research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-(5-iodo-4-phenyl­thia­zol-2-yl)acetamide

CROSSMARK_Color_square_no_text.svg

aCentro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico, bFacultad de Química, Universidad Autónoma de Yucatán, Calle 43 No. 613, Col. Inalámbrica, CP 97069, Mérida, Yucatán, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
*Correspondence e-mail: david.caceres@uady.mx

Edited by A. J. Lough, University of Toronto, Canada (Received 22 March 2019; accepted 9 April 2019; online 3 May 2019)

Two crystallographically independent mol­ecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thia­zole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the mol­ecules form ⋯ABAB⋯ chains along the [001] and [010] directions through moderate N—H⋯O hydrogen bonds and C—H⋯π inter­actions, respectively. The overall three-dimensional network is formed by I⋯I and I⋯S inter­actions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯C/C⋯H (26.2%), H⋯H (20.9%), H⋯I/I⋯H (19.4%) and H⋯O/O⋯H (6.8%) inter­actions.

1. Chemical context

The 1,3-thia­zole ring is a structural motif frequently found in the pharmaceutical field in anti­bacterial (Alam et al., 2014[Alam, M. S., Ahmed, J. U. & Lee, D. (2014). Chem. Pharm. Bull. 62, 1259-1268.]), anti­fungal (Yu et al., 2007[Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991-996.]) and anti­viral (Liu et al., 2011[Liu, Y., Zhang, L., Gong, J., Fang, H., Liu, A., Du, G. & Xu, W. (2011). J. Enzyme Inhib. Med. Chem. 26, 506-513.]) agents among others. In the chemotherapy of protozoal diseases, 5-bromo-2-amino­thia­zole derivatives have been investigated as privileged structures in biological tests against intestinal parasites such as Giardia (Mocelo-Castell et al., 2015[Mocelo-Castell, R., Villanueva-Novelo, C., Cáceres-Castillo, D., Carballo, R. M., Quijano-Quiñones, R. F., Quesadas-Rojas, M., Cantillo-Ciau, Z., Cedillo-Rivera, R., Moo-Puc, R. E., Moujir, L. M. & Mena-Rejón, G. J. (2015). Open Chem. 13, 1127-1136.]). Halo-1,3-thia­zole derivatives have proven to be suitable substrates in oxidative addition reactions in the presence of palladium (Wang et al., 2015[Wang, F., Yang, Z., Liu, Y., Ma, L., Wu, Y., He, L., Shao, M., Yu, K., Wu, W., Pu, Y., Nie, C. & Chen, L. (2015). Bioorg. Med. Chem. 23, 3337-3350.]; Hämmerle et al., 2010[Hämmerle, J., Schnürch, M., Iqbal, N., Mihovilovic, M. D. & Stanetty, P. (2010). Tetrahedron, 66, 8051-8059.]). The presence of halogens in the core of thia­zole derivatives opens the door to using them as suitable substrates for coupling reactions and to expand the therapeutic potential of a compound by improving the pharmaceutical properties. Transition-metal-catalysed reactions constitute one of the most important and attractive research areas in academia, as well as in the pharmaceutical and fine chemical industries (Zhao et al., 2017[Zhao, K., Shen, L., Shen, Z. L. & Loh, T. P. (2017). Chem. Soc. Rev. 46, 586-602.]; Jana et al., 2011[Jana, R., Pathak, T. P. & Sigman, M. S. (2011). Chem. Rev. 111, 1417-1492.]). Cross-coupling reactions usually require, in addition to a transition metal, that the electrophilic coupling partner possesses leaving groups such as Br or I among others. The development of suitable halo-1,3-thia­zole substrates for cross-coupling reactions allows us to report the crystal structure and the Hirshfeld surface analysis of N-(5-iodo-4-phenyl­thia­zol-2-yl)acetamide.

2. Structural commentary

The title 2-aceto­amido­thia­zole derivative crystallizes in the monoclinic space group P21/c with two crystallographically independent mol­ecules in the asymmetric unit (Fig. 1[link]). The principal difference between these mol­ecules is the dihedral angle between the phenyl and thia­zole rings. In mol­ecule A, the thia­zole ring (S1/N2/C3–C5) makes a dihedral angle of 38.94 (16)° with the adjacent phenyl ring (C6–C11) while for mol­ecule B the dihedral angle between the S2/N4/C14–C16 and C17–C22 rings is 32.12 (15)°. Unlike the related compound 2-acetamido-4-p-tolyl-1,3-thia­zole (Lynch et al., 2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815-o817.]) in which the mol­ecule is essentially flat, the presence of the iodine atom at C5 or C16 of the title compound induces rotation of the phenyl group attached to the thia­zole ring, as also observed in some bromine-substituted phenyl­thia­zole compounds (see the Database survey).

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the two crystallographically independent mol­ecules in the asymmetric unit of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N1—H1⋯O2 and N3—H3⋯O1 moderate hydrogen bonds via a C(4) synthon (Table 1[link], Fig. 2[link]), forming chains along [001] in an ⋯ABAB⋯ fashion. In the same way, the phenyl rings of mol­ecules A and B inter­act through C—H⋯π contacts along [010] and the resulting chains are further connected through I1⋯S2(1 − x, −y, 1 − z) contacts [3.7758 (9) Å] (Fig. 3[link]). Additionally, adjacent B mol­ecules are linked by I2⋯I2(7 − x, 1 − y, 1 − z) contacts of type I [θ1 = θ2 = 146.91 (8)°] with a length of 3.8547 (5) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C6–C11 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (3) 2.03 (3) 2.914 (3) 175 (3)
N3—H3⋯O1i 0.89 (2) 2.03 (2) 2.902 (3) 167 (2)
C8—H8⋯Cg4ii 0.93 2.94 3.655 (4) 134
C18—H18⋯Cg2ii 0.93 2.82 3.594 (4) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the formation of hydrogen bonds and I⋯I contacts (red dashed lines) in the ac plane.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction showing C–H⋯π and I⋯S inter­actions as red dashed lines.

4. Hirshfeld surface analysis and two-dimensional fingerprints plots

A Hirshfeld surface analysis was carried out using Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.]) in order to acquire a better understanding of the nature of the inter­molecular inter­actions in the title compound. The Hirshfeld surface was generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed color scale of −0.5372 (red) to 1.3937 (blue) a.u. (Fig. 4[link]). The intense red spots on the surface are due to the N—H⋯O hydrogen bonds, resulting from the inter­action of the amide group of the 2-aceto­amido­thia­zole derivative. The overall two-dimensional fingerprint plot for the title compound is shown in Fig. 5[link]a, and those delineated into H⋯C/C⋯H, H⋯H, H⋯I/I⋯H, H⋯O/O⋯H and I⋯S/S⋯I contacts are shown in Fig. 5[link]bf. The major contribution to the crystal packing is from H⋯C/C⋯H inter­actions (26.2%). The pair of characteristic wings in this fingerprint plot corresponds to the C—H⋯π inter­actions between the phenyl groups (Fig. 5[link]b). The H⋯H and H⋯I/I⋯H contacts (Fig. 5[link]c and 5d) make similar contributions to the total Hirshfeld surface of 20.9 and 19.4%, respectively. The reciprocal H⋯O/O⋯H inter­actions (6.8%) are seen as sharp symmetrical spikes with tips at de + di ∼1.9 Å and arising from the N—H⋯O hydrogen bond (Fig. 5[link]e). Inter­molecular I⋯S/S⋯I (Fig. 5[link]f) and I⋯I inter­actions make smaller contributions to the Hirshfeld surface (2.2 and 1.1%, respectively).

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface of the title compound mapped over dnorm, showing the N—H⋯O hydrogen bonds.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the (a) all, (b) H⋯C/C⋯H (26.2%), (c) H⋯H (20.9%), (d) H⋯I/I⋯H (19.4%), (e) H⋯O/O⋯H (6.8%) and (f) I⋯S/S⋯I (2.2%) contacts in the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a 1,3 thia­zole ring with a benzene ring and a halogen as substituents in positions 4 and 5, respectively, gave four entries for the organobromine compounds N-[5-bromo-4-(4-methyl­phen­yl)1,3-thia­zol-2-yl]-4-chloro­butanamide (CCDC 1443533; Ghabbour et al., 2016[Ghabbour, H. A. & Al-Omar, M. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 859-860.]), 5,5′-di­bromo-4,4′-bis­(penta­fluoro­phen­yl)-2,2′-bi-1,3-thia­zole (CCDC 889644; Siram et al., 2013[Siram, R. B. K., Karothu, D. P., Guru Row, T. N. & Patil, S. (2013). Cryst. Growth Des. 13, 1045-1049.]), 1-(5-bromo-4-phenyl-1,3-thia­zol-2-yl)pyrrolidin-2-one (CCDC 886962; Ghabbour, Kadi, et al., 2012[Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738-o1739.]) and 5-bromo-4-(3,4-di­meth­oxy­phen­yl)-1,3-thia­zol-2-amine (CCDC 886876; Ghabbour, Chia, et al., 2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]). The dihedral angle between the thia­zole and benzene rings in these compounds are in the range 36.69 (11) to 60.83 (3)°, with exception of N-(5-bromo-4-(4-methyl­phen­yl)-1,3-thia­zol-2-yl)-4-chloro­butanamide. In this compound the dihedral angle is smaller [8.8 (3)°] as a result of an intra­molecular C—H⋯Br hydrogen bond. In the crystals of these compounds, only 5,5′-di­bromo-4,4′-bis(penta­fluoro­phen­yl)-2,2′-bi-1,3-thia­zole exhibits a type II halogen–halogen inter­action with a Br⋯Br distance of 3.6777 (3) Å and angles of 68.88 (5) and 174.77 (5)°.

6. Synthesis and crystallization

A mixture of N-(4-phenyl­thia­zol-2-yl) acetamide (0.5 mmol, 109 mg, 1 eq) and iodine (1 mmol, 127 mg, 2 eq) was placed in an open vessel containing a Teflon-coated stir bar. The mixture was dissolved in 3 mL of ethanol and the vessel was placed in the microwave cavity (CEM, Discover) and subjected to MW irradiation (150 W) for 60 min, at 363 K and a pressure of 2 psi. The reaction mixture was then cooled at room temperature and 5 mL of NH4OH were added. The obtained mixture was dissolved in ethyl acetate (50 mL) and washed with brine (3×). The organic layer was separated, dehydrated with Na2SO4, and evaporated in vacuo until dryness. The product was purified by flash column chromatography (silica gel, 2–25 µm) with a mixture of petrol–di­chloro­methane–acetone (5:3:2). The title compound was obtained as pale-yellow needles in 30% yield (52.2 mg, 0.15 mmol). A diluted solution of the compound was prepared in hexane and kept on a dry and dark place at room temperature. Crystals were obtained after one week of slow evaporation. Spectroscopic data: 1H NMR (400 MHz, CDCl3): 11.37 (s, 1H), 7.80 (m, 2H), 7.43 (m, 3H), 1.62 (s, 3H). 13C NMR (100 MHz, CDCl3): 168.8 (s), 163.6 (s), 151.4 (s), 134.5 (s), 129.0 (d), 128.9 (d), 128.7 (d), 62.4 (s) 21.9 (c).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C11H9IN2OS
Mr 344.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 17.4130 (6), 7.5325 (3), 18.5443 (6)
β (°) 94.567 (1)
V3) 2424.61 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.79
Crystal size (mm) 0.30 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture κ-geometry diffractometer 208039-01
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.595, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21512, 4448, 3987
Rint 0.020
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.12
No. of reflections 4448
No. of parameters 297
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.49
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: APEX3 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

N-(5-Iodo-4-phenylthiazol-2-yl)acetamide top
Crystal data top
C11H9IN2OSF(000) = 1328
Mr = 344.16Dx = 1.886 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.4130 (6) ÅCell parameters from 9666 reflections
b = 7.5325 (3) Åθ = 2.5–25.4°
c = 18.5443 (6) ŵ = 2.79 mm1
β = 94.567 (1)°T = 298 K
V = 2424.61 (15) Å3Prism, colourless
Z = 80.30 × 0.27 × 0.09 mm
Data collection top
Bruker D8 Venture κ-geometry
diffractometer 208039-01
4448 independent reflections
Radiation source: micro-focus X-ray source3987 reflections with I > 2σ(I)
Detector resolution: 52.0833 pixels mm-1Rint = 0.020
ω–scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1521
Tmin = 0.595, Tmax = 0.745k = 99
21512 measured reflectionsl = 2122
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3197P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
4448 reflectionsΔρmax = 0.97 e Å3
297 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.20804 (2)0.11466 (3)0.57958 (2)0.05010 (9)
I20.93426 (2)0.36580 (3)0.43149 (2)0.05145 (9)
S10.39704 (5)0.14260 (11)0.59979 (4)0.04052 (18)
S20.74959 (5)0.37404 (11)0.39534 (4)0.03938 (18)
O10.55222 (13)0.1295 (3)0.64721 (12)0.0505 (6)
O20.59773 (14)0.3722 (3)0.40790 (12)0.0505 (6)
N10.52822 (14)0.2346 (4)0.53438 (13)0.0413 (6)
H10.5467 (19)0.278 (4)0.4945 (12)0.050*
N20.40840 (14)0.2698 (4)0.47229 (13)0.0388 (6)
N30.62765 (15)0.3834 (4)0.29243 (13)0.0408 (6)
H30.612 (2)0.377 (4)0.2456 (7)0.049*
N40.75315 (14)0.3745 (3)0.25708 (13)0.0372 (6)
C10.66028 (18)0.2219 (5)0.58392 (19)0.0510 (8)
H1A0.68290.28370.62560.076*
H1B0.66560.29230.54140.076*
H1C0.68600.11030.57920.076*
C20.57687 (17)0.1901 (4)0.59246 (16)0.0393 (7)
C30.44875 (17)0.2214 (4)0.53026 (15)0.0369 (6)
C40.33023 (16)0.2505 (4)0.47953 (15)0.0350 (6)
C50.31384 (16)0.1834 (4)0.54453 (16)0.0371 (6)
C60.27744 (17)0.3026 (4)0.41671 (15)0.0365 (6)
C70.20880 (19)0.3934 (4)0.42351 (18)0.0433 (7)
H70.19250.41520.46920.052*
C80.16480 (19)0.4514 (5)0.3630 (2)0.0509 (8)
H80.11900.51210.36810.061*
C90.1884 (2)0.4198 (5)0.29482 (19)0.0522 (9)
H90.15910.46070.25410.063*
C100.2554 (2)0.3275 (5)0.28749 (18)0.0501 (8)
H100.27100.30460.24160.060*
C110.29986 (18)0.2687 (4)0.34786 (16)0.0417 (7)
H110.34500.20600.34230.050*
C120.4936 (2)0.3841 (7)0.3156 (2)0.0688 (12)
H12A0.46680.28590.33500.103*
H12B0.49000.37610.26380.103*
H12C0.47070.49340.32980.103*
C130.57608 (18)0.3794 (4)0.34378 (17)0.0413 (7)
C140.70669 (17)0.3778 (4)0.30805 (15)0.0354 (6)
C150.82943 (17)0.3668 (4)0.28480 (15)0.0338 (6)
C160.83746 (17)0.3663 (4)0.35831 (16)0.0363 (6)
C170.88862 (17)0.3640 (4)0.23203 (16)0.0340 (6)
C180.87296 (17)0.4513 (5)0.16611 (16)0.0418 (7)
H180.82670.51210.15700.050*
C190.92545 (19)0.4480 (5)0.11460 (18)0.0494 (8)
H190.91450.50690.07090.059*
C200.99420 (19)0.3583 (5)0.1270 (2)0.0495 (8)
H201.02930.35620.09180.059*
C211.01068 (18)0.2721 (5)0.19149 (19)0.0477 (8)
H211.05720.21190.20000.057*
C220.95846 (18)0.2741 (4)0.24411 (17)0.0404 (7)
H220.97010.21520.28770.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03894 (13)0.06520 (16)0.04648 (14)0.01106 (9)0.00551 (10)0.00738 (10)
I20.04289 (14)0.07225 (18)0.03680 (13)0.00079 (10)0.01192 (9)0.00143 (10)
S10.0370 (4)0.0575 (5)0.0268 (4)0.0013 (3)0.0002 (3)0.0065 (3)
S20.0389 (4)0.0537 (5)0.0252 (4)0.0033 (3)0.0004 (3)0.0013 (3)
O10.0390 (12)0.0830 (18)0.0287 (11)0.0006 (11)0.0023 (9)0.0113 (10)
O20.0479 (13)0.0750 (17)0.0293 (12)0.0054 (11)0.0081 (10)0.0006 (10)
N10.0318 (13)0.0654 (18)0.0266 (13)0.0003 (12)0.0010 (10)0.0076 (12)
N20.0324 (13)0.0572 (16)0.0261 (12)0.0005 (11)0.0020 (10)0.0031 (11)
N30.0316 (13)0.0656 (18)0.0249 (12)0.0035 (11)0.0015 (10)0.0014 (11)
N40.0309 (13)0.0530 (16)0.0275 (12)0.0010 (10)0.0014 (10)0.0009 (10)
C10.0359 (17)0.071 (2)0.0444 (18)0.0009 (16)0.0046 (14)0.0087 (17)
C20.0363 (16)0.0507 (18)0.0307 (15)0.0033 (14)0.0006 (12)0.0016 (13)
C30.0341 (15)0.0496 (18)0.0269 (14)0.0006 (13)0.0024 (12)0.0015 (12)
C40.0315 (15)0.0432 (16)0.0300 (15)0.0004 (12)0.0004 (11)0.0019 (12)
C50.0308 (15)0.0481 (17)0.0323 (15)0.0034 (13)0.0013 (12)0.0022 (13)
C60.0325 (15)0.0445 (17)0.0313 (15)0.0051 (13)0.0044 (12)0.0016 (13)
C70.0426 (18)0.0506 (19)0.0360 (16)0.0042 (14)0.0015 (14)0.0006 (13)
C80.0389 (18)0.054 (2)0.058 (2)0.0072 (15)0.0064 (15)0.0037 (17)
C90.050 (2)0.063 (2)0.0411 (19)0.0014 (17)0.0146 (15)0.0079 (16)
C100.052 (2)0.067 (2)0.0300 (16)0.0039 (17)0.0016 (14)0.0049 (15)
C110.0345 (16)0.0541 (19)0.0358 (16)0.0004 (14)0.0005 (13)0.0053 (14)
C120.0346 (18)0.129 (4)0.044 (2)0.005 (2)0.0073 (16)0.002 (2)
C130.0355 (16)0.0538 (19)0.0353 (17)0.0041 (13)0.0059 (13)0.0032 (13)
C140.0340 (15)0.0439 (17)0.0279 (14)0.0019 (12)0.0003 (12)0.0013 (12)
C150.0326 (15)0.0380 (16)0.0302 (15)0.0005 (12)0.0012 (12)0.0020 (11)
C160.0328 (15)0.0438 (17)0.0314 (15)0.0010 (12)0.0028 (12)0.0004 (12)
C170.0306 (15)0.0390 (16)0.0316 (15)0.0027 (12)0.0017 (12)0.0064 (12)
C180.0328 (15)0.0544 (19)0.0376 (16)0.0050 (14)0.0001 (13)0.0007 (14)
C190.0456 (19)0.069 (2)0.0339 (16)0.0018 (17)0.0043 (14)0.0064 (16)
C200.0331 (17)0.068 (2)0.048 (2)0.0023 (15)0.0115 (15)0.0061 (16)
C210.0327 (16)0.056 (2)0.055 (2)0.0065 (14)0.0008 (14)0.0093 (16)
C220.0375 (16)0.0443 (18)0.0382 (16)0.0021 (13)0.0050 (13)0.0007 (13)
Geometric parameters (Å, º) top
I1—C52.068 (3)C7—C81.378 (5)
I2—C162.078 (3)C7—H70.9300
S1—C51.734 (3)C8—C91.381 (5)
S1—C31.735 (3)C8—H80.9300
S2—C161.727 (3)C9—C101.374 (5)
S2—C141.728 (3)C9—H90.9300
O1—C21.222 (4)C10—C111.382 (4)
O2—C131.220 (4)C10—H100.9300
N1—C21.358 (4)C11—H110.9300
N1—C31.383 (4)C12—C131.490 (5)
N1—H10.890 (10)C12—H12A0.9600
N2—C31.289 (4)C12—H12B0.9600
N2—C41.386 (4)C12—H12C0.9600
N3—C131.360 (4)C15—C161.359 (4)
N3—C141.384 (4)C15—C171.477 (4)
N3—H30.891 (10)C17—C221.394 (4)
N4—C141.292 (4)C17—C181.396 (4)
N4—C151.387 (4)C18—C191.374 (4)
C1—C21.493 (4)C18—H180.9300
C1—H1A0.9600C19—C201.378 (5)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.371 (5)
C4—C51.358 (4)C20—H200.9300
C4—C61.478 (4)C21—C221.386 (4)
C6—C111.388 (4)C21—H210.9300
C6—C71.392 (4)C22—H220.9300
C5—S1—C387.64 (14)C9—C10—H10119.8
C16—S2—C1487.64 (14)C11—C10—H10119.8
C2—N1—C3125.7 (3)C10—C11—C6120.4 (3)
C2—N1—H1120 (2)C10—C11—H11119.8
C3—N1—H1114 (2)C6—C11—H11119.8
C3—N2—C4111.3 (2)C13—C12—H12A109.5
C13—N3—C14123.6 (3)C13—C12—H12B109.5
C13—N3—H3121 (2)H12A—C12—H12B109.5
C14—N3—H3115 (2)C13—C12—H12C109.5
C14—N4—C15111.5 (2)H12A—C12—H12C109.5
C2—C1—H1A109.5H12B—C12—H12C109.5
C2—C1—H1B109.5O2—C13—N3120.9 (3)
H1A—C1—H1B109.5O2—C13—C12123.9 (3)
C2—C1—H1C109.5N3—C13—C12115.2 (3)
H1A—C1—H1C109.5N4—C14—N3121.2 (3)
H1B—C1—H1C109.5N4—C14—S2115.8 (2)
O1—C2—N1120.9 (3)N3—C14—S2123.0 (2)
O1—C2—C1123.9 (3)C16—C15—N4113.0 (3)
N1—C2—C1115.3 (3)C16—C15—C17130.0 (3)
N2—C3—N1120.1 (3)N4—C15—C17117.0 (2)
N2—C3—S1115.8 (2)C15—C16—S2112.0 (2)
N1—C3—S1124.0 (2)C15—C16—I2131.9 (2)
C5—C4—N2113.7 (3)S2—C16—I2116.02 (16)
C5—C4—C6129.6 (3)C22—C17—C18118.5 (3)
N2—C4—C6116.7 (2)C22—C17—C15123.1 (3)
C4—C5—S1111.5 (2)C18—C17—C15118.4 (3)
C4—C5—I1128.9 (2)C19—C18—C17120.4 (3)
S1—C5—I1119.55 (15)C19—C18—H18119.8
C11—C6—C7118.7 (3)C17—C18—H18119.8
C11—C6—C4118.2 (3)C18—C19—C20120.7 (3)
C7—C6—C4122.9 (3)C18—C19—H19119.7
C8—C7—C6120.5 (3)C20—C19—H19119.7
C8—C7—H7119.7C21—C20—C19119.8 (3)
C6—C7—H7119.7C21—C20—H20120.1
C7—C8—C9120.2 (3)C19—C20—H20120.1
C7—C8—H8119.9C20—C21—C22120.4 (3)
C9—C8—H8119.9C20—C21—H21119.8
C10—C9—C8119.7 (3)C22—C21—H21119.8
C10—C9—H9120.2C21—C22—C17120.3 (3)
C8—C9—H9120.2C21—C22—H22119.8
C9—C10—C11120.5 (3)C17—C22—H22119.8
C3—N1—C2—O11.3 (5)C14—N3—C13—O20.7 (5)
C3—N1—C2—C1178.3 (3)C14—N3—C13—C12179.2 (3)
C4—N2—C3—N1178.5 (3)C15—N4—C14—N3179.3 (3)
C4—N2—C3—S11.2 (4)C15—N4—C14—S20.6 (3)
C2—N1—C3—N2179.2 (3)C13—N3—C14—N4177.1 (3)
C2—N1—C3—S10.5 (5)C13—N3—C14—S22.7 (4)
C5—S1—C3—N20.9 (3)C16—S2—C14—N40.3 (2)
C5—S1—C3—N1178.8 (3)C16—S2—C14—N3179.5 (3)
C3—N2—C4—C50.9 (4)C14—N4—C15—C160.6 (4)
C3—N2—C4—C6179.6 (3)C14—N4—C15—C17179.5 (3)
N2—C4—C5—S10.3 (4)N4—C15—C16—S20.4 (3)
C6—C4—C5—S1179.6 (3)C17—C15—C16—S2179.1 (2)
N2—C4—C5—I1175.6 (2)N4—C15—C16—I2177.5 (2)
C6—C4—C5—I13.7 (5)C17—C15—C16—I21.3 (5)
C3—S1—C5—C40.3 (3)C14—S2—C16—C150.0 (2)
C3—S1—C5—I1176.6 (2)C14—S2—C16—I2178.15 (17)
C5—C4—C6—C11142.8 (3)C16—C15—C17—C2233.8 (5)
N2—C4—C6—C1136.5 (4)N4—C15—C17—C22147.5 (3)
C5—C4—C6—C741.2 (5)C16—C15—C17—C18148.0 (3)
N2—C4—C6—C7139.5 (3)N4—C15—C17—C1830.7 (4)
C11—C6—C7—C81.3 (5)C22—C17—C18—C190.0 (5)
C4—C6—C7—C8174.7 (3)C15—C17—C18—C19178.2 (3)
C6—C7—C8—C90.1 (5)C17—C18—C19—C200.2 (5)
C7—C8—C9—C101.0 (6)C18—C19—C20—C210.3 (6)
C8—C9—C10—C111.0 (6)C19—C20—C21—C220.3 (5)
C9—C10—C11—C60.2 (5)C20—C21—C22—C170.0 (5)
C7—C6—C11—C101.3 (5)C18—C17—C22—C210.1 (4)
C4—C6—C11—C10174.8 (3)C15—C17—C22—C21178.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C6–C11 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (3)2.03 (3)2.914 (3)175 (3)
N3—H3···O1i0.89 (2)2.03 (2)2.902 (3)167 (2)
C8—H8···Cg4ii0.932.943.655 (4)134
C18—H18···Cg2ii0.932.823.594 (4)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

JAG thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a BSc scholarship.

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 290398).

References

First citationAlam, M. S., Ahmed, J. U. & Lee, D. (2014). Chem. Pharm. Bull. 62, 1259–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhabbour, H. A. & Al-Omar, M. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 859–860.  CAS Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738–o1739.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHämmerle, J., Schnürch, M., Iqbal, N., Mihovilovic, M. D. & Stanetty, P. (2010). Tetrahedron, 66, 8051–8059.  Google Scholar
First citationJana, R., Pathak, T. P. & Sigman, M. S. (2011). Chem. Rev. 111, 1417–1492.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y., Zhang, L., Gong, J., Fang, H., Liu, A., Du, G. & Xu, W. (2011). J. Enzyme Inhib. Med. Chem. 26, 506–513.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815–o817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMocelo-Castell, R., Villanueva-Novelo, C., Cáceres-Castillo, D., Carballo, R. M., Quijano-Quiñones, R. F., Quesadas-Rojas, M., Cantillo-Ciau, Z., Cedillo-Rivera, R., Moo-Puc, R. E., Moujir, L. M. & Mena-Rejón, G. J. (2015). Open Chem. 13, 1127–1136.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiram, R. B. K., Karothu, D. P., Guru Row, T. N. & Patil, S. (2013). Cryst. Growth Des. 13, 1045–1049.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.  Google Scholar
First citationWang, F., Yang, Z., Liu, Y., Ma, L., Wu, Y., He, L., Shao, M., Yu, K., Wu, W., Pu, Y., Nie, C. & Chen, L. (2015). Bioorg. Med. Chem. 23, 3337–3350.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, K., Shen, L., Shen, Z. L. & Loh, T. P. (2017). Chem. Soc. Rev. 46, 586–602.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds