research communications
Z)-2-[(2,4-dichlorophenyl)methylidene]-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl}propanenitrile
Hirshfeld surface analysis and interaction energy and DFT studies of 3-{(2aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
The title compound, C18H12Cl2N2OS, consists of a dihydrobenzothiazine unit linked by a –CH group to a 2,4-dichlorophenyl substituent, and to a propanenitrile unit is folded along the S⋯N axis and adopts a flattened-boat conformation. The propanenitrile moiety is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, C—HBnz⋯NPrpnit and C—HPrpnit⋯OThz (Bnz = benzene, Prpnit = propanenitrile and Thz = thiazine) hydrogen bonds link the molecules into inversion dimers, enclosing R22(16) and R22(12) ring motifs, which are linked into stepped ribbons extending along [110]. The ribbons are linked in pairs by complementary C=O⋯Cl interactions. π–π contacts between the benzene and phenyl rings, [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (23.4%), H⋯Cl/Cl⋯H (19.5%), H⋯C/C⋯H (13.5%), H⋯N/N⋯H (13.3%), C⋯C (10.4%) and H⋯O/O⋯H (5.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that the two independent C—HBnz⋯NPrpnit and C—HPrpnit⋯OThz hydrogen bonds in the crystal impart about the same energy (ca 43 kJ mol−1). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; hydrogen bond; oxygen⋯halogen interaction; nitrile; dihydrobenzothiazine; DFT; Hirshfeld surface.
CCDC reference: 1913051
1. Chemical context
1,4-Benzothiazine derivatives constitute an important class of heterocyclic systems. These molecules exhibit a wide range of biological applications indicating that the 1,4-benzothiazine moiety is a potentially useful template in medicinal chemistry research and has therapeutic applications as anti-inflammatory (Trapani et al., 1985; Gowda et al., 2011), antipyretic (Warren & Knaus, 1987), anti-microbial (Armenise et al., 2012; Rathore & Kumar, 2006; Sabatini et al., 2008), anti-viral (Malagu et al., 1998), anti-cancer (Gupta et al., 1985; Gupta & Gupta, 1991) and anti-oxidant (Zia-ur-Rehman et al., 2009) agents. 1,4-Benzothiazine derivatives have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a; Vidal et al., 2006) possessing anti-diabetic (Tawada et al., 1990) and anti-corrosion activities (Ellouz et al., 2016a,b; Sebbar et al., 2016a). They also possess biological properties (Hni et al., 2019a; Saber et al., 2018; Ellouz et al., 2017a,b, 2018; Sebbar et al., 2017). As a continuation of our research work on the development of N-substituted 1,4-benzothiazine derivatives and the evaluation of their potential pharmacological activities, we report herein the synthesis and the molecular and crystal structures of the title compound along with the Hirshfeld surface analysis and the intermolecular interaction energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–31 G(d,p) and B3LYP/6–311 G(d,p) levels, respectively.
2. Structural commentary
The title compound, (I), consists of a dihydrobenzothiazine unit linked by a –CH group to a 2,4-dichlorophenyl substituent and to a propanenitrile moiety (Fig. 1). The dihydrobenzothiazine unit is folded along the S⋯N axis by 13.50 (9)°. The benzene ring, A (C1–C6), is oriented at a dihedral angle of 1.89 (6)° with respect to the phenyl ring, C (C10–C15). A puckering analysis of the heterocyclic ring B (S1/N1/C1/C6–C8) of the dihydrobenzothiazine unit gave the parameters QT = 0.1983 (15) Å, q2 = 0.1957 (17) Å, q3 = 0.0323 (19) Å, φ = 354.6 (6)° and θ = 80.8 (5)°, indicating it adopts a flattened-boat conformation. The propanenitrile moiety is essentially perpendicular to the dihydrobenzothiazine unit, as indicated by the C7—N1—C16—C17 torsion angle of 88.6 (2)°. In heterocyclic ring B, the C1—S1—C8 [103.69 (9)°], S1—C8—C7 [121.12 (14)°], C8—C7—N1 [120.59 (17)°], C7—N1—C6 [126.27 (16)°], C6—C1—S1 [123.84 (15)°] and N1—C6—C1 [121.46 (17)°] bond angles are enlarged when compared with the corresponding values in the closely related compounds, (2Z)-2-(4-chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl) ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one, (II), (Ellouz et al., 2017a) and (2Z)-2-[(4-fluorobenzylidene]-4-(prop-2-yn-1-yl)-3,4 -dihydro-2H-1,4-benzothiazin-3-one, (III), (Hni et al., 2019a), and are nearly the same as the corresponding values in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-2(phenylmethylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one, (IV), (Sebbar et al., 2016b) and (2Z)-2-[(2,4-dichlorophenyl)methylidene]-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]3,4-dihydro-2H-1,4-benzothiazin-3-one, (V), (Hni et al., 2019b), where the heterocyclic portions of the dihydrobenzothiazine units are planar in (IV) and non-planar in (II), (III) and (V).
3. Supramolecular features
In the crystal, inversion dimers are formed by C—HBnz⋯NPrpnit (Bnz = benzene and Prpnit = propanenitrile) hydrogen bonds (Table 1 and Fig. 2), enclosing R22(16) ring motifs, and these units are linked into stepped ribbons extending along [110] by inversion-related C—HPrpnit⋯OThz (Thz = thiazine) hydrogen bonds (Table 1 and Fig. 2), enclosing R22(12) ring motifs. The ribbons are arranged in pairs with inversion-related Cl2⋯O1 contacts of 3.027 (2) Å and C15=O1⋯Cl2 angles of 170.41 (7)° (Fig. 3). The contact is noticeably less than the sum of the van der Waals radii (3.27 Å), and the contact and angle compare well with corresponding parameters found in the structure of 2,5-dichloro-1,4-benzoquinone and attributed to attractive O⋯Cl interactions (Lommerse et al., 1996). The π–π contacts between the benzene (C1–C6, centroid Cg1) and 2,4-dichlorophenyl rings (C10–C15, centroid Cg3) [Cg1⋯Cg3(x − 1, y − 1, z) = 3.974 (1) Å] may further stabilize the structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017. In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggest that there are π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, H⋯O/O⋯H, C⋯Cl/Cl⋯C, H⋯S/S⋯H, C⋯S/S⋯C, O⋯Cl/Cl⋯O and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–l, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2), contributing 23.4% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the small split tips at de + di = 2.32 Å. The pair of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.5% contribution) have a nearly symmetrical distribution of points, Fig. 7c, with the thin edges at de + di = 2.82 Å. In the absence of C—H⋯π interactions, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (13.5%) also have a nearly symmetrical distribution of points, Fig. 7d, with the thick edges at de + di ∼2.90 Å. The wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (13.3%, Fig. 7e) have as pair of spikes with the tips at de + di = 2.30 Å. The C⋯C contacts (10.4%, Fig. 7f) have an arrow-shaped distribution of points with the tip at de = di ∼1.78 Å. The H⋯O/O⋯H (5.1%, Fig. 7g) and C⋯Cl/Cl⋯C (4.6%, Fig. 7h) contacts (Table 2) are viewed as pairs of thin spikes with the tips at de + di = 2.34 and 3.50 Å, respectively. Finally, the H⋯S/S ⋯ H (2.6%, Fig. 7i) and C⋯S/S⋯C (2.3%, Fig. 7j) contacts are seen as pairs of wide spikes with the tips at de + di ∼3.30 and 3.48 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H ⋯ N/N⋯H, C⋯C and H⋯O/O⋯H interactions in Fig. 8a–f, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯Cl/Cl⋯H, H ⋯ C/C⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −13.0 (Eele), −1.8 (Epol), −68.0 (Edis), 48.3 (Erep) and −44.4 (Etot) for the C—HBnz⋯NPrpnit hydrogen-bonding interaction and −37.3 (Eele), −9.3 (Epol), −19.0 (Edis), 33.7 (Erep) and −42.0 (Etot) for C—HPrpnit⋯OThz.
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement. The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole 3-[(2Z)-2-[(2,4-dichlorophenyl)methylidene]-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]propanenitrile ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is about 6.1979 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −7.1543 and −0.9564 eV, respectively.
7. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016; updated to March 2019), for compounds containing the fragment II (R1 = Ph, R2 = C), gave 14 hits. With R1 = Ph and R2 = CH2C≡CH IIa (Sebbar et al., 2014a), CH2COOH IIb (Sebbar et al., 2016c), IIc (Sebbar et al., 2016b) and IIf (Sebbar et al., 2015b), there are other examples with R1 = 4-FC6H4 and R2 = CH2C≡CH IIa (Hni et al., 2019a), R1 = 4-ClC6H4 and R2 = CH2Ph2 IId (Ellouz et al., 2016c) and R1 = 2-ClC6H4, R2 = CH2C≡CH IIa (Sebbar et al., 2017). In all these compounds, the configuration about the benzylidene C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitrogen and sulfur atoms and that defined by nitrogen and sulfur and the other two carbon atoms separating them ranging from ca 29° (IIa) to 36° (IIf). The other three (IIa, IIc) have the benzothiazine unit nearly planar with a corresponding dihedral angle of ca 3–4°
.8. Synthesis and crystallization
3-Bromopropanenitrile (2.0 mmol) was added to a mixture of (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (1.8 mmol), potassium carbonate (2.0 mmol) and tetra n-butyl ammonium bromide (0.15 mmol) in DMF (20 ml). Stirring was continued at room temperature for 12 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by on a column of silica gel with ethyl acetate–hexane (1/9) as The solid product obtained was recrystallized from ethanol to afford colourless crystals (yield: 82%).
9. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.95 Å for aromatic and methine H atoms and 0.99 Å for methylene H atoms) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1913051
https://doi.org/10.1107/S2056989019005966/lh5901sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005966/lh5901Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019005966/lh5901Isup3.cdx
Cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H12Cl2N2OS | Z = 2 |
Mr = 375.26 | F(000) = 384 |
Triclinic, P1 | Dx = 1.559 Mg m−3 |
a = 6.5687 (6) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 7.9971 (7) Å | Cell parameters from 5359 reflections |
c = 15.4939 (13) Å | θ = 5.6–72.4° |
α = 98.105 (4)° | µ = 4.93 mm−1 |
β = 94.316 (4)° | T = 150 K |
γ = 95.002 (4)° | Block, light yellow |
V = 799.54 (12) Å3 | 0.20 × 0.14 × 0.10 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2978 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2744 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 5.6° |
ω scans | h = −8→8 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −9→9 |
Tmin = 0.47, Tmax = 0.65 | l = −18→19 |
6131 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0424P)2 + 0.4609P] where P = (Fo2 + 2Fc2)/3 |
2978 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.46628 (8) | 0.81960 (7) | 0.07781 (3) | 0.04020 (16) | |
Cl2 | 1.26553 (7) | 0.65190 (6) | 0.38541 (3) | 0.03278 (15) | |
S1 | 0.56343 (7) | 0.34226 (7) | 0.16525 (3) | 0.03124 (15) | |
O1 | 0.6855 (2) | 0.3626 (2) | 0.42004 (9) | 0.0366 (4) | |
N1 | 0.4171 (2) | 0.2189 (2) | 0.33447 (10) | 0.0271 (3) | |
N2 | 0.1980 (3) | 0.0890 (3) | 0.60834 (14) | 0.0469 (5) | |
C1 | 0.3267 (3) | 0.2389 (2) | 0.17968 (13) | 0.0267 (4) | |
C2 | 0.1860 (3) | 0.2031 (3) | 0.10570 (14) | 0.0329 (4) | |
H2 | 0.221285 | 0.238965 | 0.052383 | 0.039* | |
C3 | −0.0034 (3) | 0.1162 (3) | 0.10908 (14) | 0.0354 (5) | |
H3 | −0.097626 | 0.090518 | 0.058325 | 0.042* | |
C4 | −0.0542 (3) | 0.0669 (3) | 0.18748 (15) | 0.0346 (5) | |
H4 | −0.184723 | 0.007778 | 0.190526 | 0.042* | |
C5 | 0.0823 (3) | 0.1028 (3) | 0.26120 (14) | 0.0321 (4) | |
H5 | 0.043934 | 0.069093 | 0.314587 | 0.039* | |
C6 | 0.2759 (3) | 0.1878 (2) | 0.25857 (13) | 0.0267 (4) | |
C7 | 0.5932 (3) | 0.3289 (3) | 0.34700 (13) | 0.0279 (4) | |
C8 | 0.6774 (3) | 0.4023 (2) | 0.27150 (13) | 0.0263 (4) | |
C9 | 0.8579 (3) | 0.5003 (2) | 0.29147 (13) | 0.0281 (4) | |
H9 | 0.901779 | 0.520563 | 0.352193 | 0.034* | |
C10 | 0.9972 (3) | 0.5804 (2) | 0.23760 (13) | 0.0269 (4) | |
C11 | 0.9552 (3) | 0.5907 (3) | 0.14823 (14) | 0.0331 (4) | |
H11 | 0.824104 | 0.546039 | 0.120352 | 0.040* | |
C12 | 1.0964 (3) | 0.6631 (3) | 0.09939 (13) | 0.0328 (4) | |
H12 | 1.063405 | 0.666462 | 0.038948 | 0.039* | |
C13 | 1.2868 (3) | 0.7305 (3) | 0.13960 (13) | 0.0296 (4) | |
C14 | 1.3374 (3) | 0.7275 (2) | 0.22748 (13) | 0.0294 (4) | |
H14 | 1.468043 | 0.775194 | 0.254682 | 0.035* | |
C15 | 1.1936 (3) | 0.6535 (2) | 0.27505 (13) | 0.0267 (4) | |
C16 | 0.3685 (3) | 0.1376 (3) | 0.41071 (13) | 0.0297 (4) | |
H16A | 0.497966 | 0.120700 | 0.443893 | 0.036* | |
H16B | 0.293516 | 0.024451 | 0.390173 | 0.036* | |
C17 | 0.2378 (3) | 0.2424 (3) | 0.47210 (13) | 0.0324 (4) | |
H17A | 0.307185 | 0.358366 | 0.490295 | 0.039* | |
H17B | 0.102609 | 0.251541 | 0.441251 | 0.039* | |
C18 | 0.2103 (3) | 0.1586 (3) | 0.54900 (14) | 0.0337 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0318 (3) | 0.0578 (3) | 0.0310 (3) | −0.0053 (2) | 0.0060 (2) | 0.0108 (2) |
Cl2 | 0.0310 (3) | 0.0415 (3) | 0.0244 (3) | −0.00393 (19) | −0.00445 (18) | 0.0084 (2) |
S1 | 0.0251 (3) | 0.0468 (3) | 0.0203 (2) | −0.0039 (2) | 0.00083 (17) | 0.0050 (2) |
O1 | 0.0377 (8) | 0.0475 (9) | 0.0219 (7) | −0.0087 (7) | −0.0026 (6) | 0.0067 (6) |
N1 | 0.0274 (8) | 0.0318 (8) | 0.0216 (8) | −0.0019 (6) | 0.0014 (6) | 0.0051 (6) |
N2 | 0.0523 (13) | 0.0529 (12) | 0.0393 (12) | 0.0016 (10) | 0.0169 (9) | 0.0153 (10) |
C1 | 0.0224 (9) | 0.0321 (10) | 0.0250 (10) | 0.0021 (7) | 0.0026 (7) | 0.0029 (8) |
C2 | 0.0276 (10) | 0.0446 (12) | 0.0259 (10) | 0.0036 (8) | 0.0010 (8) | 0.0035 (9) |
C3 | 0.0271 (10) | 0.0460 (12) | 0.0299 (11) | −0.0001 (9) | −0.0024 (8) | −0.0003 (9) |
C4 | 0.0260 (10) | 0.0379 (11) | 0.0371 (12) | −0.0031 (8) | 0.0017 (8) | 0.0006 (9) |
C5 | 0.0308 (10) | 0.0342 (10) | 0.0307 (11) | −0.0018 (8) | 0.0056 (8) | 0.0041 (8) |
C6 | 0.0255 (9) | 0.0279 (9) | 0.0256 (10) | 0.0014 (7) | 0.0010 (7) | 0.0016 (8) |
C7 | 0.0279 (10) | 0.0325 (10) | 0.0228 (10) | 0.0007 (8) | 0.0013 (7) | 0.0037 (8) |
C8 | 0.0256 (9) | 0.0308 (9) | 0.0220 (9) | 0.0009 (7) | 0.0015 (7) | 0.0037 (7) |
C9 | 0.0286 (10) | 0.0327 (10) | 0.0220 (9) | 0.0005 (8) | 0.0003 (7) | 0.0037 (8) |
C10 | 0.0260 (10) | 0.0292 (9) | 0.0253 (10) | 0.0010 (7) | 0.0016 (7) | 0.0047 (8) |
C11 | 0.0297 (10) | 0.0418 (11) | 0.0261 (10) | −0.0044 (8) | −0.0028 (8) | 0.0071 (9) |
C12 | 0.0326 (11) | 0.0418 (11) | 0.0235 (10) | −0.0020 (9) | −0.0010 (8) | 0.0091 (8) |
C13 | 0.0261 (10) | 0.0349 (10) | 0.0284 (10) | 0.0005 (8) | 0.0056 (8) | 0.0067 (8) |
C14 | 0.0241 (9) | 0.0344 (10) | 0.0290 (11) | 0.0010 (8) | 0.0006 (8) | 0.0045 (8) |
C15 | 0.0272 (10) | 0.0291 (9) | 0.0232 (9) | 0.0019 (7) | −0.0012 (7) | 0.0041 (7) |
C16 | 0.0317 (10) | 0.0331 (10) | 0.0254 (10) | 0.0003 (8) | 0.0036 (8) | 0.0095 (8) |
C17 | 0.0358 (11) | 0.0342 (10) | 0.0273 (11) | −0.0006 (8) | 0.0052 (8) | 0.0063 (8) |
C18 | 0.0335 (11) | 0.0378 (11) | 0.0296 (11) | −0.0002 (8) | 0.0083 (8) | 0.0033 (9) |
Cl1—C13 | 1.741 (2) | C7—C8 | 1.501 (3) |
Cl2—C15 | 1.742 (2) | C8—C9 | 1.353 (3) |
S1—C8 | 1.7407 (19) | C9—C10 | 1.452 (3) |
S1—C1 | 1.7411 (19) | C9—H9 | 0.9500 |
O1—C7 | 1.226 (2) | C10—C11 | 1.407 (3) |
N1—C7 | 1.375 (3) | C10—C15 | 1.415 (3) |
N1—C6 | 1.421 (2) | C11—C12 | 1.380 (3) |
N1—C16 | 1.469 (2) | C11—H11 | 0.9500 |
N2—C18 | 1.144 (3) | C12—C13 | 1.383 (3) |
C1—C6 | 1.397 (3) | C12—H12 | 0.9500 |
C1—C2 | 1.397 (3) | C13—C14 | 1.381 (3) |
C2—C3 | 1.380 (3) | C14—C15 | 1.384 (3) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.384 (3) | C16—C17 | 1.538 (3) |
C3—H3 | 0.9500 | C16—H16A | 0.9900 |
C4—C5 | 1.378 (3) | C16—H16B | 0.9900 |
C4—H4 | 0.9500 | C17—C18 | 1.462 (3) |
C5—C6 | 1.395 (3) | C17—H17A | 0.9900 |
C5—H5 | 0.9500 | C17—H17B | 0.9900 |
Cl2···C18i | 3.649 (2) | N2···H16Aix | 2.81 |
Cl2···C7ii | 3.520 (2) | C2···C11vi | 3.569 (3) |
Cl2···O1i | 3.0269 (15) | C4···C12x | 3.577 (3) |
Cl1···H2iii | 3.00 | C4···C8vi | 3.490 (3) |
Cl1···H4iv | 2.94 | C5···C14x | 3.557 (3) |
Cl2···H17Aii | 3.06 | C5···C17 | 3.352 (3) |
Cl2···H9 | 2.51 | C8···C4ii | 3.490 (3) |
Cl2···H16Bv | 2.96 | C9···C18vii | 3.497 (3) |
S1···N1 | 3.1168 (17) | C11···C2ii | 3.569 (3) |
S1···C3ii | 3.598 (2) | C12···C4v | 3.577 (3) |
S1···C4ii | 3.510 (2) | C14···C5v | 3.557 (3) |
S1···C11 | 3.162 (2) | C17···C5 | 3.352 (3) |
S1···C14vi | 3.578 (2) | C18···C9vii | 3.497 (3) |
S1···H11 | 2.47 | C5···H16B | 2.53 |
O1···C17 | 3.210 (2) | C5···H17B | 2.86 |
O1···Cl2i | 3.0269 (15) | C8···H11 | 2.94 |
O1···C17vii | 3.336 (3) | C16···H5 | 2.48 |
O1···H17A | 2.79 | C17···H5 | 2.79 |
O1···H9 | 2.24 | C18···H9vii | 2.98 |
O1···H16A | 2.29 | H2···H12xi | 2.49 |
O1···H17Avii | 2.45 | H5···H16B | 2.03 |
N2···C5viii | 3.282 (3) | H5···H17B | 2.26 |
N2···H5viii | 2.43 | ||
C8—S1—C1 | 103.69 (9) | C11—C10—C15 | 115.36 (18) |
C7—N1—C6 | 126.27 (16) | C11—C10—C9 | 125.21 (18) |
C7—N1—C16 | 114.86 (16) | C15—C10—C9 | 119.43 (18) |
C6—N1—C16 | 118.72 (16) | C12—C11—C10 | 122.73 (19) |
C6—C1—C2 | 120.06 (18) | C12—C11—H11 | 118.6 |
C6—C1—S1 | 123.84 (15) | C10—C11—H11 | 118.6 |
C2—C1—S1 | 116.06 (15) | C11—C12—C13 | 119.12 (19) |
C3—C2—C1 | 120.8 (2) | C11—C12—H12 | 120.4 |
C3—C2—H2 | 119.6 | C13—C12—H12 | 120.4 |
C1—C2—H2 | 119.6 | C14—C13—C12 | 121.32 (18) |
C2—C3—C4 | 119.0 (2) | C14—C13—Cl1 | 119.49 (15) |
C2—C3—H3 | 120.5 | C12—C13—Cl1 | 119.19 (16) |
C4—C3—H3 | 120.5 | C13—C14—C15 | 118.53 (18) |
C5—C4—C3 | 120.8 (2) | C13—C14—H14 | 120.7 |
C5—C4—H4 | 119.6 | C15—C14—H14 | 120.7 |
C3—C4—H4 | 119.6 | C14—C15—C10 | 122.93 (18) |
C4—C5—C6 | 121.0 (2) | C14—C15—Cl2 | 116.72 (15) |
C4—C5—H5 | 119.5 | C10—C15—Cl2 | 120.34 (15) |
C6—C5—H5 | 119.5 | N1—C16—C17 | 112.76 (16) |
C5—C6—C1 | 118.32 (18) | N1—C16—H16A | 109.0 |
C5—C6—N1 | 120.22 (18) | C17—C16—H16A | 109.0 |
C1—C6—N1 | 121.46 (17) | N1—C16—H16B | 109.0 |
O1—C7—N1 | 119.47 (18) | C17—C16—H16B | 109.0 |
O1—C7—C8 | 119.89 (18) | H16A—C16—H16B | 107.8 |
N1—C7—C8 | 120.59 (17) | C18—C17—C16 | 108.89 (17) |
C9—C8—C7 | 114.77 (17) | C18—C17—H17A | 109.9 |
C9—C8—S1 | 123.67 (15) | C16—C17—H17A | 109.9 |
C7—C8—S1 | 121.12 (14) | C18—C17—H17B | 109.9 |
C8—C9—C10 | 132.12 (19) | C16—C17—H17B | 109.9 |
C8—C9—H9 | 113.9 | H17A—C17—H17B | 108.3 |
C10—C9—H9 | 113.9 | N2—C18—C17 | 176.4 (2) |
C8—S1—C1—C6 | −13.00 (19) | N1—C7—C8—S1 | −3.4 (3) |
C8—S1—C1—C2 | 168.95 (15) | C1—S1—C8—C9 | −173.92 (17) |
C6—C1—C2—C3 | −0.4 (3) | C1—S1—C8—C7 | 14.09 (18) |
S1—C1—C2—C3 | 177.68 (17) | C7—C8—C9—C10 | 173.6 (2) |
C1—C2—C3—C4 | 1.0 (3) | S1—C8—C9—C10 | 1.1 (3) |
C2—C3—C4—C5 | −0.4 (3) | C8—C9—C10—C11 | 9.6 (4) |
C3—C4—C5—C6 | −0.7 (3) | C8—C9—C10—C15 | −169.6 (2) |
C4—C5—C6—C1 | 1.3 (3) | C15—C10—C11—C12 | 1.6 (3) |
C4—C5—C6—N1 | −178.01 (19) | C9—C10—C11—C12 | −177.6 (2) |
C2—C1—C6—C5 | −0.7 (3) | C10—C11—C12—C13 | −0.9 (3) |
S1—C1—C6—C5 | −178.69 (15) | C11—C12—C13—C14 | −0.3 (3) |
C2—C1—C6—N1 | 178.59 (18) | C11—C12—C13—Cl1 | 179.24 (17) |
S1—C1—C6—N1 | 0.6 (3) | C12—C13—C14—C15 | 0.6 (3) |
C7—N1—C6—C5 | −165.80 (19) | Cl1—C13—C14—C15 | −178.93 (15) |
C16—N1—C6—C5 | 9.4 (3) | C13—C14—C15—C10 | 0.2 (3) |
C7—N1—C6—C1 | 14.9 (3) | C13—C14—C15—Cl2 | 179.63 (15) |
C16—N1—C6—C1 | −169.86 (18) | C11—C10—C15—C14 | −1.3 (3) |
C6—N1—C7—O1 | 169.33 (18) | C9—C10—C15—C14 | 177.97 (18) |
C16—N1—C7—O1 | −6.1 (3) | C11—C10—C15—Cl2 | 179.34 (15) |
C6—N1—C7—C8 | −13.1 (3) | C9—C10—C15—Cl2 | −1.4 (3) |
C16—N1—C7—C8 | 171.47 (17) | C7—N1—C16—C17 | 88.6 (2) |
O1—C7—C8—C9 | 1.4 (3) | C6—N1—C16—C17 | −87.2 (2) |
N1—C7—C8—C9 | −176.09 (18) | N1—C16—C17—C18 | −175.75 (17) |
O1—C7—C8—S1 | 174.09 (16) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z; (iv) x+2, y+1, z; (v) x+1, y+1, z; (vi) x−1, y, z; (vii) −x+1, −y+1, −z+1; (viii) −x, −y, −z+1; (ix) −x+1, −y, −z+1; (x) x−1, y−1, z; (xi) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N2viii | 0.95 | 2.43 | 3.282 (3) | 149 |
C17—H17A···O1vii | 0.99 | 2.45 | 3.337 (3) | 149 |
Symmetry codes: (vii) −x+1, −y+1, −z+1; (viii) −x, −y, −z+1. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004) for support.
References
Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. Web of Science CrossRef PubMed Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385. CrossRef CAS Web of Science Google Scholar
Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156. CrossRef CAS Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116. CrossRef CAS Web of Science Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. Web of Science CrossRef PubMed CAS Google Scholar
Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. Web of Science CrossRef PubMed CAS Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1746–1750. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. CrossRef CAS PubMed Google Scholar
Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593. Web of Science CrossRef Google Scholar
Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415. CrossRef CAS Web of Science Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.