06 2.710 (7) 133
O4B2—H4B4⋯O2 0.84 2.20 2.952 (8) 150
O2A3—H2A6⋯O4B1ii 0.84 1.98 2.791 (8) 161
O3A3—H3A6⋯O3ii 0.84 1.92 2.741 (9) 165
O4A3—H4A6⋯O4A4 0.84 2.13 2.731 (9) 128
O3B3—H3B6⋯O2A1iii 0.84 2.58 3.309 (8) 146
O3B3—H3B6⋯O3A1iii 0.84 2.13 2.855 (8) 145
O4B3—H4B6⋯O2A1iii 0.84 2.00 2.754 (9) 149
C3A4—H3A7⋯O3A3 1.00 2.56 3.431 (10) 146
O3A4—H3A8⋯O3B4i 0.84 2.08 2.761 (8) 138
O4A4—H4A8⋯O4A1 0.84 2.05 2.717 (9) 136
O3B4—H3B8⋯O3B1ii 0.84 2.02 2.843 (7) 168
O4B4—H4B8⋯O2A4ii 0.84 2.08 2.859 (8) 155
O1—H12⋯O4B3iv 0.86 (1) 1.86 (2) 2.718 (10) 174 (7)
O2—H21⋯O4B4v 0.85 (1) 2.29 (4) 3.030 (9) 145 (6)
O2—H22⋯O5A3v 0.85 (1) 2.62 (2) 3.461 (9) 169 (5)
O3—H31⋯O3A4i 0.85 (1) 2.00 (4) 2.695 (8) 139 (5)
O3—H32⋯O4 0.85 (1) 1.80 (3) 2.582 (13) 152 (7)
O4—H41⋯O7B1 0.85 (1) 2.29 (3) 3.037 (14) 147 (5)
O4—H42⋯O7B3vi 0.85 (1) 2.26 (3) 3.021 (14) 148 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z]; (iv) [-x, y-{\script{1\over 2}}, -z]; (v) x, y-1, z; (vi) x, y-1, z+1.
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the b axis, showing hydro­philic and hydro­phobic contacts between layers. The hydro­philic bound layers extend parallel to the bc plane, while the layers pack with hydro­phobic inter­actions at x = 0.5.

4. Database survey

A search for related compounds in the CSD (2019 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only one hit with the rhamnose dimer as fragment, XEBQAY (Eriksson & Widmalm, 2012[Eriksson, L. & Widmalm, G. (2012). Acta Cryst. E68, o2221-o2222.]), with a good fit to the three-dimensional arrangement of the disaccharide element. A search using only the monomer skeleton without hydroxyl H atoms produced 178 hits, but most of these were not relevant for comparison with the title mol­ecule.

5. Synthesis and crystallization

The title compound was synthesized according to the published procedures (Norberg et al., 1986[Norberg, T., Oscarson, S. & Szönyl, M. (1986). Carbohydr. Res. 156, 214-217.]), where the rhamnosyl residues have the L absolute configuration. Colourless prismatic single crystals were obtained by slow evaporation from a water:ethanol (1:1) mixture solution at ambient temperature.

6. Refinement

Crystal data, data collection and structural refinement details are summarized in Table 2[link]. Diffraction data from three separate crystals of the approximately same size were merged using the BASF instruction available in the SHELXL program. Although each single crystal showed considerable disorder, the three crystals together provided a complete data set at the expense of a rather high inter­nal R value. Weak ISOR restraints were applied for all non-H atoms. H atoms in the disaccharide mol­ecules were added geometrically (C—H = 1.00 or 0.98 Å and O—H = 0.84 Å) and treated as riding with Uiso(H) = 1.2–1.5Ueq(C,O). The O—H bond and H⋯H distances in the water mol­ecules were restrained to 0.85 (1) and 1.34 (1) Å, respectively. The orientation of each water mol­ecule was adjusted and restrained with additional DFIX commands using parameters derived from a solid state DFT optimization of the crystal structure.

Table 2
Experimental details

Crystal data
Chemical formula C13H24O9·H2O
Mr 342.34
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 13.936 (3), 15.501 (3), 15.988 (3)
β (°) 105.92 (16)
V3) 3321 (12)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.02
Crystal size (mm) 0.10 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker D8 Advance
Absorption correction Multi-scan (APEX3; Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 42501, 11996, 4360
Rint 0.158
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.173, 0.85
No. of reflections 11996
No. of parameters 885
No. of restraints 571
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.30
Absolute structure Flack x determined using 1400 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (18)
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Methyl α-L-rhamnopyranosyl-(12)-α-L-rhamnopyranoside monohydrate top
Crystal data top
C13H24O9·H2OF(000) = 1472
Mr = 342.34Dx = 1.369 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 13.936 (3) ÅCell parameters from 29997 reflections
b = 15.501 (3) Åθ = 2.8–68.2°
c = 15.988 (3) ŵ = 1.02 mm1
β = 105.92 (16)°T = 100 K
V = 3321 (12) Å3Prism, colourless
Z = 80.10 × 0.07 × 0.03 mm
Data collection top
Bruker D8 Advance
diffractometer
11996 independent reflections
Radiation source: Incotec 1myS4360 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.158
ω scans at different φθmax = 68.3°, θmin = 2.9°
Absorption correction: multi-scan
(APEX3; Bruker, 2017)
h = 1616
Tmin = 0.90, Tmax = 0.97k = 1818
42501 measured reflectionsl = 1912
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 0.85Δρmax = 0.44 e Å3
11996 reflectionsΔρmin = 0.30 e Å3
885 parametersAbsolute structure: Flack x determined using 1400 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
571 restraintsAbsolute structure parameter: 0.03 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A10.1588 (5)0.4641 (5)0.4294 (5)0.055 (2)
H1A10.1279840.4062810.4321760.067*
C2A10.0970 (6)0.5092 (5)0.3498 (5)0.064 (2)
H2A10.0307680.5244700.3587590.076*
C3A10.1466 (7)0.5887 (5)0.3330 (5)0.067 (3)
H3A10.1463760.6307960.3803280.080*
C4A10.2544 (7)0.5734 (5)0.3331 (5)0.069 (3)
H4A10.2553870.5348580.2831780.083*
C5A10.3088 (6)0.5291 (6)0.4169 (5)0.065 (2)
H5A10.3083270.5678290.4667950.078*
C6A10.4145 (5)0.5059 (7)0.4220 (6)0.096 (3)
H6A10.4393480.4643910.4691700.144*
H6A20.4559100.5580380.4333400.144*
H6A30.4175290.4802470.3667520.144*
O2A10.0818 (5)0.4538 (4)0.2760 (3)0.0843 (19)
H2A20.1115480.4068350.2911240.126*
O3A10.0921 (5)0.6257 (4)0.2525 (3)0.095 (2)
H3A20.1136730.6755250.2479760.142*
O4A10.3012 (5)0.6531 (4)0.3232 (4)0.094 (2)
H4A20.3613270.6518050.3524380.141*
O5A10.2583 (4)0.4503 (3)0.4257 (3)0.0609 (15)
C1B10.2893 (6)0.4581 (6)0.6248 (5)0.074 (3)
H1B10.3236670.4445390.5791230.089*
C2B10.1752 (6)0.4588 (5)0.5821 (5)0.054 (2)
H2B10.1507820.3985100.5674590.064*
C3B10.1192 (5)0.4997 (5)0.6395 (5)0.052 (2)
H3B10.1223950.4592610.6889190.062*
C4B10.1666 (6)0.5834 (5)0.6776 (5)0.054 (2)
H4B10.1611540.6263390.6299190.065*
C5B10.2773 (6)0.5682 (6)0.7247 (5)0.060 (2)
H5B10.2827560.5237720.7710800.072*
C6B10.3288 (6)0.6512 (6)0.7658 (6)0.089 (3)
H6B10.4013460.6433630.7812270.133*
H6B20.3083150.6646620.8182400.133*
H6B30.3097800.6988090.7241390.133*
C7B10.4048 (8)0.3660 (7)0.7137 (6)0.127 (4)
H7B10.4253290.3383450.6662050.191*
H7B20.4131960.3252960.7620720.191*
H7B30.4462030.4171100.7334970.191*
O7B10.3057 (5)0.3903 (4)0.6845 (4)0.093 (2)
O2B10.1544 (3)0.5105 (3)0.5036 (3)0.0533 (14)
O3B10.0180 (3)0.5117 (4)0.5954 (3)0.0612 (16)
H3B20.0169890.5030390.6297790.092*
O4B10.1147 (4)0.6154 (4)0.7377 (4)0.0773 (17)
H4B20.1121700.6695160.7349960.116*
O5B10.3246 (4)0.5372 (4)0.6627 (3)0.0715 (17)
C1A20.1581 (6)0.6656 (5)0.0379 (5)0.054 (2)
H1A20.1417650.6557350.1020510.065*
C2A20.0717 (5)0.7139 (5)0.0176 (5)0.053 (2)
H2A30.0111010.6763280.0320920.064*
C3A20.0991 (6)0.7355 (5)0.0768 (5)0.056 (2)
H3A30.1013350.6803920.1098260.067*
C4A20.2001 (6)0.7773 (5)0.1074 (5)0.056 (2)
H4A30.1952940.8361530.0810660.067*
C5A20.2795 (6)0.7281 (5)0.0799 (5)0.063 (3)
H5A20.2921570.6722680.1124510.075*
C6A20.3764 (6)0.7779 (7)0.0972 (7)0.108 (4)
H6A40.4207970.7495810.0675840.162*
H6A50.4085520.7793930.1599340.162*
H6A60.3626180.8369380.0753040.162*
O2A20.0514 (4)0.7907 (3)0.0689 (3)0.0613 (15)
H2A40.0543950.7798700.1196090.092*
O3A20.0224 (4)0.7870 (4)0.0924 (4)0.0822 (18)
H3A40.0183150.7780830.1430860.123*
O4A20.2259 (5)0.7869 (4)0.1991 (3)0.099 (2)
H4A40.2590620.7438560.2227440.148*
O5A20.2486 (4)0.7104 (3)0.0111 (3)0.0638 (16)
C1B20.3082 (5)0.5083 (5)0.0125 (5)0.060 (2)
H1B20.3353410.5667390.0195390.072*
C2B20.1929 (5)0.5118 (5)0.0371 (5)0.055 (2)
H2B20.1666290.5183700.1015260.066*
C3B20.1505 (5)0.4336 (5)0.0098 (4)0.051 (2)
H3B30.1632010.3843440.0457010.061*
C4B20.1956 (5)0.4125 (5)0.0827 (5)0.050 (2)
H4B30.1822630.4599980.1204210.060*
C5B20.3071 (6)0.4009 (6)0.0978 (5)0.070 (3)
H5B20.3186400.3544200.0583080.084*
C6B20.3625 (7)0.3789 (7)0.1885 (5)0.101 (4)
H6B40.4338460.3896290.1971080.152*
H6B50.3521090.3178180.1994250.152*
H6B60.3381440.4145730.2289870.152*
C7B20.4356 (6)0.4518 (7)0.0634 (6)0.100 (3)
H7B40.4561840.5111460.0704200.150*
H7B50.4495670.4152550.1086810.150*
H7B60.4726850.4301110.0060150.150*
O7B20.3331 (4)0.4500 (4)0.0705 (3)0.0729 (17)
O2B20.1629 (4)0.5847 (3)0.0046 (3)0.0569 (14)
O3B20.0439 (4)0.4440 (3)0.0269 (3)0.0600 (15)
H3B40.0149090.4155420.0713420.090*
O4B20.1553 (4)0.3332 (3)0.1036 (3)0.0721 (17)
H4B40.1436500.3376950.1522310.108*
O5B20.3466 (4)0.4799 (4)0.0755 (3)0.0722 (17)
C1A30.1619 (5)1.1095 (5)0.1451 (5)0.051 (2)
H1A30.1353211.1684770.1266270.061*
C2A30.0957 (6)1.0671 (5)0.1914 (4)0.052 (2)
H2A50.0291951.0560760.1491950.062*
C3A30.1369 (5)0.9837 (5)0.2338 (5)0.052 (2)
H3A50.1352030.9406730.1868050.063*
C4A30.2418 (5)0.9938 (5)0.2858 (5)0.054 (2)
H4A50.2429861.0295220.3381500.065*
C5A30.3051 (6)1.0385 (6)0.2349 (5)0.066 (2)
H5A30.3075440.9995640.1856900.079*
C6A30.4115 (6)1.0609 (7)0.2829 (6)0.106 (4)
H6A70.4387331.1006500.2474900.159*
H6A80.4518561.0082130.2938320.159*
H6A90.4130121.0885160.3383720.159*
O2A30.0834 (4)1.1262 (3)0.2569 (3)0.0685 (16)
H2A60.0293251.1157950.2686370.103*
O3A30.0777 (5)0.9516 (4)0.2858 (3)0.0782 (18)
H3A60.0505090.9052430.2644220.117*
O4A30.2877 (5)0.9112 (4)0.3149 (4)0.085 (2)
H4A60.2865900.9024220.3664630.128*
O5A30.2605 (4)1.1172 (3)0.1981 (3)0.0632 (15)
C1B30.2909 (6)1.1088 (7)0.0104 (6)0.073 (3)
H1B30.3256511.1210000.0727720.088*
C2B30.1787 (5)1.1089 (6)0.0019 (4)0.056 (2)
H2B30.1552921.1696310.0001280.067*
C3B30.1196 (6)1.0669 (5)0.0853 (4)0.052 (2)
H3B50.1209801.1082430.1330060.062*
C4B30.1680 (6)0.9869 (6)0.1041 (4)0.062 (2)
H4B50.1643350.9419400.0602920.075*
C5B30.2751 (6)1.0024 (7)0.1007 (5)0.074 (3)
H5B30.2781361.0491880.1428970.089*
C6B30.3292 (7)0.9238 (6)0.1216 (6)0.101 (4)
H6B70.3998560.9377500.1130550.152*
H6B80.2994870.9067870.1822220.152*
H6B90.3232940.8761520.0830500.152*
C7B30.4102 (8)1.1990 (8)0.0228 (8)0.148 (5)
H7B70.4355201.2148030.0387170.222*
H7B80.4193581.2475110.0591130.222*
H7B90.4469931.1487350.0348510.222*
O7B30.3070 (5)1.1785 (4)0.0417 (4)0.105 (2)
O2B30.1578 (3)1.0598 (3)0.0698 (3)0.0567 (15)
O3B30.0181 (4)1.0544 (4)0.0898 (3)0.0655 (16)
H3B60.0154651.0521270.1421750.098*
O4B30.1184 (4)0.9558 (4)0.1893 (3)0.089 (2)
H4B60.0579050.9699620.2020610.133*
O5B30.3258 (4)1.0321 (4)0.0136 (3)0.0769 (18)
C1A40.1636 (6)0.9094 (5)0.6101 (5)0.058 (2)
H1A40.1409140.9200530.6633210.070*
C2A40.0871 (6)0.8537 (5)0.5488 (5)0.052 (2)
H2A70.0244050.8880220.5269670.062*
C3A40.1254 (7)0.8283 (5)0.4709 (5)0.064 (3)
H3A70.1270310.8818350.4364130.076*
C4A40.2312 (6)0.7923 (6)0.4990 (5)0.066 (2)
H4A70.2301440.7346600.5268070.079*
C5A40.2970 (6)0.8528 (5)0.5643 (5)0.065 (3)
H5A40.3043190.9080450.5343810.078*
C6A40.4013 (6)0.8124 (7)0.6014 (6)0.101 (4)
H6AX0.3952870.7593640.6329660.151*
H6AY0.4445270.8533530.6412540.151*
H6AZ0.4303580.7988740.5536760.151*
O2A40.0650 (4)0.7793 (3)0.5922 (3)0.0698 (16)
H2A80.1183360.7579900.6232570.105*
O3A40.0571 (5)0.7715 (4)0.4175 (3)0.0838 (19)
H3A80.0585970.7239410.4429860.126*
O4A40.2691 (5)0.7829 (4)0.4265 (4)0.104 (2)
H4A80.2836530.7309580.4214950.157*
O5A40.2571 (4)0.8711 (3)0.6351 (3)0.0576 (15)
C1B40.3105 (6)1.0699 (6)0.6460 (5)0.066 (3)
H1B40.3395481.0113050.6624360.079*
C2B40.1981 (6)1.0627 (5)0.6225 (5)0.052 (2)
H2B40.1769321.0546850.6769620.062*
C3B40.1467 (6)1.1400 (5)0.5753 (5)0.052 (2)
H3B70.1591541.1885060.6181960.062*
C4B40.1886 (6)1.1666 (5)0.5045 (5)0.055 (2)
H4B70.1763631.1196960.4598380.066*
C5B40.2989 (6)1.1816 (5)0.5376 (6)0.063 (3)
H5B40.3118401.2255430.5851600.076*
C6B40.3527 (8)1.2078 (7)0.4718 (6)0.104 (4)
H6BX0.4244301.1974860.4957910.156*
H6BY0.3411001.2691600.4582110.156*
H6BZ0.3277131.1736500.4186930.156*
C7B40.4500 (7)1.1195 (7)0.7541 (6)0.133 (5)
H7BX0.4710741.0590440.7615090.199*
H7BY0.4683861.1485600.8106870.199*
H7BZ0.4830551.1481710.7148600.199*
O7B40.3427 (5)1.1237 (4)0.7172 (4)0.091 (2)
O2B40.1664 (4)0.9902 (3)0.5675 (3)0.0579 (15)
O3B40.0422 (4)1.1278 (3)0.5471 (3)0.0642 (15)
H3B80.0287541.0880560.5100290.096*
O4B40.1443 (4)1.2441 (3)0.4640 (4)0.0746 (17)
H4B80.0828661.2435900.4598890.112*
O5B40.3421 (4)1.0997 (4)0.5733 (4)0.0736 (17)
O10.1048 (6)0.2846 (5)0.2275 (5)0.147 (3)
H110.0401 (12)0.279 (3)0.245 (7)0.177*
H120.111 (3)0.3377 (16)0.211 (5)0.177*
O20.1643 (6)0.2903 (4)0.2855 (4)0.116 (2)
H210.186 (5)0.277 (4)0.3388 (10)0.139*
H220.190 (4)0.253 (3)0.259 (2)0.139*
O30.0171 (6)0.2961 (5)0.7551 (4)0.131 (3)
H310.005 (4)0.263 (3)0.712 (2)0.157*
H320.076 (2)0.278 (4)0.779 (3)0.157*
O40.2092 (8)0.2831 (10)0.7982 (8)0.249 (6)
H410.234 (3)0.293 (4)0.7562 (19)0.299*
H420.246 (4)0.243 (2)0.828 (2)0.299*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A10.050 (5)0.059 (6)0.058 (5)0.001 (5)0.017 (4)0.009 (5)
C2A10.088 (6)0.061 (6)0.042 (5)0.005 (5)0.018 (5)0.000 (5)
C3A10.117 (8)0.030 (5)0.058 (5)0.002 (5)0.032 (5)0.000 (4)
C4A10.116 (7)0.034 (6)0.066 (6)0.015 (5)0.039 (5)0.004 (5)
C5A10.080 (6)0.063 (6)0.058 (5)0.012 (5)0.028 (5)0.011 (5)
C6A10.044 (6)0.142 (10)0.102 (7)0.007 (6)0.018 (5)0.018 (7)
O2A10.124 (5)0.068 (4)0.052 (3)0.008 (4)0.010 (3)0.020 (3)
O3A10.159 (6)0.063 (4)0.057 (4)0.017 (4)0.020 (4)0.026 (3)
O4A10.134 (6)0.072 (5)0.079 (4)0.029 (4)0.036 (4)0.011 (4)
O5A10.088 (4)0.039 (3)0.060 (3)0.005 (3)0.027 (3)0.004 (3)
C1B10.076 (7)0.080 (7)0.059 (6)0.034 (6)0.007 (5)0.020 (6)
C2B10.065 (6)0.047 (5)0.049 (5)0.001 (4)0.015 (4)0.001 (4)
C3B10.057 (5)0.060 (6)0.037 (4)0.010 (5)0.010 (4)0.005 (4)
C4B10.072 (6)0.052 (6)0.040 (4)0.010 (5)0.018 (4)0.000 (4)
C5B10.063 (6)0.070 (6)0.045 (5)0.010 (5)0.012 (4)0.003 (5)
C6B10.077 (7)0.063 (7)0.110 (7)0.016 (5)0.001 (6)0.022 (6)
C7B10.124 (10)0.112 (10)0.104 (8)0.040 (8)0.041 (7)0.002 (7)
O7B10.118 (6)0.069 (4)0.075 (4)0.016 (4)0.002 (4)0.013 (4)
O2B10.075 (3)0.055 (4)0.030 (3)0.011 (3)0.014 (3)0.003 (3)
O3B10.053 (3)0.080 (4)0.053 (3)0.015 (3)0.018 (3)0.002 (3)
O4B10.096 (4)0.071 (4)0.073 (4)0.006 (4)0.036 (3)0.021 (3)
O5B10.074 (4)0.084 (5)0.059 (3)0.003 (3)0.023 (3)0.004 (3)
C1A20.067 (6)0.050 (6)0.045 (5)0.012 (5)0.015 (4)0.009 (4)
C2A20.042 (5)0.050 (6)0.070 (6)0.010 (4)0.020 (4)0.009 (5)
C3A20.077 (6)0.054 (6)0.043 (5)0.006 (5)0.025 (5)0.004 (4)
C4A20.086 (6)0.037 (5)0.044 (5)0.008 (5)0.017 (5)0.003 (4)
C5A20.066 (6)0.056 (6)0.056 (6)0.005 (5)0.000 (5)0.010 (5)
C6A20.052 (6)0.117 (8)0.140 (9)0.019 (6)0.000 (6)0.003 (8)
O2A20.102 (4)0.042 (3)0.042 (3)0.014 (3)0.022 (3)0.018 (3)
O3A20.115 (5)0.067 (4)0.080 (4)0.027 (4)0.055 (4)0.011 (4)
O4A20.185 (7)0.047 (4)0.047 (4)0.016 (4)0.002 (4)0.008 (3)
O5A20.067 (4)0.056 (4)0.076 (4)0.003 (3)0.032 (3)0.006 (3)
C1B20.062 (6)0.057 (6)0.064 (6)0.010 (5)0.021 (5)0.012 (5)
C2B20.058 (5)0.059 (6)0.050 (5)0.005 (5)0.017 (4)0.001 (5)
C3B20.051 (6)0.055 (6)0.042 (5)0.000 (4)0.007 (4)0.002 (4)
C4B20.055 (6)0.048 (6)0.044 (5)0.007 (4)0.008 (4)0.004 (4)
C5B20.070 (7)0.065 (7)0.071 (6)0.000 (5)0.011 (5)0.004 (5)
C6B20.090 (8)0.126 (9)0.066 (6)0.007 (7)0.014 (5)0.020 (6)
C7B20.064 (6)0.123 (9)0.123 (8)0.012 (6)0.044 (6)0.005 (7)
O7B20.087 (4)0.072 (4)0.065 (3)0.012 (3)0.030 (3)0.003 (3)
O2B20.079 (4)0.043 (4)0.055 (3)0.004 (3)0.027 (3)0.008 (3)
O3B20.057 (4)0.055 (4)0.060 (3)0.003 (3)0.002 (3)0.010 (3)
O4B20.096 (4)0.055 (4)0.066 (4)0.002 (3)0.023 (3)0.008 (3)
O5B20.078 (4)0.073 (4)0.056 (3)0.007 (3)0.003 (3)0.011 (3)
C1A30.045 (5)0.067 (6)0.045 (5)0.015 (4)0.022 (4)0.014 (4)
C2A30.067 (5)0.052 (6)0.038 (4)0.001 (5)0.017 (4)0.013 (4)
C3A30.067 (6)0.044 (6)0.053 (5)0.005 (4)0.028 (5)0.004 (4)
C4A30.057 (5)0.051 (6)0.052 (5)0.009 (5)0.012 (4)0.003 (4)
C5A30.070 (6)0.053 (6)0.079 (6)0.000 (5)0.028 (5)0.014 (5)
C6A30.054 (6)0.161 (11)0.097 (7)0.009 (7)0.011 (5)0.005 (7)
O2A30.074 (4)0.062 (4)0.078 (4)0.001 (3)0.036 (3)0.005 (3)
O3A30.121 (5)0.059 (4)0.068 (4)0.016 (4)0.049 (3)0.008 (3)
O4A30.113 (5)0.073 (5)0.066 (4)0.021 (4)0.018 (4)0.001 (3)
O5A30.080 (4)0.049 (4)0.062 (3)0.010 (3)0.023 (3)0.002 (3)
C1B30.062 (6)0.094 (8)0.075 (6)0.020 (6)0.036 (5)0.009 (6)
C2B30.065 (6)0.064 (6)0.043 (5)0.002 (5)0.023 (4)0.014 (4)
C3B30.061 (6)0.060 (6)0.036 (4)0.003 (5)0.014 (4)0.002 (4)
C4B30.080 (6)0.068 (6)0.040 (5)0.019 (5)0.018 (4)0.008 (5)
C5B30.068 (6)0.110 (8)0.049 (5)0.013 (6)0.025 (5)0.009 (5)
C6B30.077 (7)0.119 (9)0.109 (7)0.040 (6)0.027 (6)0.031 (7)
C7B30.146 (10)0.129 (11)0.205 (13)0.053 (8)0.111 (9)0.018 (9)
O7B30.117 (5)0.099 (6)0.125 (5)0.028 (4)0.075 (4)0.015 (4)
O2B30.073 (3)0.057 (4)0.047 (3)0.008 (3)0.027 (3)0.005 (3)
O3B30.064 (4)0.083 (4)0.049 (3)0.014 (3)0.013 (3)0.002 (3)
O4B30.079 (4)0.112 (5)0.068 (4)0.028 (4)0.010 (3)0.032 (4)
O5B30.070 (4)0.107 (5)0.059 (4)0.003 (4)0.027 (3)0.011 (4)
C1A40.046 (5)0.064 (6)0.063 (5)0.003 (5)0.010 (4)0.002 (5)
C2A40.061 (5)0.039 (6)0.052 (5)0.015 (4)0.010 (4)0.006 (4)
C3A40.099 (7)0.048 (6)0.043 (5)0.022 (5)0.019 (5)0.003 (4)
C4A40.086 (7)0.052 (6)0.067 (6)0.002 (5)0.033 (5)0.003 (5)
C5A40.079 (6)0.053 (6)0.067 (6)0.018 (5)0.023 (5)0.004 (5)
C6A40.051 (6)0.133 (10)0.121 (8)0.032 (6)0.027 (6)0.018 (7)
O2A40.095 (4)0.045 (4)0.066 (4)0.016 (3)0.016 (3)0.020 (3)
O3A40.118 (5)0.056 (4)0.063 (4)0.024 (4)0.000 (3)0.002 (3)
O4A40.188 (6)0.072 (4)0.083 (4)0.001 (5)0.088 (4)0.012 (4)
O5A40.063 (4)0.058 (4)0.049 (3)0.005 (3)0.010 (3)0.002 (3)
C1B40.072 (6)0.061 (6)0.057 (5)0.001 (5)0.007 (5)0.012 (5)
C2B40.071 (6)0.032 (5)0.054 (5)0.009 (5)0.020 (4)0.005 (4)
C3B40.059 (5)0.062 (6)0.041 (5)0.003 (5)0.025 (4)0.013 (4)
C4B40.075 (6)0.036 (5)0.052 (5)0.004 (5)0.014 (5)0.004 (4)
C5B40.064 (6)0.032 (6)0.089 (7)0.001 (5)0.013 (5)0.004 (5)
C6B40.136 (9)0.085 (8)0.105 (8)0.009 (7)0.056 (7)0.021 (6)
C7B40.099 (9)0.121 (10)0.138 (9)0.031 (8)0.036 (7)0.034 (8)
O7B40.120 (5)0.069 (4)0.067 (4)0.012 (4)0.004 (4)0.016 (4)
O2B40.091 (4)0.033 (3)0.050 (3)0.012 (3)0.019 (3)0.002 (3)
O3B40.075 (4)0.049 (4)0.071 (4)0.002 (3)0.023 (3)0.012 (3)
O4B40.086 (4)0.049 (4)0.090 (4)0.001 (3)0.028 (4)0.009 (3)
O5B40.066 (4)0.074 (5)0.084 (4)0.000 (3)0.025 (3)0.017 (4)
O10.243 (9)0.089 (6)0.114 (6)0.010 (6)0.057 (6)0.003 (5)
O20.191 (7)0.070 (5)0.085 (4)0.014 (5)0.037 (5)0.014 (4)
O30.223 (8)0.116 (6)0.060 (4)0.022 (6)0.047 (4)0.003 (4)
O40.185 (10)0.263 (13)0.283 (13)0.015 (10)0.038 (9)0.057 (12)
Geometric parameters (Å, º) top
C1A1—O2B11.403 (8)C2A3—O2A31.438 (8)
C1A1—O5A11.420 (8)C2A3—C3A31.499 (10)
C1A1—C2A11.499 (10)C2A3—H2A51.0000
C1A1—H1A11.0000C3A3—O3A31.413 (9)
C2A1—O2A11.429 (8)C3A3—C4A31.478 (9)
C2A1—C3A11.472 (11)C3A3—H3A51.0000
C2A1—H2A11.0000C4A3—O4A31.449 (9)
C3A1—O3A11.424 (9)C4A3—C5A31.520 (10)
C3A1—C4A11.521 (11)C4A3—H4A51.0000
C3A1—H3A11.0000C5A3—O5A31.421 (9)
C4A1—O4A11.427 (9)C5A3—C6A31.512 (10)
C4A1—C5A11.512 (11)C5A3—H5A31.0000
C4A1—H4A11.0000C6A3—H6A70.9800
C5A1—O5A11.435 (9)C6A3—H6A80.9800
C5A1—C6A11.497 (10)C6A3—H6A90.9800
C5A1—H5A11.0000O2A3—H2A60.8400
C6A1—H6A10.9800O3A3—H3A60.8400
C6A1—H6A20.9800O4A3—H4A60.8400
C6A1—H6A30.9800C1B3—O5B31.379 (10)
O2A1—H2A20.8400C1B3—O7B31.419 (10)
O3A1—H3A20.8400C1B3—C2B31.521 (10)
O4A1—H4A20.8400C1B3—H1B31.0000
C1B1—O7B11.395 (10)C2B3—O2B31.470 (8)
C1B1—O5B11.396 (10)C2B3—C3B31.509 (10)
C1B1—C2B11.549 (10)C2B3—H2B31.0000
C1B1—H1B11.0000C3B3—O3B31.410 (8)
C2B1—O2B11.450 (8)C3B3—C4B31.480 (10)
C2B1—C3B11.498 (10)C3B3—H3B51.0000
C2B1—H2B11.0000C4B3—O4B31.432 (8)
C3B1—O3B11.405 (8)C4B3—C5B31.497 (10)
C3B1—C4B11.506 (10)C4B3—H4B51.0000
C3B1—H3B11.0000C5B3—O5B31.452 (9)
C4B1—O4B11.439 (8)C5B3—C6B31.518 (12)
C4B1—C5B11.537 (10)C5B3—H5B31.0000
C4B1—H4B11.0000C6B3—H6B70.9800
C5B1—O5B11.416 (9)C6B3—H6B80.9800
C5B1—C6B11.531 (11)C6B3—H6B90.9800
C5B1—H5B11.0000C7B3—O7B31.423 (11)
C6B1—H6B10.9800C7B3—H7B70.9800
C6B1—H6B20.9800C7B3—H7B80.9800
C6B1—H6B30.9800C7B3—H7B90.9800
C7B1—O7B11.383 (10)O3B3—H3B60.8400
C7B1—H7B10.9800O4B3—H4B60.8400
C7B1—H7B20.9800C1A4—O5A41.388 (8)
C7B1—H7B30.9800C1A4—O2B41.432 (9)
O3B1—H3B20.8400C1A4—C2A41.505 (10)
O4B1—H4B20.8400C1A4—H1A41.0000
C1A2—O5A21.400 (9)C2A4—O2A41.421 (9)
C1A2—O2B21.420 (8)C2A4—C3A41.536 (10)
C1A2—C2A21.526 (10)C2A4—H2A71.0000
C1A2—H1A21.0000C3A4—O3A41.401 (9)
C2A2—O2A21.428 (9)C3A4—C4A41.524 (11)
C2A2—C3A21.490 (10)C3A4—H3A71.0000
C2A2—H2A31.0000C4A4—O4A41.407 (9)
C3A2—O3A21.409 (8)C4A4—C5A41.511 (11)
C3A2—C4A21.503 (10)C4A4—H4A71.0000
C3A2—H3A31.0000C5A4—O5A41.421 (9)
C4A2—O4A21.418 (8)C5A4—C6A41.543 (11)
C4A2—C5A21.506 (10)C5A4—H5A41.0000
C4A2—H4A31.0000C6A4—H6AX0.9800
C5A2—O5A21.426 (9)C6A4—H6AY0.9800
C5A2—C6A21.514 (11)C6A4—H6AZ0.9800
C5A2—H5A21.0000O2A4—H2A80.8400
C6A2—H6A40.9800O3A4—H3A80.8400
C6A2—H6A50.9800O4A4—H4A80.8400
C6A2—H6A60.9800C1B4—O7B41.383 (9)
O2A2—H2A40.8400C1B4—O5B41.427 (9)
O3A2—H3A40.8400C1B4—C2B41.512 (10)
O4A2—H4A40.8400C1B4—H1B41.0000
C1B2—O7B21.405 (8)C2B4—O2B41.421 (8)
C1B2—O5B21.430 (9)C2B4—C3B41.491 (10)
C1B2—C2B21.546 (10)C2B4—H2B41.0000
C1B2—H1B21.0000C3B4—O3B41.415 (8)
C2B2—O2B21.431 (8)C3B4—C4B41.467 (10)
C2B2—C3B21.465 (10)C3B4—H3B71.0000
C2B2—H2B21.0000C4B4—O4B41.423 (8)
C3B2—O3B21.443 (8)C4B4—C5B41.501 (10)
C3B2—C4B21.477 (9)C4B4—H4B71.0000
C3B2—H3B31.0000C5B4—O5B41.452 (9)
C4B2—O4B21.428 (8)C5B4—C6B41.505 (12)
C4B2—C5B21.517 (10)C5B4—H5B41.0000
C4B2—H4B31.0000C6B4—H6BX0.9800
C5B2—O5B21.428 (10)C6B4—H6BY0.9800
C5B2—C6B21.484 (11)C6B4—H6BZ0.9800
C5B2—H5B21.0000C7B4—O7B41.451 (10)
C6B2—H6B40.9800C7B4—H7BX0.9800
C6B2—H6B50.9800C7B4—H7BY0.9800
C6B2—H6B60.9800C7B4—H7BZ0.9800
C7B2—O7B21.402 (9)O3B4—H3B80.8400
C7B2—H7B40.9800O4B4—H4B80.8400
C7B2—H7B50.9800O1—H110.873 (14)
C7B2—H7B60.9800O1—H120.860 (14)
O3B2—H3B40.8400O2—H210.850 (14)
O4B2—H4B40.8400O2—H220.849 (14)
C1A3—O5A31.409 (8)O3—H310.849 (14)
C1A3—O2B31.417 (8)O3—H320.847 (14)
C1A3—C2A31.485 (10)O4—H410.850 (14)
C1A3—H1A31.0000O4—H420.854 (14)
O2B1—C1A1—O5A1112.4 (6)O2B3—C1A3—C2A3107.3 (6)
O2B1—C1A1—C2A1109.3 (6)O5A3—C1A3—H1A3108.7
O5A1—C1A1—C2A1112.1 (6)O2B3—C1A3—H1A3108.7
O2B1—C1A1—H1A1107.6C2A3—C1A3—H1A3108.7
O5A1—C1A1—H1A1107.6O2A3—C2A3—C1A3107.2 (6)
C2A1—C1A1—H1A1107.6O2A3—C2A3—C3A3109.1 (6)
O2A1—C2A1—C3A1108.8 (6)C1A3—C2A3—C3A3113.2 (7)
O2A1—C2A1—C1A1109.9 (7)O2A3—C2A3—H2A5109.1
C3A1—C2A1—C1A1110.8 (7)C1A3—C2A3—H2A5109.1
O2A1—C2A1—H2A1109.1C3A3—C2A3—H2A5109.1
C3A1—C2A1—H2A1109.1O3A3—C3A3—C4A3110.6 (6)
C1A1—C2A1—H2A1109.1O3A3—C3A3—C2A3110.9 (6)
O3A1—C3A1—C2A1109.9 (7)C4A3—C3A3—C2A3111.2 (7)
O3A1—C3A1—C4A1110.2 (7)O3A3—C3A3—H3A5108.0
C2A1—C3A1—C4A1112.5 (7)C4A3—C3A3—H3A5108.0
O3A1—C3A1—H3A1108.0C2A3—C3A3—H3A5108.0
C2A1—C3A1—H3A1108.0O4A3—C4A3—C3A3111.6 (7)
C4A1—C3A1—H3A1108.0O4A3—C4A3—C5A3107.7 (6)
O4A1—C4A1—C5A1111.0 (7)C3A3—C4A3—C5A3112.1 (6)
O4A1—C4A1—C3A1110.3 (7)O4A3—C4A3—H4A5108.4
C5A1—C4A1—C3A1109.0 (7)C3A3—C4A3—H4A5108.4
O4A1—C4A1—H4A1108.8C5A3—C4A3—H4A5108.4
C5A1—C4A1—H4A1108.8O5A3—C5A3—C6A3105.6 (7)
C3A1—C4A1—H4A1108.8O5A3—C5A3—C4A3111.2 (6)
O5A1—C5A1—C6A1107.0 (7)C6A3—C5A3—C4A3117.8 (7)
O5A1—C5A1—C4A1109.5 (6)O5A3—C5A3—H5A3107.3
C6A1—C5A1—C4A1113.8 (7)C6A3—C5A3—H5A3107.3
O5A1—C5A1—H5A1108.8C4A3—C5A3—H5A3107.3
C6A1—C5A1—H5A1108.8C5A3—C6A3—H6A7109.5
C4A1—C5A1—H5A1108.8C5A3—C6A3—H6A8109.5
C5A1—C6A1—H6A1109.5H6A7—C6A3—H6A8109.5
C5A1—C6A1—H6A2109.5C5A3—C6A3—H6A9109.5
H6A1—C6A1—H6A2109.5H6A7—C6A3—H6A9109.5
C5A1—C6A1—H6A3109.5H6A8—C6A3—H6A9109.5
H6A1—C6A1—H6A3109.5C2A3—O2A3—H2A6109.5
H6A2—C6A1—H6A3109.5C3A3—O3A3—H3A6109.5
C2A1—O2A1—H2A2109.5C4A3—O4A3—H4A6109.5
C3A1—O3A1—H3A2109.5C1A3—O5A3—C5A3114.8 (6)
C4A1—O4A1—H4A2109.5O5B3—C1B3—O7B3111.6 (7)
C1A1—O5A1—C5A1112.7 (6)O5B3—C1B3—C2B3113.2 (7)
O7B1—C1B1—O5B1113.1 (7)O7B3—C1B3—C2B3104.2 (7)
O7B1—C1B1—C2B1105.2 (7)O5B3—C1B3—H1B3109.2
O5B1—C1B1—C2B1112.5 (7)O7B3—C1B3—H1B3109.2
O7B1—C1B1—H1B1108.6C2B3—C1B3—H1B3109.2
O5B1—C1B1—H1B1108.6O2B3—C2B3—C3B3106.8 (6)
C2B1—C1B1—H1B1108.6O2B3—C2B3—C1B3108.4 (6)
O2B1—C2B1—C3B1106.4 (6)C3B3—C2B3—C1B3114.0 (7)
O2B1—C2B1—C1B1108.8 (6)O2B3—C2B3—H2B3109.2
C3B1—C2B1—C1B1112.2 (6)C3B3—C2B3—H2B3109.2
O2B1—C2B1—H2B1109.8C1B3—C2B3—H2B3109.2
C3B1—C2B1—H2B1109.8O3B3—C3B3—C4B3112.4 (7)
C1B1—C2B1—H2B1109.8O3B3—C3B3—C2B3113.6 (6)
O3B1—C3B1—C2B1111.6 (6)C4B3—C3B3—C2B3111.8 (6)
O3B1—C3B1—C4B1110.9 (6)O3B3—C3B3—H3B5106.1
C2B1—C3B1—C4B1111.6 (6)C4B3—C3B3—H3B5106.1
O3B1—C3B1—H3B1107.5C2B3—C3B3—H3B5106.1
C2B1—C3B1—H3B1107.5O4B3—C4B3—C3B3110.3 (6)
C4B1—C3B1—H3B1107.5O4B3—C4B3—C5B3107.8 (6)
O4B1—C4B1—C3B1108.8 (6)C3B3—C4B3—C5B3111.3 (7)
O4B1—C4B1—C5B1110.3 (6)O4B3—C4B3—H4B5109.1
C3B1—C4B1—C5B1109.7 (7)C3B3—C4B3—H4B5109.1
O4B1—C4B1—H4B1109.4C5B3—C4B3—H4B5109.1
C3B1—C4B1—H4B1109.4O5B3—C5B3—C4B3107.7 (6)
C5B1—C4B1—H4B1109.4O5B3—C5B3—C6B3109.0 (7)
O5B1—C5B1—C6B1109.4 (7)C4B3—C5B3—C6B3114.5 (8)
O5B1—C5B1—C4B1107.9 (6)O5B3—C5B3—H5B3108.5
C6B1—C5B1—C4B1111.8 (7)C4B3—C5B3—H5B3108.5
O5B1—C5B1—H5B1109.3C6B3—C5B3—H5B3108.5
C6B1—C5B1—H5B1109.3C5B3—C6B3—H6B7109.5
C4B1—C5B1—H5B1109.3C5B3—C6B3—H6B8109.5
C5B1—C6B1—H6B1109.5H6B7—C6B3—H6B8109.5
C5B1—C6B1—H6B2109.5C5B3—C6B3—H6B9109.5
H6B1—C6B1—H6B2109.5H6B7—C6B3—H6B9109.5
C5B1—C6B1—H6B3109.5H6B8—C6B3—H6B9109.5
H6B1—C6B1—H6B3109.5O7B3—C7B3—H7B7109.5
H6B2—C6B1—H6B3109.5O7B3—C7B3—H7B8109.5
O7B1—C7B1—H7B1109.5H7B7—C7B3—H7B8109.5
O7B1—C7B1—H7B2109.5O7B3—C7B3—H7B9109.5
H7B1—C7B1—H7B2109.5H7B7—C7B3—H7B9109.5
O7B1—C7B1—H7B3109.5H7B8—C7B3—H7B9109.5
H7B1—C7B1—H7B3109.5C1B3—O7B3—C7B3111.1 (8)
H7B2—C7B1—H7B3109.5C1A3—O2B3—C2B3114.2 (6)
C7B1—O7B1—C1B1113.4 (8)C3B3—O3B3—H3B6109.5
C1A1—O2B1—C2B1113.9 (6)C4B3—O4B3—H4B6109.5
C3B1—O3B1—H3B2109.5C1B3—O5B3—C5B3115.1 (7)
C4B1—O4B1—H4B2109.5O5A4—C1A4—O2B4111.5 (6)
C1B1—O5B1—C5B1115.2 (7)O5A4—C1A4—C2A4112.6 (7)
O5A2—C1A2—O2B2111.8 (6)O2B4—C1A4—C2A4107.4 (6)
O5A2—C1A2—C2A2112.8 (6)O5A4—C1A4—H1A4108.4
O2B2—C1A2—C2A2105.6 (6)O2B4—C1A4—H1A4108.4
O5A2—C1A2—H1A2108.8C2A4—C1A4—H1A4108.4
O2B2—C1A2—H1A2108.8O2A4—C2A4—C1A4110.9 (6)
C2A2—C1A2—H1A2108.8O2A4—C2A4—C3A4111.0 (6)
O2A2—C2A2—C3A2110.5 (6)C1A4—C2A4—C3A4109.4 (7)
O2A2—C2A2—C1A2109.3 (6)O2A4—C2A4—H2A7108.5
C3A2—C2A2—C1A2109.1 (6)C1A4—C2A4—H2A7108.5
O2A2—C2A2—H2A3109.3C3A4—C2A4—H2A7108.5
C3A2—C2A2—H2A3109.3O3A4—C3A4—C4A4113.0 (7)
C1A2—C2A2—H2A3109.3O3A4—C3A4—C2A4109.0 (7)
O3A2—C3A2—C2A2108.0 (6)C4A4—C3A4—C2A4112.2 (6)
O3A2—C3A2—C4A2112.7 (7)O3A4—C3A4—H3A7107.5
C2A2—C3A2—C4A2112.5 (7)C4A4—C3A4—H3A7107.5
O3A2—C3A2—H3A3107.8C2A4—C3A4—H3A7107.5
C2A2—C3A2—H3A3107.8O4A4—C4A4—C5A4109.8 (7)
C4A2—C3A2—H3A3107.8O4A4—C4A4—C3A4110.2 (7)
O4A2—C4A2—C3A2109.4 (7)C5A4—C4A4—C3A4109.4 (7)
O4A2—C4A2—C5A2110.9 (6)O4A4—C4A4—H4A7109.1
C3A2—C4A2—C5A2112.6 (7)C5A4—C4A4—H4A7109.1
O4A2—C4A2—H4A3107.9C3A4—C4A4—H4A7109.1
C3A2—C4A2—H4A3107.9O5A4—C5A4—C4A4112.2 (7)
C5A2—C4A2—H4A3107.9O5A4—C5A4—C6A4107.9 (7)
O5A2—C5A2—C4A2110.8 (6)C4A4—C5A4—C6A4110.1 (8)
O5A2—C5A2—C6A2106.8 (7)O5A4—C5A4—H5A4108.9
C4A2—C5A2—C6A2112.3 (8)C4A4—C5A4—H5A4108.9
O5A2—C5A2—H5A2109.0C6A4—C5A4—H5A4108.9
C4A2—C5A2—H5A2109.0C5A4—C6A4—H6AX109.5
C6A2—C5A2—H5A2109.0C5A4—C6A4—H6AY109.5
C5A2—C6A2—H6A4109.5H6AX—C6A4—H6AY109.5
C5A2—C6A2—H6A5109.5C5A4—C6A4—H6AZ109.5
H6A4—C6A2—H6A5109.5H6AX—C6A4—H6AZ109.5
C5A2—C6A2—H6A6109.5H6AY—C6A4—H6AZ109.5
H6A4—C6A2—H6A6109.5C2A4—O2A4—H2A8109.5
H6A5—C6A2—H6A6109.5C3A4—O3A4—H3A8109.5
C2A2—O2A2—H2A4109.5C4A4—O4A4—H4A8109.5
C3A2—O3A2—H3A4109.5C1A4—O5A4—C5A4113.4 (6)
C4A2—O4A2—H4A4109.5O7B4—C1B4—O5B4111.9 (7)
C1A2—O5A2—C5A2113.7 (6)O7B4—C1B4—C2B4109.2 (7)
O7B2—C1B2—O5B2111.0 (6)O5B4—C1B4—C2B4110.6 (6)
O7B2—C1B2—C2B2106.4 (6)O7B4—C1B4—H1B4108.4
O5B2—C1B2—C2B2110.1 (6)O5B4—C1B4—H1B4108.4
O7B2—C1B2—H1B2109.8C2B4—C1B4—H1B4108.4
O5B2—C1B2—H1B2109.8O2B4—C2B4—C3B4107.3 (6)
C2B2—C1B2—H1B2109.8O2B4—C2B4—C1B4109.7 (6)
O2B2—C2B2—C3B2108.7 (6)C3B4—C2B4—C1B4112.7 (7)
O2B2—C2B2—C1B2109.0 (6)O2B4—C2B4—H2B4109.0
C3B2—C2B2—C1B2111.8 (7)C3B4—C2B4—H2B4109.0
O2B2—C2B2—H2B2109.1C1B4—C2B4—H2B4109.0
C3B2—C2B2—H2B2109.1O3B4—C3B4—C4B4112.6 (6)
C1B2—C2B2—H2B2109.1O3B4—C3B4—C2B4111.3 (7)
O3B2—C3B2—C2B2109.3 (6)C4B4—C3B4—C2B4112.3 (7)
O3B2—C3B2—C4B2110.3 (6)O3B4—C3B4—H3B7106.7
C2B2—C3B2—C4B2112.7 (6)C4B4—C3B4—H3B7106.7
O3B2—C3B2—H3B3108.2C2B4—C3B4—H3B7106.7
C2B2—C3B2—H3B3108.2O4B4—C4B4—C3B4111.9 (7)
C4B2—C3B2—H3B3108.2O4B4—C4B4—C5B4107.7 (6)
O4B2—C4B2—C3B2109.8 (6)C3B4—C4B4—C5B4110.9 (7)
O4B2—C4B2—C5B2108.2 (7)O4B4—C4B4—H4B7108.8
C3B2—C4B2—C5B2108.7 (7)C3B4—C4B4—H4B7108.8
O4B2—C4B2—H4B3110.0C5B4—C4B4—H4B7108.8
C3B2—C4B2—H4B3110.0O5B4—C5B4—C4B4106.1 (6)
C5B2—C4B2—H4B3110.0O5B4—C5B4—C6B4106.2 (7)
O5B2—C5B2—C6B2108.0 (7)C4B4—C5B4—C6B4117.0 (8)
O5B2—C5B2—C4B2107.8 (7)O5B4—C5B4—H5B4109.1
C6B2—C5B2—C4B2114.7 (8)C4B4—C5B4—H5B4109.1
O5B2—C5B2—H5B2108.7C6B4—C5B4—H5B4109.1
C6B2—C5B2—H5B2108.7C5B4—C6B4—H6BX109.5
C4B2—C5B2—H5B2108.7C5B4—C6B4—H6BY109.5
C5B2—C6B2—H6B4109.5H6BX—C6B4—H6BY109.5
C5B2—C6B2—H6B5109.5C5B4—C6B4—H6BZ109.5
H6B4—C6B2—H6B5109.5H6BX—C6B4—H6BZ109.5
C5B2—C6B2—H6B6109.5H6BY—C6B4—H6BZ109.5
H6B4—C6B2—H6B6109.5O7B4—C7B4—H7BX109.5
H6B5—C6B2—H6B6109.5O7B4—C7B4—H7BY109.5
O7B2—C7B2—H7B4109.5H7BX—C7B4—H7BY109.5
O7B2—C7B2—H7B5109.5O7B4—C7B4—H7BZ109.5
H7B4—C7B2—H7B5109.5H7BX—C7B4—H7BZ109.5
O7B2—C7B2—H7B6109.5H7BY—C7B4—H7BZ109.5
H7B4—C7B2—H7B6109.5C1B4—O7B4—C7B4111.8 (7)
H7B5—C7B2—H7B6109.5C2B4—O2B4—C1A4116.2 (5)
C7B2—O7B2—C1B2111.4 (7)C3B4—O3B4—H3B8109.5
C1A2—O2B2—C2B2117.2 (6)C4B4—O4B4—H4B8109.5
C3B2—O3B2—H3B4109.5C1B4—O5B4—C5B4114.6 (6)
C4B2—O4B2—H4B4109.5H11—O1—H12102 (2)
C5B2—O5B2—C1B2116.3 (6)H21—O2—H22104 (2)
O5A3—C1A3—O2B3111.3 (6)H31—O3—H32105 (2)
O5A3—C1A3—C2A3112.0 (6)H41—O4—H42105 (2)
O2B1—C1A1—C2A1—O2A1166.8 (6)O5A3—C1A3—C2A3—O2A369.4 (7)
O5A1—C1A1—C2A1—O2A167.9 (9)O2B3—C1A3—C2A3—O2A3168.2 (5)
O2B1—C1A1—C2A1—C3A172.8 (8)O5A3—C1A3—C2A3—C3A351.0 (8)
O5A1—C1A1—C2A1—C3A152.4 (9)O2B3—C1A3—C2A3—C3A371.4 (7)
O2A1—C2A1—C3A1—O3A152.9 (9)O2A3—C2A3—C3A3—O3A353.3 (8)
C1A1—C2A1—C3A1—O3A1173.9 (7)C1A3—C2A3—C3A3—O3A3172.6 (6)
O2A1—C2A1—C3A1—C4A170.3 (8)O2A3—C2A3—C3A3—C4A370.2 (8)
C1A1—C2A1—C3A1—C4A150.7 (9)C1A3—C2A3—C3A3—C4A349.1 (8)
O3A1—C3A1—C4A1—O4A161.3 (8)O3A3—C3A3—C4A3—O4A366.1 (8)
C2A1—C3A1—C4A1—O4A1175.6 (6)C2A3—C3A3—C4A3—O4A3170.2 (6)
O3A1—C3A1—C4A1—C5A1176.5 (7)O3A3—C3A3—C4A3—C5A3173.0 (6)
C2A1—C3A1—C4A1—C5A153.4 (9)C2A3—C3A3—C4A3—C5A349.3 (9)
O4A1—C4A1—C5A1—O5A1178.6 (6)O4A3—C4A3—C5A3—O5A3175.3 (6)
C3A1—C4A1—C5A1—O5A156.8 (8)C3A3—C4A3—C5A3—O5A352.1 (9)
O4A1—C4A1—C5A1—C6A161.7 (10)O4A3—C4A3—C5A3—C6A362.7 (9)
C3A1—C4A1—C5A1—C6A1176.5 (7)C3A3—C4A3—C5A3—C6A3174.1 (8)
O2B1—C1A1—O5A1—C5A164.7 (7)O2B3—C1A3—O5A3—C5A365.1 (8)
C2A1—C1A1—O5A1—C5A158.8 (8)C2A3—C1A3—O5A3—C5A355.0 (8)
C6A1—C5A1—O5A1—C1A1175.0 (6)C6A3—C5A3—O5A3—C1A3175.9 (6)
C4A1—C5A1—O5A1—C1A161.2 (8)C4A3—C5A3—O5A3—C1A355.3 (8)
O7B1—C1B1—C2B1—O2B1164.4 (6)O5B3—C1B3—C2B3—O2B377.3 (8)
O5B1—C1B1—C2B1—O2B172.1 (8)O7B3—C1B3—C2B3—O2B3161.3 (6)
O7B1—C1B1—C2B1—C3B178.2 (8)O5B3—C1B3—C2B3—C3B341.5 (10)
O5B1—C1B1—C2B1—C3B145.4 (9)O7B3—C1B3—C2B3—C3B380.0 (9)
O2B1—C2B1—C3B1—O3B152.2 (8)O2B3—C2B3—C3B3—O3B350.5 (8)
C1B1—C2B1—C3B1—O3B1171.1 (6)C1B3—C2B3—C3B3—O3B3170.1 (7)
O2B1—C2B1—C3B1—C4B172.5 (7)O2B3—C2B3—C3B3—C4B378.1 (8)
C1B1—C2B1—C3B1—C4B146.3 (8)C1B3—C2B3—C3B3—C4B341.6 (9)
O3B1—C3B1—C4B1—O4B159.8 (7)O3B3—C3B3—C4B3—O4B359.3 (8)
C2B1—C3B1—C4B1—O4B1175.1 (6)C2B3—C3B3—C4B3—O4B3171.5 (6)
O3B1—C3B1—C4B1—C5B1179.5 (6)O3B3—C3B3—C4B3—C5B3178.9 (6)
C2B1—C3B1—C4B1—C5B154.4 (8)C2B3—C3B3—C4B3—C5B351.9 (8)
O4B1—C4B1—C5B1—O5B1179.8 (6)O4B3—C4B3—C5B3—O5B3178.7 (7)
C3B1—C4B1—C5B1—O5B160.4 (8)C3B3—C4B3—C5B3—O5B360.2 (9)
O4B1—C4B1—C5B1—C6B159.4 (9)O4B3—C4B3—C5B3—C6B357.4 (9)
C3B1—C4B1—C5B1—C6B1179.2 (7)C3B3—C4B3—C5B3—C6B3178.5 (7)
O5B1—C1B1—O7B1—C7B171.8 (9)O5B3—C1B3—O7B3—C7B370.1 (9)
C2B1—C1B1—O7B1—C7B1165.1 (7)C2B3—C1B3—O7B3—C7B3167.3 (8)
O5A1—C1A1—O2B1—C2B178.6 (8)O5A3—C1A3—O2B3—C2B383.7 (7)
C2A1—C1A1—O2B1—C2B1156.3 (6)C2A3—C1A3—O2B3—C2B3153.5 (6)
C3B1—C2B1—O2B1—C1A1151.5 (6)C3B3—C2B3—O2B3—C1A3149.4 (6)
C1B1—C2B1—O2B1—C1A187.4 (7)C1B3—C2B3—O2B3—C1A387.4 (8)
O7B1—C1B1—O5B1—C5B163.7 (9)O7B3—C1B3—O5B3—C5B364.5 (9)
C2B1—C1B1—O5B1—C5B155.4 (8)C2B3—C1B3—O5B3—C5B352.7 (9)
C6B1—C5B1—O5B1—C1B1175.6 (6)C4B3—C5B3—O5B3—C1B361.9 (9)
C4B1—C5B1—O5B1—C1B162.6 (8)C6B3—C5B3—O5B3—C1B3173.3 (7)
O5A2—C1A2—C2A2—O2A266.6 (8)O5A4—C1A4—C2A4—O2A468.7 (8)
O2B2—C1A2—C2A2—O2A2171.0 (6)O2B4—C1A4—C2A4—O2A4168.2 (6)
O5A2—C1A2—C2A2—C3A254.3 (8)O5A4—C1A4—C2A4—C3A454.0 (8)
O2B2—C1A2—C2A2—C3A268.1 (8)O2B4—C1A4—C2A4—C3A469.1 (8)
O2A2—C2A2—C3A2—O3A254.3 (8)O2A4—C2A4—C3A4—O3A453.1 (8)
C1A2—C2A2—C3A2—O3A2174.5 (6)C1A4—C2A4—C3A4—O3A4175.8 (6)
O2A2—C2A2—C3A2—C4A270.7 (8)O2A4—C2A4—C3A4—C4A472.9 (8)
C1A2—C2A2—C3A2—C4A249.5 (9)C1A4—C2A4—C3A4—C4A449.8 (9)
O3A2—C3A2—C4A2—O4A264.1 (8)O3A4—C3A4—C4A4—O4A465.7 (9)
C2A2—C3A2—C4A2—O4A2173.4 (7)C2A4—C3A4—C4A4—O4A4170.6 (7)
O3A2—C3A2—C4A2—C5A2172.1 (6)O3A4—C3A4—C4A4—C5A4173.5 (6)
C2A2—C3A2—C4A2—C5A249.6 (9)C2A4—C3A4—C4A4—C5A449.8 (9)
O4A2—C4A2—C5A2—O5A2173.8 (6)O4A4—C4A4—C5A4—O5A4174.4 (7)
C3A2—C4A2—C5A2—O5A250.8 (9)C3A4—C4A4—C5A4—O5A453.3 (9)
O4A2—C4A2—C5A2—C6A266.9 (9)O4A4—C4A4—C5A4—C6A465.4 (9)
C3A2—C4A2—C5A2—C6A2170.1 (7)C3A4—C4A4—C5A4—C6A4173.5 (7)
O2B2—C1A2—O5A2—C5A259.7 (8)O2B4—C1A4—O5A4—C5A460.8 (8)
C2A2—C1A2—O5A2—C5A259.2 (8)C2A4—C1A4—O5A4—C5A460.0 (8)
C4A2—C5A2—O5A2—C1A256.3 (8)C4A4—C5A4—O5A4—C1A459.7 (9)
C6A2—C5A2—O5A2—C1A2178.9 (7)C6A4—C5A4—O5A4—C1A4178.8 (7)
O7B2—C1B2—C2B2—O2B2165.9 (6)O7B4—C1B4—C2B4—O2B4163.3 (6)
O5B2—C1B2—C2B2—O2B273.8 (8)O5B4—C1B4—C2B4—O2B473.2 (8)
O7B2—C1B2—C2B2—C3B273.9 (8)O7B4—C1B4—C2B4—C3B477.2 (8)
O5B2—C1B2—C2B2—C3B246.4 (9)O5B4—C1B4—C2B4—C3B446.3 (9)
O2B2—C2B2—C3B2—O3B254.2 (7)O2B4—C2B4—C3B4—O3B453.5 (8)
C1B2—C2B2—C3B2—O3B2174.5 (6)C1B4—C2B4—C3B4—O3B4174.4 (6)
O2B2—C2B2—C3B2—C4B268.8 (8)O2B4—C2B4—C3B4—C4B473.7 (8)
C1B2—C2B2—C3B2—C4B251.6 (9)C1B4—C2B4—C3B4—C4B447.2 (9)
O3B2—C3B2—C4B2—O4B261.0 (8)O3B4—C3B4—C4B4—O4B457.9 (9)
C2B2—C3B2—C4B2—O4B2176.5 (6)C2B4—C3B4—C4B4—O4B4175.6 (6)
O3B2—C3B2—C4B2—C5B2179.2 (6)O3B4—C3B4—C4B4—C5B4178.2 (6)
C2B2—C3B2—C4B2—C5B258.4 (9)C2B4—C3B4—C4B4—C5B455.3 (9)
O4B2—C4B2—C5B2—O5B2179.1 (6)O4B4—C4B4—C5B4—O5B4176.5 (6)
C3B2—C4B2—C5B2—O5B259.9 (8)C3B4—C4B4—C5B4—O5B460.8 (9)
O4B2—C4B2—C5B2—C6B260.5 (10)O4B4—C4B4—C5B4—C6B458.3 (9)
C3B2—C4B2—C5B2—C6B2179.7 (8)C3B4—C4B4—C5B4—C6B4179.0 (7)
O5B2—C1B2—O7B2—C7B269.7 (8)O5B4—C1B4—O7B4—C7B469.1 (9)
C2B2—C1B2—O7B2—C7B2170.6 (7)C2B4—C1B4—O7B4—C7B4168.2 (7)
O5A2—C1A2—O2B2—C2B290.7 (7)C3B4—C2B4—O2B4—C1A4150.0 (6)
C2A2—C1A2—O2B2—C2B2146.2 (6)C1B4—C2B4—O2B4—C1A487.2 (8)
C3B2—C2B2—O2B2—C1A2153.8 (6)O5A4—C1A4—O2B4—C2B482.4 (8)
C1B2—C2B2—O2B2—C1A284.1 (7)C2A4—C1A4—O2B4—C2B4153.8 (6)
C6B2—C5B2—O5B2—C1B2174.9 (7)O7B4—C1B4—O5B4—C5B465.3 (8)
C4B2—C5B2—O5B2—C1B260.5 (9)C2B4—C1B4—O5B4—C5B456.6 (8)
O7B2—C1B2—O5B2—C5B264.2 (8)C4B4—C5B4—O5B4—C1B463.2 (8)
C2B2—C1B2—O5B2—C5B253.3 (9)C6B4—C5B4—O5B4—C1B4171.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A1—H2A2···O20.841.962.770 (9)161
O3A1—H3A2···O4A20.842.593.366 (10)154
O3B1—H3B2···O3A3i0.841.952.766 (8)164
O4B1—H4B2···O1ii0.841.892.693 (10)158
O2A2—H2A4···O1iii0.842.042.834 (10)159
O3A2—H3A4···O3ii0.841.852.647 (9)159
O4A2—H4A4···O4A10.842.092.862 (8)152
O3B2—H3B4···O3A2iv0.842.062.710 (7)133
O4B2—H4B4···O20.842.202.952 (8)150
O2A3—H2A6···O4B1ii0.841.982.791 (8)161
O3A3—H3A6···O3ii0.841.922.741 (9)165
O4A3—H4A6···O4A40.842.132.731 (9)128
O3B3—H3B6···O2A1iii0.842.583.309 (8)146
O3B3—H3B6···O3A1iii0.842.132.855 (8)145
O4B3—H4B6···O2A1iii0.842.002.754 (9)149
C3A4—H3A7···O3A31.002.563.431 (10)146
O3A4—H3A8···O3B4i0.842.082.761 (8)138
O4A4—H4A8···O4A10.842.052.717 (9)136
O3B4—H3B8···O3B1ii0.842.022.843 (7)168
O4B4—H4B8···O2A4ii0.842.082.859 (8)155
O1—H12···O4B3iv0.86 (1)1.86 (2)2.718 (10)174 (7)
O2—H21···O4B4v0.85 (1)2.29 (4)3.030 (9)145 (6)
O2—H22···O5A3v0.85 (1)2.62 (2)3.461 (9)169 (5)
O3—H31···O3A4i0.85 (1)2.00 (4)2.695 (8)139 (5)
O3—H32···O40.85 (1)1.80 (3)2.582 (13)152 (7)
O4—H41···O7B10.85 (1)2.29 (3)3.037 (14)147 (5)
O4—H42···O7B3vi0.85 (1)2.26 (3)3.021 (14)148 (4)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y+1/2, z; (iv) x, y1/2, z; (v) x, y1, z; (vi) x, y1, z+1.
 

Acknowledgements

The DFT computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC (KTH) and HPC2N (UMU), Sweden.

Funding information

This work was supported by a grant from the Swedish Research Council (No. 2017–03703).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEriksson, L. & Widmalm, G. (2012). Acta Cryst. E68, o2221–o2222.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKubler-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). Carbohydr. Res. 342, 643–647.  PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378–381.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNorberg, T., Oscarson, S. & Szönyl, M. (1986). Carbohydr. Res. 156, 214–217.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPendrill, R., Engström, O., Volpato, A., Zerbetto, M., Polimeno, A. & Widmalm, G. (2016). Phys. Chem. Chem. Phys. 18, 3086–3096.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L. & de Jong, W. A. (2010). Comput. Phys. Commun. 181, 1477–1489.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWidmalm, G., Byrd, R. A. & Egan, W. (1992). Carbohydr. Res. 229, 195–211.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds