research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, synthesis and thermal properties of tetra­kis­(4-benzoyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)iron(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel, Germany
*Correspondence e-mail: cwellm@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 9 May 2019; accepted 27 May 2019; online 31 May 2019)

The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoyl­pyridine ligands and one thio­cyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thio­cyanate anions and four 4-benzoyl­pyridine ligands into discrete complexes with a slightly distorted octa­hedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoyl­pyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown.

1. Chemical context

Coordination compounds based on thio- or seleno­cyanate anions have attracted much inter­est in recent years because of their luminescence behavior and their versatile magnetic properties (Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.], 2017[Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109-120.]; Mautner et al., 2016a[Mautner, F. A., Berger, C., Fischer, R. & Massoud, S. S. (2016a). Inorg. Chim. Acta, 448, 34-41.],b[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016b). Inorg. Chim. Acta, 439, 69-76.]; Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). For the latter, compounds are of special inter­est in which paramagnetic transition-metal cations are linked by the anionic ligands into 1D or 2D coordination polymers. Some of them show single-chain-magnet behavior (Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.]; 2014a[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014a). Inorg. Chem. 53, 8298-8310.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]), others are ferromagnets (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]) and in a few cases the critical temperature can be tuned by mixed-crystal formation (Neumann et al., 2018a[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020-6027.], 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]; Wellm et al., 2018[Wellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.]).

However, in most cases compounds are obtained from solution in which the anionic ligands are only terminally N-bonded, which frequently leads to the formation of discrete complexes (Mautner et al., 2015[Mautner, F. A., Scherzer, M., Berger, C., Fischer, R. C., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20-26.], 2017[Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. S. (2017). Polyhedron, 124, 237-242.]). These compounds can be transformed into coordination polymers by thermal decomposition, in which some of the co-ligands are irreversibly removed (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]), leading to the formation of polymorphic or isomeric modifications (Wöhlert et al., 2014b[Wöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014b). Cryst. Growth Des. 14, 1902-1913.]). In several cases MnII, FeII, CoII, NiII and CdII compounds behave similarly but in others, different modifications are obtained depending on the actual metal cation.

This is the case e.g. for thio­cyanate complexes with 4-benzoyl­pyridine as co-ligand. The discrete complexes with the composition M(NCS)2(4-benzoyl­pyridine)4 (M = Co and Ni) transform into isotypic chain compounds with the composition [M(NCS)2(4-benzoyl­pyridine)2]n, whereas both the Mn and Cd compounds each form a different crystalline phase (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]). Therefore, we became inter­ested in the corresponding complex with FeII to check if this compound could also transform into a 4-benzoyl­pyridine-deficient phase and if this phase would be isotypic to that with MnII, CoII or CdII. The synthesis of the title compound can easily be achieved by the reaction of Fe(Cl)2·4H2O and K(SCN)2 with 4-benzoylpyridine, leading to the formation of phase pure samples (see Figure S1 in the supporting information). Upon heating, two mass losses are observed, of which the first one is in agreement with that expected for the removal of half of the 4-benzoyl­pyridine co-ligands (Figure S2). If the residue formed after the first thermogravimetric step is investigated by XRPD, it is obvious that a crystalline phase is formed (Figure S3) that is not isotypic to [M(NCS)2(4-benzoyl­pyridine)2]n (M = Co, Cd) but very similar to that of Mn(NCS)2(4-benzoyl­pyridine)2 (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]). Additionally, IR spectra show that the residue exhibits bridging μ-1,3-coordinating thio­cyanate anions, in contrast to the terminal thio­cyanate anions of the title compound (Figure S4). Unfortunately, as is the case for the MnII compound, the powder pattern cannot be indexed and no single crystals can be obtained. Therefore, the structure of this compound is still unknown.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound (Fig. 1[link]) is isotypic to the corresponding CoII, NiII, MnII, ZnII and CdII compounds (Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]). The asymmetric unit consists of one N-bonded terminal thio­cyanate anion and two crystallographically independent 4-benzoyl­pyridine ligands in general positions, as well as of one FeII cation located on a centre of inversion (Fig. 1[link]). The FeII ions are sixfold coordin­ated by the pyridine N-atoms of the four neutral 4-benzoyl­pyridine ligands and the N atoms of the two terminal thio­cyanate anions. The Fe—N bonds to the 4-benzoyl­pyridine coligands, ranging between 2.2576 (13) and 2.2597 (13) Å, are significantly longer than those to the anionic ligands of 2.0982 (14) Å (Table 1[link]) and correspond to those observed in the isotypic compounds [M(NCS)2(C12H9NO)4] (M = Mn, Co, Ni, Zn, Cd; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]; Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]). The N—M—N angles deviate from the ideal values, which shows that the octa­hedra are slightly distorted in agreement with the values for the angle variance (1.8) and the quadratic elongation (1.003) (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). Furthermore, the pyridine and phenyl rings of the 4-benzoyl­pyridine ligands are not co-planar to the carbonyl plane. The dihedral angle between the pyrdine ring (N11/C11–15) and the carbonyl plane (C13/C16/C17/O11) amounts to 35.24 (10)°, while the one between the carbonyl plane (C13/C16/C17/O11) and the phenyl ring (C17–C22) is 24.23 (8)°. The corresponding values for the second 4-benzoyl­pyrdine ligand are 35.69 (9)° between the pyridine ring (N31/C31–C35) and the carbonyl plane (C33/C36/C37/O21) and 23.79 (9)° between the carbonyl plane (C33/C36/C37/O21) and the phenyl ring (C37–C42). Additionally, there are weak intra­molecular C—H⋯N inter­actions between the thio­cyanate atoms N1 and N1i and aromatic hydrogen atoms H11, H31, H15 and H35 that might contribute to the stabilization of the complexes (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.0982 (14) Fe1—N31 2.2597 (13)
Fe1—N11 2.2576 (13)    
       
N1i—Fe1—N11 88.79 (5) N1—Fe1—N31 89.79 (5)
N1—Fe1—N11 91.21 (5) N11—Fe1—N31 88.15 (5)
N1i—Fe1—N31 90.21 (5) N11i—Fe1—N31 91.85 (5)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1 0.95 2.51 3.136 (2) 123
C15—H15⋯N1i 0.95 2.57 3.134 (2) 118
C15—H15⋯O21ii 0.95 2.57 3.293 (2) 133
C31—H31⋯N1 0.95 2.60 3.168 (2) 119
C35—H35⋯N1i 0.95 2.52 3.125 (2) 121
C35—H35⋯O21ii 0.95 2.61 3.309 (2) 131
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.
[Figure 1]
Figure 1
View of a discrete complex with the atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x, −y + 1, −z + 1.

3. Supra­molecular features

The discrete complexes are connected by relatively weak C—H⋯O hydrogen bonds between the C—H hydrogen atoms and the atom O21(−x, 1 − y, 2 − z) of a symmetry-related 4-benzoyl­pyridine ligand, forming 12-membered rings that are located on centres of inversion (Fig. 2[link] and Table 2[link]). Atom O21 acts as acceptor for two hydrogen bonds from C15—H15 and C35—H35; thus each complex is connected by four hydrogen bonds to two additional symmetry-equivalent complexes, leading to the formation of chains that extend along the c-axis direction (Figs. 2[link] and 3[link] and Table 2[link]). There are no further directed inter­actions observed between the chains (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the crystallographic a axis with inter­molecular C—H⋯O hydrogen bonds (Table 2[link]) shown as dashed lines.
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the crystallographic c axis with inter­molecular C—H⋯O hydrogen bonds (Table 2[link]) shown as dashed lines.

4. Database survey

There are several crystal structures reported in the Cambridge Structure Database (Version 5.40, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that consist of transition-metal cations, thio­cyanate anions and 4-benzoyl­pyrine. In most of these compounds, the metal cations are octa­hedrally coordinated. Three of them are coordination polymers in which the cations are connected by pairs of μ-1,3-coordinating thio­cyanate anions, with the 4-benzoyl­pyridine ligands being perpendicular to the elongation axis of the chain (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). The other octa­hedral compounds are either discrete complexes with only 4-benzoyl­pyridine as neutral co-ligand, isotypic to the title compound and of the general composition M(NCS)2(4-benzoyl­pyridine)4 (M = CoII, NiII, MnII, ZnII and CdII; Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]), or solvates that are built up of two terminally N-bonded thio­cyanates, two 4-benzoyl­pyridine ligands and aceto­nitrile (Suckert et al., 2017b[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365-368.]) or methanol as solvent (Suckert et al., 2017a[Suckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007-8017.]; Wellm & Näther, 2019[Wellm, C. & Näther, C. (2019). Acta Cryst. E75, 299-303.]). Additionally, there is a quadratic planar CuII complex (Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338-1344.]) and a tetra­hedral ZnII complex (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]) in which the metal cation is coordinated by two terminally N-bonded thio­cyanates and two 4-benzoyl­pyridine ligands.

5. Synthesis and crystallization

Fe(Cl)2·4H2O and K(SCN)2 were purchased from Merck and 4-benzoyl­pyridine was purchased from Alfa Aesar.

Synthesis:

Crystals of the title compound suitable for single crystal X-ray diffraction were obtained within three days by the reaction of 59.6 mg Fe(Cl)2·4H2O (0.3 mmol) and 58.3 mg (0.6 mmol) K(SCN)2 with 27.5 mg 4-benzoyl­pyridine (0.15 mmol) in ethanol (1.5 mL), followed by slow evaporation of the solvent.

Experimental details:

Differential thermal analysis-thermogravimetric (DTA-TG) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using an STA PT1600 thermobalance from Linseis. The XRPD measurements were performed by using a Stoe transmission powder diffraction system (STADI P) with Cu Kα radiation that was equipped with a linear, position-sensitive MYTHEN detector from Stoe & Cie. The IR data were measured using a Bruker Alpha-P ATR-IR spectrometer.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry (C—H = 0.95 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C12H9NO)4]
Mr 904.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 9.0610 (6), 20.9844 (11), 11.2527 (9)
β (°) 90.526 (9)
V3) 2139.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.16 × 0.04 × 0.03
 
Data collection
Diffractometer STOE IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.817, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 25216, 4907, 4090
Rint 0.060
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.04
No. of reflections 4907
No. of parameters 287
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.51
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C12H9NO)4]F(000) = 936
Mr = 904.82Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0610 (6) ÅCell parameters from 25216 reflections
b = 20.9844 (11) Åθ = 2.5–27.5°
c = 11.2527 (9) ŵ = 0.51 mm1
β = 90.526 (9)°T = 200 K
V = 2139.5 (2) Å3Needle, light yellow
Z = 20.16 × 0.04 × 0.03 mm
Data collection top
STOE IPDS-1
diffractometer
4090 reflections with I > 2σ(I)
φ scansRint = 0.060
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 27.5°, θmin = 2.5°
Tmin = 0.817, Tmax = 0.965h = 1111
25216 measured reflectionsk = 2727
4907 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.3118P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
4907 reflectionsΔρmin = 0.51 e Å3
287 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.026 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50000.50000.01655 (12)
N10.21274 (16)0.51129 (6)0.43099 (13)0.0221 (3)
C10.32862 (18)0.52598 (7)0.39685 (14)0.0204 (3)
S10.48986 (5)0.54766 (3)0.34977 (5)0.03812 (15)
N110.05996 (15)0.40356 (6)0.57514 (12)0.0204 (3)
C110.18068 (19)0.37360 (7)0.53597 (16)0.0248 (3)
H110.24290.39530.48190.030*
C120.2190 (2)0.31228 (8)0.57078 (17)0.0270 (4)
H120.30430.29240.53930.032*
C130.13182 (19)0.28026 (7)0.65168 (15)0.0224 (3)
C140.0108 (2)0.31223 (8)0.69739 (15)0.0255 (3)
H140.04870.29270.75620.031*
C150.02230 (19)0.37287 (8)0.65646 (15)0.0246 (3)
H150.10680.39380.68710.030*
C160.1689 (2)0.21450 (8)0.69528 (16)0.0288 (4)
C170.2345 (2)0.16681 (7)0.61300 (16)0.0252 (4)
C180.3114 (2)0.11520 (9)0.66334 (19)0.0319 (4)
H180.32760.11330.74680.038*
C190.3635 (2)0.06699 (9)0.5907 (2)0.0393 (5)
H190.41600.03220.62460.047*
C200.3395 (2)0.06935 (9)0.4693 (2)0.0400 (5)
H200.37510.03600.42020.048*
C210.2638 (2)0.11996 (9)0.41879 (19)0.0367 (4)
H210.24750.12120.33530.044*
C220.2112 (2)0.16913 (8)0.49028 (16)0.0286 (4)
H220.15990.20410.45560.034*
O110.1429 (2)0.20092 (7)0.79860 (13)0.0537 (5)
N310.07705 (15)0.54355 (6)0.67343 (12)0.0206 (3)
C310.2025 (2)0.57704 (8)0.68418 (15)0.0274 (4)
H310.26070.58310.61530.033*
C320.2519 (2)0.60332 (9)0.79080 (16)0.0277 (4)
H320.34030.62760.79370.033*
C330.17005 (18)0.59348 (7)0.89320 (14)0.0217 (3)
C340.04162 (19)0.55810 (8)0.88302 (15)0.0239 (3)
H340.01680.55000.95110.029*
C350.00132 (19)0.53446 (8)0.77268 (15)0.0232 (3)
H350.09040.51070.76720.028*
C360.21784 (19)0.61552 (8)1.01527 (15)0.0252 (3)
C370.29466 (19)0.67775 (8)1.03193 (15)0.0242 (3)
C380.2782 (2)0.72793 (9)0.95250 (17)0.0335 (4)
H380.22070.72240.88220.040*
C390.3458 (3)0.78642 (9)0.9755 (2)0.0383 (5)
H390.33350.82080.92140.046*
C400.4306 (2)0.79423 (9)1.07696 (19)0.0363 (4)
H400.47720.83401.09230.044*
C410.4480 (2)0.74438 (10)1.15663 (18)0.0372 (4)
H410.50670.75001.22620.045*
C420.3800 (2)0.68632 (9)1.13492 (16)0.0309 (4)
H420.39130.65231.19000.037*
O210.19095 (18)0.58129 (7)1.10006 (12)0.0400 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01555 (17)0.01668 (16)0.01743 (17)0.00085 (10)0.00129 (12)0.00031 (11)
N10.0182 (7)0.0252 (6)0.0229 (7)0.0000 (5)0.0008 (5)0.0007 (5)
C10.0222 (8)0.0205 (7)0.0183 (7)0.0020 (6)0.0022 (6)0.0004 (6)
S10.0200 (2)0.0558 (3)0.0387 (3)0.00491 (19)0.00399 (19)0.0148 (2)
N110.0235 (7)0.0174 (6)0.0201 (6)0.0003 (5)0.0002 (5)0.0009 (5)
C110.0256 (8)0.0194 (7)0.0294 (9)0.0008 (6)0.0058 (7)0.0008 (6)
C120.0267 (9)0.0205 (7)0.0340 (9)0.0041 (6)0.0060 (7)0.0000 (7)
C130.0282 (8)0.0174 (7)0.0217 (8)0.0004 (6)0.0032 (6)0.0011 (6)
C140.0306 (9)0.0236 (8)0.0225 (8)0.0013 (6)0.0032 (7)0.0027 (6)
C150.0243 (8)0.0245 (8)0.0250 (8)0.0024 (6)0.0042 (6)0.0013 (6)
C160.0381 (10)0.0224 (8)0.0257 (8)0.0001 (7)0.0038 (7)0.0026 (6)
C170.0260 (8)0.0177 (7)0.0318 (9)0.0011 (6)0.0020 (7)0.0024 (6)
C180.0300 (9)0.0259 (8)0.0398 (11)0.0019 (7)0.0070 (8)0.0071 (7)
C190.0299 (10)0.0269 (9)0.0610 (14)0.0106 (7)0.0012 (9)0.0075 (9)
C200.0395 (11)0.0279 (9)0.0527 (13)0.0067 (8)0.0126 (10)0.0018 (8)
C210.0459 (12)0.0281 (9)0.0362 (10)0.0045 (8)0.0086 (9)0.0008 (8)
C220.0358 (10)0.0212 (7)0.0290 (9)0.0031 (6)0.0008 (7)0.0033 (6)
O110.1029 (15)0.0328 (7)0.0256 (7)0.0158 (8)0.0054 (8)0.0069 (6)
N310.0232 (7)0.0191 (6)0.0194 (7)0.0018 (5)0.0016 (5)0.0012 (5)
C310.0299 (9)0.0330 (9)0.0193 (8)0.0106 (7)0.0052 (7)0.0038 (6)
C320.0270 (9)0.0338 (9)0.0224 (8)0.0118 (7)0.0020 (7)0.0033 (7)
C330.0252 (8)0.0209 (7)0.0189 (7)0.0012 (6)0.0006 (6)0.0003 (6)
C340.0261 (8)0.0266 (7)0.0189 (7)0.0017 (6)0.0043 (6)0.0006 (6)
C350.0221 (8)0.0260 (8)0.0215 (8)0.0044 (6)0.0019 (6)0.0011 (6)
C360.0263 (9)0.0303 (8)0.0189 (8)0.0010 (6)0.0001 (6)0.0003 (6)
C370.0240 (8)0.0290 (8)0.0194 (8)0.0012 (6)0.0010 (6)0.0042 (6)
C380.0422 (11)0.0304 (9)0.0278 (9)0.0002 (8)0.0076 (8)0.0024 (7)
C390.0482 (12)0.0274 (9)0.0394 (11)0.0012 (8)0.0007 (9)0.0014 (8)
C400.0321 (10)0.0359 (10)0.0409 (11)0.0051 (8)0.0077 (8)0.0161 (8)
C410.0305 (10)0.0503 (11)0.0309 (10)0.0052 (8)0.0041 (8)0.0124 (8)
C420.0315 (10)0.0387 (10)0.0224 (8)0.0001 (7)0.0033 (7)0.0033 (7)
O210.0545 (9)0.0444 (8)0.0210 (6)0.0136 (7)0.0015 (6)0.0055 (6)
Geometric parameters (Å, º) top
Fe1—N1i2.0982 (14)C20—H200.9500
Fe1—N12.0982 (14)C21—C221.395 (3)
Fe1—N112.2576 (13)C21—H210.9500
Fe1—N11i2.2576 (13)C22—H220.9500
Fe1—N312.2597 (13)N31—C311.341 (2)
Fe1—N31i2.2597 (13)N31—C351.343 (2)
N1—C11.163 (2)C31—C321.391 (2)
C1—S11.6237 (17)C31—H310.9500
N11—C111.340 (2)C32—C331.392 (2)
N11—C151.349 (2)C32—H320.9500
C11—C121.388 (2)C33—C341.384 (2)
C11—H110.9500C33—C361.509 (2)
C12—C131.384 (2)C34—C351.389 (2)
C12—H120.9500C34—H340.9500
C13—C141.388 (2)C35—H350.9500
C13—C161.502 (2)C36—O211.221 (2)
C14—C151.385 (2)C36—C371.491 (2)
C14—H140.9500C37—C381.388 (3)
C15—H150.9500C37—C421.399 (2)
C16—O111.222 (2)C38—C391.395 (3)
C16—C171.491 (2)C38—H380.9500
C17—C221.396 (3)C39—C401.380 (3)
C17—C181.404 (2)C39—H390.9500
C18—C191.386 (3)C40—C411.386 (3)
C18—H180.9500C40—H400.9500
C19—C201.383 (3)C41—C421.386 (3)
C19—H190.9500C41—H410.9500
C20—C211.383 (3)C42—H420.9500
N1i—Fe1—N1180.0C19—C20—H20119.8
N1i—Fe1—N1188.79 (5)C21—C20—H20119.8
N1—Fe1—N1191.21 (5)C20—C21—C22120.1 (2)
N1i—Fe1—N11i91.21 (5)C20—C21—H21119.9
N1—Fe1—N11i88.79 (5)C22—C21—H21119.9
N11—Fe1—N11i180.0C21—C22—C17119.71 (17)
N1i—Fe1—N3190.21 (5)C21—C22—H22120.1
N1—Fe1—N3189.79 (5)C17—C22—H22120.1
N11—Fe1—N3188.15 (5)C31—N31—C35116.99 (14)
N11i—Fe1—N3191.85 (5)C31—N31—Fe1123.01 (11)
N1i—Fe1—N31i89.79 (5)C35—N31—Fe1119.96 (11)
N1—Fe1—N31i90.21 (5)N31—C31—C32123.48 (16)
N11—Fe1—N31i91.85 (5)N31—C31—H31118.3
N11i—Fe1—N31i88.15 (5)C32—C31—H31118.3
N31—Fe1—N31i180.00 (7)C31—C32—C33119.05 (16)
C1—N1—Fe1170.93 (13)C31—C32—H32120.5
N1—C1—S1179.08 (15)C33—C32—H32120.5
C11—N11—C15117.19 (14)C34—C33—C32117.73 (15)
C11—N11—Fe1119.46 (11)C34—C33—C36118.27 (15)
C15—N11—Fe1123.32 (11)C32—C33—C36123.88 (15)
N11—C11—C12123.01 (16)C33—C34—C35119.59 (15)
N11—C11—H11118.5C33—C34—H34120.2
C12—C11—H11118.5C35—C34—H34120.2
C13—C12—C11119.53 (16)N31—C35—C34123.15 (15)
C13—C12—H12120.2N31—C35—H35118.4
C11—C12—H12120.2C34—C35—H35118.4
C12—C13—C14117.79 (15)O21—C36—C37120.89 (16)
C12—C13—C16122.26 (16)O21—C36—C33118.27 (16)
C14—C13—C16119.87 (16)C37—C36—C33120.84 (14)
C15—C14—C13119.35 (16)C38—C37—C42119.42 (17)
C15—C14—H14120.3C38—C37—C36122.42 (16)
C13—C14—H14120.3C42—C37—C36118.07 (16)
N11—C15—C14123.00 (16)C37—C38—C39120.24 (18)
N11—C15—H15118.5C37—C38—H38119.9
C14—C15—H15118.5C39—C38—H38119.9
O11—C16—C17121.05 (16)C40—C39—C38119.87 (19)
O11—C16—C13118.74 (17)C40—C39—H39120.1
C17—C16—C13120.21 (15)C38—C39—H39120.1
C22—C17—C18119.72 (17)C39—C40—C41120.32 (18)
C22—C17—C16122.25 (15)C39—C40—H40119.8
C18—C17—C16117.80 (17)C41—C40—H40119.8
C19—C18—C17119.70 (19)C40—C41—C42120.11 (18)
C19—C18—H18120.1C40—C41—H41119.9
C17—C18—H18120.1C42—C41—H41119.9
C20—C19—C18120.35 (18)C41—C42—C37120.03 (18)
C20—C19—H19119.8C41—C42—H42120.0
C18—C19—H19119.8C37—C42—H42120.0
C19—C20—C21120.41 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N10.952.513.136 (2)123
C15—H15···N1i0.952.573.134 (2)118
C15—H15···O21ii0.952.573.293 (2)133
C31—H31···N10.952.603.168 (2)119
C35—H35···N1i0.952.523.125 (2)121
C35—H35···O21ii0.952.613.309 (2)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6–1) and the State of Schleswig-Holstein.

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338–1344.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. & Massoud, S. S. (2016a). Inorg. Chim. Acta, 448, 34–41.  CrossRef CAS Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016b). Inorg. Chim. Acta, 439, 69–76.  CrossRef CAS Google Scholar
First citationMautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. S. (2017). Polyhedron, 124, 237–242.  CrossRef CAS Google Scholar
First citationMautner, F. A., Scherzer, M., Berger, C., Fischer, R. C., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20–26.  CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020–6027.  CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109–120.  CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007–8017.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365–368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899–1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019). Acta Cryst. E75, 299–303.  CrossRef IUCr Journals Google Scholar
First citationWellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947–12957.  PubMed Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014b). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014a). Inorg. Chem. 53, 8298–8310.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds