research communications
N-(5-iodo-4-phenylthiazol-2-yl)acetamide
and Hirshfeld surface analysis ofaCentro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico, bFacultad de Química, Universidad Autónoma de Yucatán, Calle 43 No. 613, Col. Inalámbrica, CP 97069, Mérida, Yucatán, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
*Correspondence e-mail: david.caceres@uady.mx
Two crystallographically independent molecules (A and B) are present in the of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ⋯A⋯B⋯A⋯B⋯ chains along the [001] and [010] directions through moderate N—H⋯O hydrogen bonds and C—H⋯π interactions, respectively. The overall three-dimensional network is formed by I⋯I and I⋯S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯C/C⋯H (26.2%), H⋯H (20.9%), H⋯I/I⋯H (19.4%) and H⋯O/O⋯H (6.8%) interactions.
Keywords: crystal structure; 1,3-thiazole; Hirshfeld Surface; hydrogen bonds; I⋯I and I⋯S interactions.
CCDC reference: 1908908
1. Chemical context
The 1,3-thiazole ring is a structural motif frequently found in the pharmaceutical field in antibacterial (Alam et al., 2014), antifungal (Yu et al., 2007) and antiviral (Liu et al., 2011) agents among others. In the chemotherapy of protozoal diseases, 5-bromo-2-aminothiazole derivatives have been investigated as privileged structures in biological tests against intestinal parasites such as Giardia (Mocelo-Castell et al., 2015). Halo-1,3-thiazole derivatives have proven to be suitable substrates in reactions in the presence of palladium (Wang et al., 2015; Hämmerle et al., 2010). The presence of halogens in the core of thiazole derivatives opens the door to using them as suitable substrates for coupling reactions and to expand the therapeutic potential of a compound by improving the pharmaceutical properties. Transition-metal-catalysed reactions constitute one of the most important and attractive research areas in academia, as well as in the pharmaceutical and fine chemical industries (Zhao et al., 2017; Jana et al., 2011). Cross-coupling reactions usually require, in addition to a transition metal, that the electrophilic coupling partner possesses leaving groups such as Br− or I− among others. The development of suitable halo-1,3-thiazole substrates for cross-coupling reactions allows us to report the and the Hirshfeld surface analysis of N-(5-iodo-4-phenylthiazol-2-yl)acetamide.
2. Structural commentary
The title 2-acetoamidothiazole derivative crystallizes in the monoclinic P21/c with two crystallographically independent molecules in the (Fig. 1). The principal difference between these molecules is the dihedral angle between the phenyl and thiazole rings. In molecule A, the thiazole ring (S1/N2/C3–C5) makes a dihedral angle of 38.94 (16)° with the adjacent phenyl ring (C6–C11) while for molecule B the dihedral angle between the S2/N4/C14–C16 and C17–C22 rings is 32.12 (15)°. Unlike the related compound 2-acetamido-4-p-tolyl-1,3-thiazole (Lynch et al., 2004) in which the molecule is essentially flat, the presence of the iodine atom at C5 or C16 of the title compound induces rotation of the phenyl group attached to the thiazole ring, as also observed in some bromine-substituted phenylthiazole compounds (see the Database survey).
3. Supramolecular features
In the crystal, molecules are linked by N1—H1⋯O2 and N3—H3⋯O1 moderate hydrogen bonds via a C(4) synthon (Table 1, Fig. 2), forming chains along [001] in an ⋯A⋯B⋯A⋯B⋯ fashion. In the same way, the phenyl rings of molecules A and B interact through C—H⋯π contacts along [010] and the resulting chains are further connected through I1⋯S2(1 − x, −y, 1 − z) contacts [3.7758 (9) Å] (Fig. 3). Additionally, adjacent B molecules are linked by I2⋯I2(7 − x, 1 − y, 1 − z) contacts of type I [θ1 = θ2 = 146.91 (8)°] with a length of 3.8547 (5) Å.
4. Hirshfeld surface analysis and two-dimensional fingerprints plots
A Hirshfeld surface analysis was carried out using Crystal Explorer17.5 (Turner et al., 2017) in order to acquire a better understanding of the nature of the intermolecular interactions in the title compound. The Hirshfeld surface was generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed color scale of −0.5372 (red) to 1.3937 (blue) a.u. (Fig. 4). The intense red spots on the surface are due to the N—H⋯O hydrogen bonds, resulting from the interaction of the amide group of the 2-acetoamidothiazole derivative. The overall two-dimensional fingerprint plot for the title compound is shown in Fig. 5a, and those delineated into H⋯C/C⋯H, H⋯H, H⋯I/I⋯H, H⋯O/O⋯H and I⋯S/S⋯I contacts are shown in Fig. 5b–f. The major contribution to the crystal packing is from H⋯C/C⋯H interactions (26.2%). The pair of characteristic wings in this fingerprint plot corresponds to the C—H⋯π interactions between the phenyl groups (Fig. 5b). The H⋯H and H⋯I/I⋯H contacts (Fig. 5c and 5d) make similar contributions to the total Hirshfeld surface of 20.9 and 19.4%, respectively. The reciprocal H⋯O/O⋯H interactions (6.8%) are seen as sharp symmetrical spikes with tips at de + di ∼1.9 Å and arising from the N—H⋯O hydrogen bond (Fig. 5e). Intermolecular I⋯S/S⋯I (Fig. 5f) and I⋯I interactions make smaller contributions to the Hirshfeld surface (2.2 and 1.1%, respectively).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016) for a 1,3 thiazole ring with a benzene ring and a halogen as substituents in positions 4 and 5, respectively, gave four entries for the organobromine compounds N-[5-bromo-4-(4-methylphenyl)1,3-thiazol-2-yl]-4-chlorobutanamide (CCDC 1443533; Ghabbour et al., 2016), 5,5′-dibromo-4,4′-bis(pentafluorophenyl)-2,2′-bi-1,3-thiazole (CCDC 889644; Siram et al., 2013), 1-(5-bromo-4-phenyl-1,3-thiazol-2-yl)pyrrolidin-2-one (CCDC 886962; Ghabbour, Kadi, et al., 2012) and 5-bromo-4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-amine (CCDC 886876; Ghabbour, Chia, et al., 2012). The dihedral angle between the thiazole and benzene rings in these compounds are in the range 36.69 (11) to 60.83 (3)°, with exception of N-(5-bromo-4-(4-methylphenyl)-1,3-thiazol-2-yl)-4-chlorobutanamide. In this compound the dihedral angle is smaller [8.8 (3)°] as a result of an intramolecular C—H⋯Br hydrogen bond. In the crystals of these compounds, only 5,5′-dibromo-4,4′-bis(pentafluorophenyl)-2,2′-bi-1,3-thiazole exhibits a type II halogen–halogen interaction with a Br⋯Br distance of 3.6777 (3) Å and angles of 68.88 (5) and 174.77 (5)°.
6. Synthesis and crystallization
A mixture of N-(4-phenylthiazol-2-yl) acetamide (0.5 mmol, 109 mg, 1 eq) and iodine (1 mmol, 127 mg, 2 eq) was placed in an open vessel containing a Teflon-coated stir bar. The mixture was dissolved in 3 mL of ethanol and the vessel was placed in the microwave cavity (CEM, Discover) and subjected to MW irradiation (150 W) for 60 min, at 363 K and a pressure of 2 psi. The reaction mixture was then cooled at room temperature and 5 mL of NH4OH were added. The obtained mixture was dissolved in ethyl acetate (50 mL) and washed with brine (3×). The organic layer was separated, dehydrated with Na2SO4, and evaporated in vacuo until dryness. The product was purified by flash (silica gel, 2–25 µm) with a mixture of petrol–dichloromethane–acetone (5:3:2). The title compound was obtained as pale-yellow needles in 30% yield (52.2 mg, 0.15 mmol). A diluted solution of the compound was prepared in hexane and kept on a dry and dark place at room temperature. Crystals were obtained after one week of slow evaporation. Spectroscopic data: 1H NMR (400 MHz, CDCl3): 11.37 (s, 1H), 7.80 (m, 2H), 7.43 (m, 3H), 1.62 (s, 3H). 13C NMR (100 MHz, CDCl3): 168.8 (s), 163.6 (s), 151.4 (s), 134.5 (s), 129.0 (d), 128.9 (d), 128.7 (d), 62.4 (s) 21.9 (c).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 1908908
https://doi.org/10.1107/S2056989019004791/lh5897sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004791/lh5897Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004791/lh5897Isup3.cml
Data collection: APEX3 (Bruker, 2014); cell
APEX3 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C11H9IN2OS | F(000) = 1328 |
Mr = 344.16 | Dx = 1.886 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.4130 (6) Å | Cell parameters from 9666 reflections |
b = 7.5325 (3) Å | θ = 2.5–25.4° |
c = 18.5443 (6) Å | µ = 2.79 mm−1 |
β = 94.567 (1)° | T = 298 K |
V = 2424.61 (15) Å3 | Prism, colourless |
Z = 8 | 0.30 × 0.27 × 0.09 mm |
Bruker D8 Venture κ-geometry diffractometer 208039-01 | 4448 independent reflections |
Radiation source: micro-focus X-ray source | 3987 reflections with I > 2σ(I) |
Detector resolution: 52.0833 pixels mm-1 | Rint = 0.020 |
ω–scans | θmax = 25.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→21 |
Tmin = 0.595, Tmax = 0.745 | k = −9→9 |
21512 measured reflections | l = −21→22 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3197P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.002 |
4448 reflections | Δρmax = 0.97 e Å−3 |
297 parameters | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.20804 (2) | 0.11466 (3) | 0.57958 (2) | 0.05010 (9) | |
I2 | 0.93426 (2) | 0.36580 (3) | 0.43149 (2) | 0.05145 (9) | |
S1 | 0.39704 (5) | 0.14260 (11) | 0.59979 (4) | 0.04052 (18) | |
S2 | 0.74959 (5) | 0.37404 (11) | 0.39534 (4) | 0.03938 (18) | |
O1 | 0.55222 (13) | 0.1295 (3) | 0.64721 (12) | 0.0505 (6) | |
O2 | 0.59773 (14) | 0.3722 (3) | 0.40790 (12) | 0.0505 (6) | |
N1 | 0.52822 (14) | 0.2346 (4) | 0.53438 (13) | 0.0413 (6) | |
H1 | 0.5467 (19) | 0.278 (4) | 0.4945 (12) | 0.050* | |
N2 | 0.40840 (14) | 0.2698 (4) | 0.47229 (13) | 0.0388 (6) | |
N3 | 0.62765 (15) | 0.3834 (4) | 0.29243 (13) | 0.0408 (6) | |
H3 | 0.612 (2) | 0.377 (4) | 0.2456 (7) | 0.049* | |
N4 | 0.75315 (14) | 0.3745 (3) | 0.25708 (13) | 0.0372 (6) | |
C1 | 0.66028 (18) | 0.2219 (5) | 0.58392 (19) | 0.0510 (8) | |
H1A | 0.6829 | 0.2837 | 0.6256 | 0.076* | |
H1B | 0.6656 | 0.2923 | 0.5414 | 0.076* | |
H1C | 0.6860 | 0.1103 | 0.5792 | 0.076* | |
C2 | 0.57687 (17) | 0.1901 (4) | 0.59246 (16) | 0.0393 (7) | |
C3 | 0.44875 (17) | 0.2214 (4) | 0.53026 (15) | 0.0369 (6) | |
C4 | 0.33023 (16) | 0.2505 (4) | 0.47953 (15) | 0.0350 (6) | |
C5 | 0.31384 (16) | 0.1834 (4) | 0.54453 (16) | 0.0371 (6) | |
C6 | 0.27744 (17) | 0.3026 (4) | 0.41671 (15) | 0.0365 (6) | |
C7 | 0.20880 (19) | 0.3934 (4) | 0.42351 (18) | 0.0433 (7) | |
H7 | 0.1925 | 0.4152 | 0.4692 | 0.052* | |
C8 | 0.16480 (19) | 0.4514 (5) | 0.3630 (2) | 0.0509 (8) | |
H8 | 0.1190 | 0.5121 | 0.3681 | 0.061* | |
C9 | 0.1884 (2) | 0.4198 (5) | 0.29482 (19) | 0.0522 (9) | |
H9 | 0.1591 | 0.4607 | 0.2541 | 0.063* | |
C10 | 0.2554 (2) | 0.3275 (5) | 0.28749 (18) | 0.0501 (8) | |
H10 | 0.2710 | 0.3046 | 0.2416 | 0.060* | |
C11 | 0.29986 (18) | 0.2687 (4) | 0.34786 (16) | 0.0417 (7) | |
H11 | 0.3450 | 0.2060 | 0.3423 | 0.050* | |
C12 | 0.4936 (2) | 0.3841 (7) | 0.3156 (2) | 0.0688 (12) | |
H12A | 0.4668 | 0.2859 | 0.3350 | 0.103* | |
H12B | 0.4900 | 0.3761 | 0.2638 | 0.103* | |
H12C | 0.4707 | 0.4934 | 0.3298 | 0.103* | |
C13 | 0.57608 (18) | 0.3794 (4) | 0.34378 (17) | 0.0413 (7) | |
C14 | 0.70669 (17) | 0.3778 (4) | 0.30805 (15) | 0.0354 (6) | |
C15 | 0.82943 (17) | 0.3668 (4) | 0.28480 (15) | 0.0338 (6) | |
C16 | 0.83746 (17) | 0.3663 (4) | 0.35831 (16) | 0.0363 (6) | |
C17 | 0.88862 (17) | 0.3640 (4) | 0.23203 (16) | 0.0340 (6) | |
C18 | 0.87296 (17) | 0.4513 (5) | 0.16611 (16) | 0.0418 (7) | |
H18 | 0.8267 | 0.5121 | 0.1570 | 0.050* | |
C19 | 0.92545 (19) | 0.4480 (5) | 0.11460 (18) | 0.0494 (8) | |
H19 | 0.9145 | 0.5069 | 0.0709 | 0.059* | |
C20 | 0.99420 (19) | 0.3583 (5) | 0.1270 (2) | 0.0495 (8) | |
H20 | 1.0293 | 0.3562 | 0.0918 | 0.059* | |
C21 | 1.01068 (18) | 0.2721 (5) | 0.19149 (19) | 0.0477 (8) | |
H21 | 1.0572 | 0.2119 | 0.2000 | 0.057* | |
C22 | 0.95846 (18) | 0.2741 (4) | 0.24411 (17) | 0.0404 (7) | |
H22 | 0.9701 | 0.2152 | 0.2877 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03894 (13) | 0.06520 (16) | 0.04648 (14) | −0.01106 (9) | 0.00551 (10) | 0.00738 (10) |
I2 | 0.04289 (14) | 0.07225 (18) | 0.03680 (13) | 0.00079 (10) | −0.01192 (9) | −0.00143 (10) |
S1 | 0.0370 (4) | 0.0575 (5) | 0.0268 (4) | −0.0013 (3) | 0.0002 (3) | 0.0065 (3) |
S2 | 0.0389 (4) | 0.0537 (5) | 0.0252 (4) | −0.0033 (3) | 0.0004 (3) | −0.0013 (3) |
O1 | 0.0390 (12) | 0.0830 (18) | 0.0287 (11) | −0.0006 (11) | −0.0023 (9) | 0.0113 (10) |
O2 | 0.0479 (13) | 0.0750 (17) | 0.0293 (12) | −0.0054 (11) | 0.0081 (10) | −0.0006 (10) |
N1 | 0.0318 (13) | 0.0654 (18) | 0.0266 (13) | −0.0003 (12) | 0.0010 (10) | 0.0076 (12) |
N2 | 0.0324 (13) | 0.0572 (16) | 0.0261 (12) | 0.0005 (11) | −0.0020 (10) | 0.0031 (11) |
N3 | 0.0316 (13) | 0.0656 (18) | 0.0249 (12) | −0.0035 (11) | 0.0015 (10) | −0.0014 (11) |
N4 | 0.0309 (13) | 0.0530 (16) | 0.0275 (12) | −0.0010 (10) | 0.0014 (10) | −0.0009 (10) |
C1 | 0.0359 (17) | 0.071 (2) | 0.0444 (18) | 0.0009 (16) | −0.0046 (14) | 0.0087 (17) |
C2 | 0.0363 (16) | 0.0507 (18) | 0.0307 (15) | 0.0033 (14) | 0.0006 (12) | −0.0016 (13) |
C3 | 0.0341 (15) | 0.0496 (18) | 0.0269 (14) | −0.0006 (13) | 0.0024 (12) | 0.0015 (12) |
C4 | 0.0315 (15) | 0.0432 (16) | 0.0300 (15) | 0.0004 (12) | 0.0004 (11) | −0.0019 (12) |
C5 | 0.0308 (15) | 0.0481 (17) | 0.0323 (15) | −0.0034 (13) | 0.0013 (12) | 0.0022 (13) |
C6 | 0.0325 (15) | 0.0445 (17) | 0.0313 (15) | −0.0051 (13) | −0.0044 (12) | 0.0016 (13) |
C7 | 0.0426 (18) | 0.0506 (19) | 0.0360 (16) | 0.0042 (14) | −0.0015 (14) | 0.0006 (13) |
C8 | 0.0389 (18) | 0.054 (2) | 0.058 (2) | 0.0072 (15) | −0.0064 (15) | 0.0037 (17) |
C9 | 0.050 (2) | 0.063 (2) | 0.0411 (19) | −0.0014 (17) | −0.0146 (15) | 0.0079 (16) |
C10 | 0.052 (2) | 0.067 (2) | 0.0300 (16) | −0.0039 (17) | −0.0016 (14) | 0.0049 (15) |
C11 | 0.0345 (16) | 0.0541 (19) | 0.0358 (16) | −0.0004 (14) | −0.0005 (13) | 0.0053 (14) |
C12 | 0.0346 (18) | 0.129 (4) | 0.044 (2) | −0.005 (2) | 0.0073 (16) | −0.002 (2) |
C13 | 0.0355 (16) | 0.0538 (19) | 0.0353 (17) | −0.0041 (13) | 0.0059 (13) | −0.0032 (13) |
C14 | 0.0340 (15) | 0.0439 (17) | 0.0279 (14) | −0.0019 (12) | 0.0003 (12) | −0.0013 (12) |
C15 | 0.0326 (15) | 0.0380 (16) | 0.0302 (15) | −0.0005 (12) | −0.0012 (12) | −0.0020 (11) |
C16 | 0.0328 (15) | 0.0438 (17) | 0.0314 (15) | −0.0010 (12) | −0.0028 (12) | 0.0004 (12) |
C17 | 0.0306 (15) | 0.0390 (16) | 0.0316 (15) | −0.0027 (12) | −0.0017 (12) | −0.0064 (12) |
C18 | 0.0328 (15) | 0.0544 (19) | 0.0376 (16) | 0.0050 (14) | 0.0001 (13) | 0.0007 (14) |
C19 | 0.0456 (19) | 0.069 (2) | 0.0339 (16) | 0.0018 (17) | 0.0043 (14) | 0.0064 (16) |
C20 | 0.0331 (17) | 0.068 (2) | 0.048 (2) | −0.0023 (15) | 0.0115 (15) | −0.0061 (16) |
C21 | 0.0327 (16) | 0.056 (2) | 0.055 (2) | 0.0065 (14) | 0.0008 (14) | −0.0093 (16) |
C22 | 0.0375 (16) | 0.0443 (18) | 0.0382 (16) | 0.0021 (13) | −0.0050 (13) | 0.0007 (13) |
I1—C5 | 2.068 (3) | C7—C8 | 1.378 (5) |
I2—C16 | 2.078 (3) | C7—H7 | 0.9300 |
S1—C5 | 1.734 (3) | C8—C9 | 1.381 (5) |
S1—C3 | 1.735 (3) | C8—H8 | 0.9300 |
S2—C16 | 1.727 (3) | C9—C10 | 1.374 (5) |
S2—C14 | 1.728 (3) | C9—H9 | 0.9300 |
O1—C2 | 1.222 (4) | C10—C11 | 1.382 (4) |
O2—C13 | 1.220 (4) | C10—H10 | 0.9300 |
N1—C2 | 1.358 (4) | C11—H11 | 0.9300 |
N1—C3 | 1.383 (4) | C12—C13 | 1.490 (5) |
N1—H1 | 0.890 (10) | C12—H12A | 0.9600 |
N2—C3 | 1.289 (4) | C12—H12B | 0.9600 |
N2—C4 | 1.386 (4) | C12—H12C | 0.9600 |
N3—C13 | 1.360 (4) | C15—C16 | 1.359 (4) |
N3—C14 | 1.384 (4) | C15—C17 | 1.477 (4) |
N3—H3 | 0.891 (10) | C17—C22 | 1.394 (4) |
N4—C14 | 1.292 (4) | C17—C18 | 1.396 (4) |
N4—C15 | 1.387 (4) | C18—C19 | 1.374 (4) |
C1—C2 | 1.493 (4) | C18—H18 | 0.9300 |
C1—H1A | 0.9600 | C19—C20 | 1.378 (5) |
C1—H1B | 0.9600 | C19—H19 | 0.9300 |
C1—H1C | 0.9600 | C20—C21 | 1.371 (5) |
C4—C5 | 1.358 (4) | C20—H20 | 0.9300 |
C4—C6 | 1.478 (4) | C21—C22 | 1.386 (4) |
C6—C11 | 1.388 (4) | C21—H21 | 0.9300 |
C6—C7 | 1.392 (4) | C22—H22 | 0.9300 |
C5—S1—C3 | 87.64 (14) | C9—C10—H10 | 119.8 |
C16—S2—C14 | 87.64 (14) | C11—C10—H10 | 119.8 |
C2—N1—C3 | 125.7 (3) | C10—C11—C6 | 120.4 (3) |
C2—N1—H1 | 120 (2) | C10—C11—H11 | 119.8 |
C3—N1—H1 | 114 (2) | C6—C11—H11 | 119.8 |
C3—N2—C4 | 111.3 (2) | C13—C12—H12A | 109.5 |
C13—N3—C14 | 123.6 (3) | C13—C12—H12B | 109.5 |
C13—N3—H3 | 121 (2) | H12A—C12—H12B | 109.5 |
C14—N3—H3 | 115 (2) | C13—C12—H12C | 109.5 |
C14—N4—C15 | 111.5 (2) | H12A—C12—H12C | 109.5 |
C2—C1—H1A | 109.5 | H12B—C12—H12C | 109.5 |
C2—C1—H1B | 109.5 | O2—C13—N3 | 120.9 (3) |
H1A—C1—H1B | 109.5 | O2—C13—C12 | 123.9 (3) |
C2—C1—H1C | 109.5 | N3—C13—C12 | 115.2 (3) |
H1A—C1—H1C | 109.5 | N4—C14—N3 | 121.2 (3) |
H1B—C1—H1C | 109.5 | N4—C14—S2 | 115.8 (2) |
O1—C2—N1 | 120.9 (3) | N3—C14—S2 | 123.0 (2) |
O1—C2—C1 | 123.9 (3) | C16—C15—N4 | 113.0 (3) |
N1—C2—C1 | 115.3 (3) | C16—C15—C17 | 130.0 (3) |
N2—C3—N1 | 120.1 (3) | N4—C15—C17 | 117.0 (2) |
N2—C3—S1 | 115.8 (2) | C15—C16—S2 | 112.0 (2) |
N1—C3—S1 | 124.0 (2) | C15—C16—I2 | 131.9 (2) |
C5—C4—N2 | 113.7 (3) | S2—C16—I2 | 116.02 (16) |
C5—C4—C6 | 129.6 (3) | C22—C17—C18 | 118.5 (3) |
N2—C4—C6 | 116.7 (2) | C22—C17—C15 | 123.1 (3) |
C4—C5—S1 | 111.5 (2) | C18—C17—C15 | 118.4 (3) |
C4—C5—I1 | 128.9 (2) | C19—C18—C17 | 120.4 (3) |
S1—C5—I1 | 119.55 (15) | C19—C18—H18 | 119.8 |
C11—C6—C7 | 118.7 (3) | C17—C18—H18 | 119.8 |
C11—C6—C4 | 118.2 (3) | C18—C19—C20 | 120.7 (3) |
C7—C6—C4 | 122.9 (3) | C18—C19—H19 | 119.7 |
C8—C7—C6 | 120.5 (3) | C20—C19—H19 | 119.7 |
C8—C7—H7 | 119.7 | C21—C20—C19 | 119.8 (3) |
C6—C7—H7 | 119.7 | C21—C20—H20 | 120.1 |
C7—C8—C9 | 120.2 (3) | C19—C20—H20 | 120.1 |
C7—C8—H8 | 119.9 | C20—C21—C22 | 120.4 (3) |
C9—C8—H8 | 119.9 | C20—C21—H21 | 119.8 |
C10—C9—C8 | 119.7 (3) | C22—C21—H21 | 119.8 |
C10—C9—H9 | 120.2 | C21—C22—C17 | 120.3 (3) |
C8—C9—H9 | 120.2 | C21—C22—H22 | 119.8 |
C9—C10—C11 | 120.5 (3) | C17—C22—H22 | 119.8 |
C3—N1—C2—O1 | 1.3 (5) | C14—N3—C13—O2 | 0.7 (5) |
C3—N1—C2—C1 | −178.3 (3) | C14—N3—C13—C12 | −179.2 (3) |
C4—N2—C3—N1 | −178.5 (3) | C15—N4—C14—N3 | −179.3 (3) |
C4—N2—C3—S1 | 1.2 (4) | C15—N4—C14—S2 | 0.6 (3) |
C2—N1—C3—N2 | 179.2 (3) | C13—N3—C14—N4 | 177.1 (3) |
C2—N1—C3—S1 | −0.5 (5) | C13—N3—C14—S2 | −2.7 (4) |
C5—S1—C3—N2 | −0.9 (3) | C16—S2—C14—N4 | −0.3 (2) |
C5—S1—C3—N1 | 178.8 (3) | C16—S2—C14—N3 | 179.5 (3) |
C3—N2—C4—C5 | −0.9 (4) | C14—N4—C15—C16 | −0.6 (4) |
C3—N2—C4—C6 | 179.6 (3) | C14—N4—C15—C17 | −179.5 (3) |
N2—C4—C5—S1 | 0.3 (4) | N4—C15—C16—S2 | 0.4 (3) |
C6—C4—C5—S1 | 179.6 (3) | C17—C15—C16—S2 | 179.1 (2) |
N2—C4—C5—I1 | −175.6 (2) | N4—C15—C16—I2 | −177.5 (2) |
C6—C4—C5—I1 | 3.7 (5) | C17—C15—C16—I2 | 1.3 (5) |
C3—S1—C5—C4 | 0.3 (3) | C14—S2—C16—C15 | 0.0 (2) |
C3—S1—C5—I1 | 176.6 (2) | C14—S2—C16—I2 | 178.15 (17) |
C5—C4—C6—C11 | −142.8 (3) | C16—C15—C17—C22 | 33.8 (5) |
N2—C4—C6—C11 | 36.5 (4) | N4—C15—C17—C22 | −147.5 (3) |
C5—C4—C6—C7 | 41.2 (5) | C16—C15—C17—C18 | −148.0 (3) |
N2—C4—C6—C7 | −139.5 (3) | N4—C15—C17—C18 | 30.7 (4) |
C11—C6—C7—C8 | −1.3 (5) | C22—C17—C18—C19 | 0.0 (5) |
C4—C6—C7—C8 | 174.7 (3) | C15—C17—C18—C19 | −178.2 (3) |
C6—C7—C8—C9 | 0.1 (5) | C17—C18—C19—C20 | 0.2 (5) |
C7—C8—C9—C10 | 1.0 (6) | C18—C19—C20—C21 | −0.3 (6) |
C8—C9—C10—C11 | −1.0 (6) | C19—C20—C21—C22 | 0.3 (5) |
C9—C10—C11—C6 | −0.2 (5) | C20—C21—C22—C17 | 0.0 (5) |
C7—C6—C11—C10 | 1.3 (5) | C18—C17—C22—C21 | −0.1 (4) |
C4—C6—C11—C10 | −174.8 (3) | C15—C17—C22—C21 | 178.1 (3) |
Cg2 and Cg4 are the centroids of the C6–C11 and C17–C22 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.89 (3) | 2.03 (3) | 2.914 (3) | 175 (3) |
N3—H3···O1i | 0.89 (2) | 2.03 (2) | 2.902 (3) | 167 (2) |
C8—H8···Cg4ii | 0.93 | 2.94 | 3.655 (4) | 134 |
C18—H18···Cg2ii | 0.93 | 2.82 | 3.594 (4) | 141 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
JAG thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a BSc scholarship.
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 290398).
References
Alam, M. S., Ahmed, J. U. & Lee, D. (2014). Chem. Pharm. Bull. 62, 1259–1268. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghabbour, H. A. & Al-Omar, M. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 859–860. CAS Google Scholar
Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632. CSD CrossRef CAS IUCr Journals Google Scholar
Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738–o1739. CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hämmerle, J., Schnürch, M., Iqbal, N., Mihovilovic, M. D. & Stanetty, P. (2010). Tetrahedron, 66, 8051–8059. Google Scholar
Jana, R., Pathak, T. P. & Sigman, M. S. (2011). Chem. Rev. 111, 1417–1492. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, Y., Zhang, L., Gong, J., Fang, H., Liu, A., Du, G. & Xu, W. (2011). J. Enzyme Inhib. Med. Chem. 26, 506–513. Web of Science CrossRef CAS PubMed Google Scholar
Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815–o817. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mocelo-Castell, R., Villanueva-Novelo, C., Cáceres-Castillo, D., Carballo, R. M., Quijano-Quiñones, R. F., Quesadas-Rojas, M., Cantillo-Ciau, Z., Cedillo-Rivera, R., Moo-Puc, R. E., Moujir, L. M. & Mena-Rejón, G. J. (2015). Open Chem. 13, 1127–1136. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siram, R. B. K., Karothu, D. P., Guru Row, T. N. & Patil, S. (2013). Cryst. Growth Des. 13, 1045–1049. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia. Google Scholar
Wang, F., Yang, Z., Liu, Y., Ma, L., Wu, Y., He, L., Shao, M., Yu, K., Wu, W., Pu, Y., Nie, C. & Chen, L. (2015). Bioorg. Med. Chem. 23, 3337–3350. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996. Web of Science CSD CrossRef CAS Google Scholar
Zhao, K., Shen, L., Shen, Z. L. & Loh, T. P. (2017). Chem. Soc. Rev. 46, 586–602. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.