research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 3-{(2Z)-2-[(2,4-di­chloro­phen­yl)methyl­­idene]-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl}propane­nitrile

aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 15 April 2019; accepted 29 April 2019; online 3 May 2019)

The title compound, C18H12Cl2N2OS, consists of a di­hydro­benzo­thia­zine unit linked by a –CH group to a 2,4-di­chloro­phenyl substituent, and to a propane­nitrile unit is folded along the S⋯N axis and adopts a flattened-boat conformation. The propane­nitrile moiety is nearly perpendicular to the mean plane of the di­hydro­benzo­thia­zine unit. In the crystal, C—HBnz⋯NPrpnit and C—HPrpnit⋯OThz (Bnz = benzene, Prpnit = propane­nitrile and Thz = thia­zine) hydrogen bonds link the mol­ecules into inversion dimers, enclosing R22(16) and R22(12) ring motifs, which are linked into stepped ribbons extending along [110]. The ribbons are linked in pairs by complementary C=O⋯Cl inter­actions. ππ contacts between the benzene and phenyl rings, [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (23.4%), H⋯Cl/Cl⋯H (19.5%), H⋯C/C⋯H (13.5%), H⋯N/N⋯H (13.3%), C⋯C (10.4%) and H⋯O/O⋯H (5.1%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that the two independent C—HBnz⋯NPrpnit and C—HPrpnit⋯OThz hydrogen bonds in the crystal impart about the same energy (ca 43 kJ mol−1). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic systems. These mol­ecules exhibit a wide range of biological applications indicating that the 1,4-benzo­thia­zine moiety is a potentially useful template in medicinal chemistry research and has therapeutic applications as anti-inflammatory (Trapani et al., 1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369-376.]; Gowda et al., 2011[Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100-4106.]), anti­pyretic (Warren & Knaus, 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), anti-microbial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178-1188.]; Rathore & Kumar, 2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]), anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]), anti-cancer (Gupta et al., 1985[Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381-385.]; Gupta & Gupta, 1991[Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153-156.]) and anti-oxidant (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]) agents. 1,4-Benzo­thia­zine derivatives have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.]; Vidal et al., 2006[Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591-593.]) possessing anti-diabetic (Tawada et al., 1990[Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238-1245.]) and anti-corrosion activities (Ellouz et al., 2016a[Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806-2819.],b[Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482-2497.]; Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.]). They also possess biological properties (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]; Saber et al., 2018[Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1746-1750.]; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.],b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.], 2018[Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.]; Sebbar et al., 2017[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.]). As a continuation of our research work on the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we report herein the synthesis and the mol­ecular and crystal structures of the title compound along with the Hirshfeld surface analysis and the inter­molecular inter­action energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–31 G(d,p) and B3LYP/6–311 G(d,p) levels, respectively.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], consists of a di­hydro­benzo­thia­zine unit linked by a –CH group to a 2,4-di­chloro­phenyl substituent and to a propane­nitrile moiety (Fig. 1[link]). The di­hydro­benzo­thia­zine unit is folded along the S⋯N axis by 13.50 (9)°. The benzene ring, A (C1–C6), is oriented at a dihedral angle of 1.89 (6)° with respect to the phenyl ring, C (C10–C15). A puckering analysis of the heterocyclic ring B (S1/N1/C1/C6–C8) of the di­hydro­benzo­thia­zine unit gave the parameters QT = 0.1983 (15) Å, q2 = 0.1957 (17) Å, q3 = 0.0323 (19) Å, φ = 354.6 (6)° and θ = 80.8 (5)°, indicating it adopts a flattened-boat conformation. The propane­nitrile moiety is essentially perpendicular to the di­hydro­benzo­thia­zine unit, as indicated by the C7—N1—C16—C17 torsion angle of 88.6 (2)°. In heterocyclic ring B, the C1—S1—C8 [103.69 (9)°], S1—C8—C7 [121.12 (14)°], C8—C7—N1 [120.59 (17)°], C7—N1—C6 [126.27 (16)°], C6—C1—S1 [123.84 (15)°] and N1—C6—C1 [121.46 (17)°] bond angles are enlarged when compared with the corresponding values in the closely related compounds, (2Z)-2-(4-chloro­benzyl­idene)-4-[2-(2-oxooxazoliden-3-yl) eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (II), (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.]) and (2Z)-2-[(4-fluoro­benzyl­idene]-4-(prop-2-yn-1-yl)-3,4 -di­hydro-2H-1,4-benzo­thia­zin-3-one, (III), (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]), and are nearly the same as the corresponding values in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-2(phenyl­methyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (IV), (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]) and (2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (V), (Hni et al., 2019b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.]), where the heterocyclic portions of the di­hydro­benzo­thia­zine units are planar in (IV) and non-planar in (II), (III) and (V).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inversion dimers are formed by C—HBnz⋯NPrpnit (Bnz = benzene and Prpnit = propane­nitrile) hydrogen bonds (Table 1[link] and Fig. 2[link]), enclosing R22(16) ring motifs, and these units are linked into stepped ribbons extending along [110] by inversion-related C—HPrpnit⋯OThz (Thz = thia­zine) hydrogen bonds (Table 1[link] and Fig. 2[link]), enclosing R22(12) ring motifs. The ribbons are arranged in pairs with inversion-related Cl2⋯O1 contacts of 3.027 (2) Å and C15=O1⋯Cl2 angles of 170.41 (7)° (Fig. 3[link]). The contact is noticeably less than the sum of the van der Waals radii (3.27 Å), and the contact and angle compare well with corresponding parameters found in the structure of 2,5-di­chloro-1,4-benzo­quinone and attributed to attractive O⋯Cl inter­actions (Lommerse et al., 1996)[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.]. The ππ contacts between the benzene (C1–C6, centroid Cg1) and 2,4-dichlorophenyl rings (C10–C15, centroid Cg3) [Cg1⋯Cg3(x − 1, y − 1, z) = 3.974 (1) Å] may further stabilize the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2viii 0.95 2.43 3.282 (3) 149
C17—H17A⋯O1vii 0.99 2.45 3.337 (3) 149
Symmetry codes: (vii) -x+1, -y+1, -z+1; (viii) -x, -y, -z+1.
[Figure 2]
Figure 2
A partial packing diagram viewed along the c-axis direction with the C—H⋯O and C—H⋯N hydrogen bonds shown, respectively, as black and blue dashed lines.
[Figure 3]
Figure 3
A partial packing diagram viewed along the a-axis direction with hydrogen bonds depicted as in Fig. 2[link], and C=O⋯Cl inter­actions as green dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]. In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2386 to 1.2893 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, H⋯O/O⋯H, C⋯Cl/Cl⋯C, H⋯S/S⋯H, C⋯S/S⋯C, O⋯Cl/Cl⋯O and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]), contributing 23.4% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the small split tips at de + di = 2.32 Å. The pair of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.5% contribution) have a nearly symmetrical distribution of points, Fig. 7[link]c, with the thin edges at de + di = 2.82 Å. In the absence of C—H⋯π inter­actions, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (13.5%) also have a nearly symmetrical distribution of points, Fig. 7[link]d, with the thick edges at de + di ∼2.90 Å. The wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (13.3%, Fig. 7[link]e) have as pair of spikes with the tips at de + di = 2.30 Å. The C⋯C contacts (10.4%, Fig. 7[link]f) have an arrow-shaped distribution of points with the tip at de = di ∼1.78 Å. The H⋯O/O⋯H (5.1%, Fig. 7[link]g) and C⋯Cl/Cl⋯C (4.6%, Fig. 7[link]h) contacts (Table 2[link]) are viewed as pairs of thin spikes with the tips at de + di = 2.34 and 3.50 Å, respectively. Finally, the H⋯S/S ⋯ H (2.6%, Fig. 7[link]i) and C⋯S/S⋯C (2.3%, Fig. 7[link]j) contacts are seen as pairs of wide spikes with the tips at de + di ∼3.30 and 3.48 Å, respectively.

Table 2
Selected interatomic distances (Å)

Cl2⋯C18i 3.649 (2) N2⋯H16Aix 2.81
Cl2⋯C7ii 3.520 (2) C2⋯C11vi 3.569 (3)
Cl2⋯O1i 3.0269 (15) C4⋯C12x 3.577 (3)
Cl1⋯H2iii 3.00 C4⋯C8vi 3.490 (3)
Cl1⋯H4iv 2.94 C5⋯C14x 3.557 (3)
Cl2⋯H17Aii 3.06 C5⋯C17 3.352 (3)
Cl2⋯H9 2.51 C8⋯C4ii 3.490 (3)
Cl2⋯H16Bv 2.96 C9⋯C18vii 3.497 (3)
S1⋯N1 3.1168 (17) C11⋯C2ii 3.569 (3)
S1⋯C3ii 3.598 (2) C12⋯C4v 3.577 (3)
S1⋯C4ii 3.510 (2) C14⋯C5v 3.557 (3)
S1⋯C11 3.162 (2) C17⋯C5 3.352 (3)
S1⋯C14vi 3.578 (2) C18⋯C9vii 3.497 (3)
S1⋯H11 2.47 C5⋯H16B 2.53
O1⋯C17 3.210 (2) C5⋯H17B 2.86
O1⋯Cl2i 3.0269 (15) C8⋯H11 2.94
O1⋯C17vii 3.336 (3) C16⋯H5 2.48
O1⋯H17A 2.79 C17⋯H5 2.79
O1⋯H9 2.24 C18⋯H9vii 2.98
O1⋯H16A 2.29 H2⋯H12xi 2.49
O1⋯H17Avii 2.45 H5⋯H16B 2.03
N2⋯C5viii 3.282 (3) H5⋯H17B 2.26
N2⋯H5viii 2.43    
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z; (iv) x+2, y+1, z; (v) x+1, y+1, z; (vi) x-1, y, z; (vii) -x+1, -y+1, -z+1; (viii) -x, -y, -z+1; (ix) -x+1, -y, -z+1; (x) x-1, y-1, z; (xi) -x+1, -y+1, -z.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) C⋯C, (g) H⋯O/O⋯H, (h) C⋯Cl/Cl⋯C, (i) H⋯S/S⋯H, (j) C⋯S/S⋯C, (k) O⋯Cl/Cl⋯O and (l) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H ⋯ N/N⋯H, C⋯C and H⋯O/O⋯H inter­actions in Fig. 8[link]af, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) C⋯C and (f) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯Cl/Cl⋯H, H ⋯ C/C⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −13.0 (Eele), −1.8 (Epol), −68.0 (Edis), 48.3 (Erep) and −44.4 (Etot) for the C—HBnz⋯NPrpnit hydrogen-bonding inter­action and −37.3 (Eele), −9.3 (Epol), −19.0 (Edis), 33.7 (Erep) and −42.0 (Etot) for C—HPrpnit⋯OThz.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole 3-[(2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]propane­nitrile ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is about 6.1979 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −7.1543 and −0.9564 eV, respectively.

[Figure 9]
Figure 9
The energy band gap of the title compound.

7. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to March 2019), for compounds containing the fragment II (R1 = Ph, R2 = C), gave 14 hits. With R1 = Ph and R2 = CH2C≡CH IIa (Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.]), CH2COOH IIb (Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.]), IIc (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]) and IIf (Sebbar et al., 2015b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423-o424.]), there are other examples with R1 = 4-FC6H4 and R2 = CH2C≡CH IIa (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]), R1 = 4-ClC6H4 and R2 = CH2Ph2 IId (Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]) and R1 = 2-ClC6H4, R2 = CH2C≡CH IIa (Sebbar et al., 2017[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.]). In all these compounds, the configuration about the benzyl­idene C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them ranging from ca 29° (IIa) to 36° (IIf). The other three (IIa, IIc) have the benzo­thia­zine unit nearly planar with a corresponding dihedral angle of ca 3–4°

[Scheme 2]
.

8. Synthesis and crystallization

3-Bromo­propane­nitrile (2.0 mmol) was added to a mixture of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.8 mmol), potassium carbonate (2.0 mmol) and tetra n-butyl ammonium bromide (0.15 mmol) in DMF (20 ml). Stirring was continued at room temperature for 12 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate–hexane (1/9) as eluent. The solid product obtained was recrystallized from ethanol to afford colourless crystals (yield: 82%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.95 Å for aromatic and methine H atoms and 0.99 Å for methyl­ene H atoms) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C18H12Cl2N2OS
Mr 375.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.5687 (6), 7.9971 (7), 15.4939 (13)
α, β, γ (°) 98.105 (4), 94.316 (4), 95.002 (4)
V3) 799.54 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.93
Crystal size (mm) 0.20 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.47, 0.65
No. of measured, independent and observed [I > 2σ(I)] reflections 6131, 2978, 2744
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.06
No. of reflections 2978
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.35
Computer programs: SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-{(2Z)-2-[(2,4-Dichlorophenyl)methylidene]-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl}propanenitrile top
Crystal data top
C18H12Cl2N2OSZ = 2
Mr = 375.26F(000) = 384
Triclinic, P1Dx = 1.559 Mg m3
a = 6.5687 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.9971 (7) ÅCell parameters from 5359 reflections
c = 15.4939 (13) Åθ = 5.6–72.4°
α = 98.105 (4)°µ = 4.93 mm1
β = 94.316 (4)°T = 150 K
γ = 95.002 (4)°Block, light yellow
V = 799.54 (12) Å30.20 × 0.14 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2978 independent reflections
Radiation source: INCOATEC IµS micro-focus source2744 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 5.6°
ω scansh = 88
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.47, Tmax = 0.65l = 1819
6131 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.4609P]
where P = (Fo2 + 2Fc2)/3
2978 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.46628 (8)0.81960 (7)0.07781 (3)0.04020 (16)
Cl21.26553 (7)0.65190 (6)0.38541 (3)0.03278 (15)
S10.56343 (7)0.34226 (7)0.16525 (3)0.03124 (15)
O10.6855 (2)0.3626 (2)0.42004 (9)0.0366 (4)
N10.4171 (2)0.2189 (2)0.33447 (10)0.0271 (3)
N20.1980 (3)0.0890 (3)0.60834 (14)0.0469 (5)
C10.3267 (3)0.2389 (2)0.17968 (13)0.0267 (4)
C20.1860 (3)0.2031 (3)0.10570 (14)0.0329 (4)
H20.2212850.2389650.0523830.039*
C30.0034 (3)0.1162 (3)0.10908 (14)0.0354 (5)
H30.0976260.0905180.0583250.042*
C40.0542 (3)0.0669 (3)0.18748 (15)0.0346 (5)
H40.1847230.0077780.1905260.042*
C50.0823 (3)0.1028 (3)0.26120 (14)0.0321 (4)
H50.0439340.0690930.3145870.039*
C60.2759 (3)0.1878 (2)0.25857 (13)0.0267 (4)
C70.5932 (3)0.3289 (3)0.34700 (13)0.0279 (4)
C80.6774 (3)0.4023 (2)0.27150 (13)0.0263 (4)
C90.8579 (3)0.5003 (2)0.29147 (13)0.0281 (4)
H90.9017790.5205630.3521930.034*
C100.9972 (3)0.5804 (2)0.23760 (13)0.0269 (4)
C110.9552 (3)0.5907 (3)0.14823 (14)0.0331 (4)
H110.8241040.5460390.1203520.040*
C121.0964 (3)0.6631 (3)0.09939 (13)0.0328 (4)
H121.0634050.6664620.0389480.039*
C131.2868 (3)0.7305 (3)0.13960 (13)0.0296 (4)
C141.3374 (3)0.7275 (2)0.22748 (13)0.0294 (4)
H141.4680430.7751940.2546820.035*
C151.1936 (3)0.6535 (2)0.27505 (13)0.0267 (4)
C160.3685 (3)0.1376 (3)0.41071 (13)0.0297 (4)
H16A0.4979660.1207000.4438930.036*
H16B0.2935160.0244510.3901730.036*
C170.2378 (3)0.2424 (3)0.47210 (13)0.0324 (4)
H17A0.3071850.3583660.4902950.039*
H17B0.1026090.2515410.4412510.039*
C180.2103 (3)0.1586 (3)0.54900 (14)0.0337 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0318 (3)0.0578 (3)0.0310 (3)0.0053 (2)0.0060 (2)0.0108 (2)
Cl20.0310 (3)0.0415 (3)0.0244 (3)0.00393 (19)0.00445 (18)0.0084 (2)
S10.0251 (3)0.0468 (3)0.0203 (2)0.0039 (2)0.00083 (17)0.0050 (2)
O10.0377 (8)0.0475 (9)0.0219 (7)0.0087 (7)0.0026 (6)0.0067 (6)
N10.0274 (8)0.0318 (8)0.0216 (8)0.0019 (6)0.0014 (6)0.0051 (6)
N20.0523 (13)0.0529 (12)0.0393 (12)0.0016 (10)0.0169 (9)0.0153 (10)
C10.0224 (9)0.0321 (10)0.0250 (10)0.0021 (7)0.0026 (7)0.0029 (8)
C20.0276 (10)0.0446 (12)0.0259 (10)0.0036 (8)0.0010 (8)0.0035 (9)
C30.0271 (10)0.0460 (12)0.0299 (11)0.0001 (9)0.0024 (8)0.0003 (9)
C40.0260 (10)0.0379 (11)0.0371 (12)0.0031 (8)0.0017 (8)0.0006 (9)
C50.0308 (10)0.0342 (10)0.0307 (11)0.0018 (8)0.0056 (8)0.0041 (8)
C60.0255 (9)0.0279 (9)0.0256 (10)0.0014 (7)0.0010 (7)0.0016 (8)
C70.0279 (10)0.0325 (10)0.0228 (10)0.0007 (8)0.0013 (7)0.0037 (8)
C80.0256 (9)0.0308 (9)0.0220 (9)0.0009 (7)0.0015 (7)0.0037 (7)
C90.0286 (10)0.0327 (10)0.0220 (9)0.0005 (8)0.0003 (7)0.0037 (8)
C100.0260 (10)0.0292 (9)0.0253 (10)0.0010 (7)0.0016 (7)0.0047 (8)
C110.0297 (10)0.0418 (11)0.0261 (10)0.0044 (8)0.0028 (8)0.0071 (9)
C120.0326 (11)0.0418 (11)0.0235 (10)0.0020 (9)0.0010 (8)0.0091 (8)
C130.0261 (10)0.0349 (10)0.0284 (10)0.0005 (8)0.0056 (8)0.0067 (8)
C140.0241 (9)0.0344 (10)0.0290 (11)0.0010 (8)0.0006 (8)0.0045 (8)
C150.0272 (10)0.0291 (9)0.0232 (9)0.0019 (7)0.0012 (7)0.0041 (7)
C160.0317 (10)0.0331 (10)0.0254 (10)0.0003 (8)0.0036 (8)0.0095 (8)
C170.0358 (11)0.0342 (10)0.0273 (11)0.0006 (8)0.0052 (8)0.0063 (8)
C180.0335 (11)0.0378 (11)0.0296 (11)0.0002 (8)0.0083 (8)0.0033 (9)
Geometric parameters (Å, º) top
Cl1—C131.741 (2)C7—C81.501 (3)
Cl2—C151.742 (2)C8—C91.353 (3)
S1—C81.7407 (19)C9—C101.452 (3)
S1—C11.7411 (19)C9—H90.9500
O1—C71.226 (2)C10—C111.407 (3)
N1—C71.375 (3)C10—C151.415 (3)
N1—C61.421 (2)C11—C121.380 (3)
N1—C161.469 (2)C11—H110.9500
N2—C181.144 (3)C12—C131.383 (3)
C1—C61.397 (3)C12—H120.9500
C1—C21.397 (3)C13—C141.381 (3)
C2—C31.380 (3)C14—C151.384 (3)
C2—H20.9500C14—H140.9500
C3—C41.384 (3)C16—C171.538 (3)
C3—H30.9500C16—H16A0.9900
C4—C51.378 (3)C16—H16B0.9900
C4—H40.9500C17—C181.462 (3)
C5—C61.395 (3)C17—H17A0.9900
C5—H50.9500C17—H17B0.9900
Cl2···C18i3.649 (2)N2···H16Aix2.81
Cl2···C7ii3.520 (2)C2···C11vi3.569 (3)
Cl2···O1i3.0269 (15)C4···C12x3.577 (3)
Cl1···H2iii3.00C4···C8vi3.490 (3)
Cl1···H4iv2.94C5···C14x3.557 (3)
Cl2···H17Aii3.06C5···C173.352 (3)
Cl2···H92.51C8···C4ii3.490 (3)
Cl2···H16Bv2.96C9···C18vii3.497 (3)
S1···N13.1168 (17)C11···C2ii3.569 (3)
S1···C3ii3.598 (2)C12···C4v3.577 (3)
S1···C4ii3.510 (2)C14···C5v3.557 (3)
S1···C113.162 (2)C17···C53.352 (3)
S1···C14vi3.578 (2)C18···C9vii3.497 (3)
S1···H112.47C5···H16B2.53
O1···C173.210 (2)C5···H17B2.86
O1···Cl2i3.0269 (15)C8···H112.94
O1···C17vii3.336 (3)C16···H52.48
O1···H17A2.79C17···H52.79
O1···H92.24C18···H9vii2.98
O1···H16A2.29H2···H12xi2.49
O1···H17Avii2.45H5···H16B2.03
N2···C5viii3.282 (3)H5···H17B2.26
N2···H5viii2.43
C8—S1—C1103.69 (9)C11—C10—C15115.36 (18)
C7—N1—C6126.27 (16)C11—C10—C9125.21 (18)
C7—N1—C16114.86 (16)C15—C10—C9119.43 (18)
C6—N1—C16118.72 (16)C12—C11—C10122.73 (19)
C6—C1—C2120.06 (18)C12—C11—H11118.6
C6—C1—S1123.84 (15)C10—C11—H11118.6
C2—C1—S1116.06 (15)C11—C12—C13119.12 (19)
C3—C2—C1120.8 (2)C11—C12—H12120.4
C3—C2—H2119.6C13—C12—H12120.4
C1—C2—H2119.6C14—C13—C12121.32 (18)
C2—C3—C4119.0 (2)C14—C13—Cl1119.49 (15)
C2—C3—H3120.5C12—C13—Cl1119.19 (16)
C4—C3—H3120.5C13—C14—C15118.53 (18)
C5—C4—C3120.8 (2)C13—C14—H14120.7
C5—C4—H4119.6C15—C14—H14120.7
C3—C4—H4119.6C14—C15—C10122.93 (18)
C4—C5—C6121.0 (2)C14—C15—Cl2116.72 (15)
C4—C5—H5119.5C10—C15—Cl2120.34 (15)
C6—C5—H5119.5N1—C16—C17112.76 (16)
C5—C6—C1118.32 (18)N1—C16—H16A109.0
C5—C6—N1120.22 (18)C17—C16—H16A109.0
C1—C6—N1121.46 (17)N1—C16—H16B109.0
O1—C7—N1119.47 (18)C17—C16—H16B109.0
O1—C7—C8119.89 (18)H16A—C16—H16B107.8
N1—C7—C8120.59 (17)C18—C17—C16108.89 (17)
C9—C8—C7114.77 (17)C18—C17—H17A109.9
C9—C8—S1123.67 (15)C16—C17—H17A109.9
C7—C8—S1121.12 (14)C18—C17—H17B109.9
C8—C9—C10132.12 (19)C16—C17—H17B109.9
C8—C9—H9113.9H17A—C17—H17B108.3
C10—C9—H9113.9N2—C18—C17176.4 (2)
C8—S1—C1—C613.00 (19)N1—C7—C8—S13.4 (3)
C8—S1—C1—C2168.95 (15)C1—S1—C8—C9173.92 (17)
C6—C1—C2—C30.4 (3)C1—S1—C8—C714.09 (18)
S1—C1—C2—C3177.68 (17)C7—C8—C9—C10173.6 (2)
C1—C2—C3—C41.0 (3)S1—C8—C9—C101.1 (3)
C2—C3—C4—C50.4 (3)C8—C9—C10—C119.6 (4)
C3—C4—C5—C60.7 (3)C8—C9—C10—C15169.6 (2)
C4—C5—C6—C11.3 (3)C15—C10—C11—C121.6 (3)
C4—C5—C6—N1178.01 (19)C9—C10—C11—C12177.6 (2)
C2—C1—C6—C50.7 (3)C10—C11—C12—C130.9 (3)
S1—C1—C6—C5178.69 (15)C11—C12—C13—C140.3 (3)
C2—C1—C6—N1178.59 (18)C11—C12—C13—Cl1179.24 (17)
S1—C1—C6—N10.6 (3)C12—C13—C14—C150.6 (3)
C7—N1—C6—C5165.80 (19)Cl1—C13—C14—C15178.93 (15)
C16—N1—C6—C59.4 (3)C13—C14—C15—C100.2 (3)
C7—N1—C6—C114.9 (3)C13—C14—C15—Cl2179.63 (15)
C16—N1—C6—C1169.86 (18)C11—C10—C15—C141.3 (3)
C6—N1—C7—O1169.33 (18)C9—C10—C15—C14177.97 (18)
C16—N1—C7—O16.1 (3)C11—C10—C15—Cl2179.34 (15)
C6—N1—C7—C813.1 (3)C9—C10—C15—Cl21.4 (3)
C16—N1—C7—C8171.47 (17)C7—N1—C16—C1788.6 (2)
O1—C7—C8—C91.4 (3)C6—N1—C16—C1787.2 (2)
N1—C7—C8—C9176.09 (18)N1—C16—C17—C18175.75 (17)
O1—C7—C8—S1174.09 (16)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+2, y+1, z; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+1, z+1; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x1, y1, z; (xi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2viii0.952.433.282 (3)149
C17—H17A···O1vii0.992.453.337 (3)149
Symmetry codes: (vii) x+1, y+1, z+1; (viii) x, y, z+1.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004) for support.

References

First citationArmenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.  Web of Science CrossRef PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.  CrossRef CAS Web of Science Google Scholar
First citationGupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CrossRef CAS Web of Science Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1746–1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245.  CrossRef CAS PubMed Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.  Web of Science CrossRef Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds