research communications
and Hirshfeld surface analysis of tris(2,2′-bipyridine)nickel(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) dihydrate
aDepartment of Physics, Universidad of Santiago Chile, Av. Ecuador 3493, Estaciín Central, Santiago 9170124, Chile, bMillennium Institute for Research in Optics, MIRO, Chile, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, dLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, eCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, fFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, gDepartamento de Ciencias Quimicas, Universidad Nacional Andres Bello, Av Republica 275 3er Piso, Santiago, Region Metropolitana, Chile, and hLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco
*Correspondence e-mail: ignacio.chi@usach.cl, fat_setifi@yahoo.fr
The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a in the monoclinic C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) interactions involving the CH3 group. The intermolecular interactions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.
CCDC reference: 1915961
1. Chemical context
The use of polynitrile anions as ligands, either alone or in combination with neutral co-ligands, is a very promising and appealing strategy to obtain molecular architectures with different topologies and dimensionalities owing to their ability to coordinate and bridge metal ions in many different ways (Miyazaki et al., 2003; Atmani et al., 2008; Benmansour et al., 2007, 2008; Yuste et al., 2009; Gaamoune et al., 2010; Addala et al., 2015; Setifi et al., 2010, 2013a,b, 2014a,b, 2015, 2016, 2017). The presence of several potentially coordinating nitrile groups, their rigidity and their electronic delocalization, allows the synthesis of original magnetic high-dimensional coordination polymers with transition-metal ions (Benmansour et al., 2010).
In view of the possible roles of these versatile polynitrile ligands, we have been interested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of molecular materials exhibiting interesting magnetic exchange coupling. During the course of attempts to prepare such complexes with 2,2-dipyridyl, we isolated the title compound, whose structure is described herein along with the Hirshfeld surface analysis.
2. Structural commentary
The 3]2+ cation, one (tcnoet)− anion and a solvent water molecule within the monoclinic C2/c-centred cell (Fig. 1). In addition, this compound crystallizes presenting Δ and Λ chiral configurations and related to each other by inversion, forming a as illustrated in Fig. 2; this compound is isostructural to Fe(bpy)3(tcnoet)2(2H2O) (Setifi et al., 2014c). The Ni atom is located on the 4e on the twofold axis. The [Ni(bpy)3]2+ complex presents a slightly distorted octahedral geometry of C2 point-group symmetry (Table 1). The Ni—N bond lengths are very similar to each other, being in the range 2.077 (3)–2.090 (3) Å, which is in agreement with the Ni—N distances for other [Ni(bpy)3]2+ complexes reported in the literature (Freire et al., 2000; Su et al., 2007; Yang et al., 1998). In addition, the Ni—N distances are slightly longer than the Fe—N bonds [Fe(bpy)3]2+ [1.971 (2)–1.972 (2) Å] because of the larger Ni2+ radius compared to Fe2+ in a low-spin configuration (Shannon & Prewitt, 1969). The distorted N—Ni—N angles of the chelating bipyridine ligands [78.26 (16)–78.64 (12)°] are significantly less than 90°, as is usually found for [Ni(bpy)3]2+ complexes (Freire et al., 2000; Yang et al., 1998).
of the title compound comprises a half of [Ni(bpy)3. Supramolecular features
As shown in Fig. 2, there are four [Ni(bpy)3]2+ cationic units within the of the compound, charge-balancing the1,1,3,3-tetracyano-2-ethoxypropenide anions. These, together with the hydration water, define planar and zigzag hydrogen-bonded chains, in which anions and water molecules alternate, running along the [010] direction, as shown in Fig. 3. The O(water)—H⋯N(cyano) hydrogen-bonding interactions (Table 2) define the chain, with H⋯N distances of 2.11 and 2.10 Å. Finally, a C—H⋯π interaction between the CH3 group of the (tcnoet)− anion and the bpy ligand is observed, with a H⋯centroid distance of 3.01 Å (Table 2).
4. Hirshfeld surface analysis
The fingerprint plots (Fig. 4) of the intermolecular contacts were computed using program CrystalExplorer (McKinnon et al., 2007; Wolff et al., 2012). The short contacts spikes are due to the N⋯H hydrogen bonds (outer spikes) and to the Ni⋯N coordination bonds (inner spikes).
The proportions of the different contacts and their enrichment (Jelsch et al., 2014; Table 3) were computed with program MoProViewer (Guillot et al., 2014). The enrichment ratios Exy are obtained from the actual contacts between the different chemical species (x, y) and equi-probable proportions computed from the surface chemical content (Jelsch et al., 2014). They allow contacts that are favored (over-represented) and which are likely to be the crystal driving force to be highlighted.
|
The Hirshfeld surface was computed for all the entities present in the crystal – the (tcnoet)− anion, the [Ni(bpy)3]2+ complex and the water molecule – in order to analyze the crystal contacts. Moieties not in contact with each other were selected in the crystal packing in order to obtain integral surfaces.
The nickel cation does not contribute to the molecular surface, as it is coordinated by six nitrogen atoms within the [Ni(bpy)3]2+ complex. Nearly three quarters of the Hirshfeld surface is of hydrophobic in nature, constituted by atoms C and Hc. The most abundant contact is of the C⋯Hc type as a result of the extensive C—H⋯π interactions involving the aromatic rings. The second major contact is N⋯Hc, which is due to the abundance of the N and Hc chemical types and to the significant enrichment of this favorable weak hydrogen bond. The third major contact is of the C⋯C type and is due to stacking between the [Ni(bpy)3]2+ aromatic rings and the C(C(C≡N)2)2 group of the (tcnoet)− anion.
The other significantly over-represented contacts are the strong hydrogen bonds N⋯H—O (E = 2.5) between the water molecule and two nitrile groups. These are the hydrogen bonds with shortest distance d(N5⋯H25) = 2.11 Å and d(N4⋯H26) = 2.10 Å (Table 1). There is a deficit of strong hydrogen-bond donors compared to acceptors in this As a result, weak hydrogen bonds to H—C groups are formed. N⋯H—C weak hydrogen bonds occur and are slightly enriched. The oxygen atoms form only weak O⋯H—C hydrogen bonds, which are quite favored at E = 1.8. Globally there are two O—H⋯N strong hydrogen bonds, six C—H⋯N and two C—H⋯O weak hydrogen bonds (Table 2). The two major hydrophobic contacts, C⋯Hc and C⋯C, are both slightly enriched. If all hydrophobic contacts (within C and Hc atoms) are considered together, they are globally slightly under-represented with an enrichment ratio E = 0.92 because of the avoidance of the less favorable Hc⋯Hc contacts. All contacts between charged atoms (O, Ho, N) are absent except for the attractive N⋯Ho hydrogen bond. The cross hydrophilic/hydrophobic contacts are slightly over-represented at E = 1.16 because of the occurrence of many weak O⋯Hc and N⋯Hc hydrogen bonds, which result from an unbalanced number of strong hydrogen-bond acceptors versus donors.
5. Database survey
The Cambridge Structural Database (CSD, Version 5.39, update August 2018, Groom et al., 2016) includes a few structures involving polycyanopropide counter-ions, of which only 16 entries are hexacyano derivatives and four have (tcnoet)− anions. There are no significant differences in C—N and C—C bond lengths between the hexacyano derivatives and (tcnoet)− anions. However, the C21—C20—C16—C17 torsion angles in (tcnoet)− anion (15.78°) are slightly smaller than the analogous torsion angle in other anions (16.32–21.68°). This difference can be explained by this compound and its isostructural structure featuring two hydrogen bonds, O2—H25⋯N5 and O2—H25⋯N4ii. These interactions orient the cyano groups toward to coplanarity with respect to other (tcnoet)− molecules that exhibit fewer hydrogen bonds. Finally, this compound has been used for the synthesis of low-dimensional metal–organic frameworks employing MnII, CuII, CoII and FeII ions because the half cyano groups interact by hydrogen bonding with the metal aqua complexes, avoiding the formation of high-dimensional frameworks (Thétiot et al., 2003).
6. Synthesis and crystallization
The title compound was synthesized solvothermally under autogenous pressure from a mixture of Ni(NO3)2·6H2O (29 mg, 0.1 mmol), 2,2-dipyridyl (16 mg, 0.1 mmol) and K(tcnoet) (45 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 cm−3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for three days, and then cooled to ambient temperature at a rate of 10 K h−1 (yield: 54%). Light-green blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.
7. Refinement
Crystal data, data collection and structure . All H atoms were located in difference-Fourier maps. C-bound H atoms were then treated as riding atoms: C—H = 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all others. H atoms bonded to the water O atom were permitted to ride at the positions located in the difference map, with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 4Supporting information
CCDC reference: 1915961
https://doi.org/10.1107/S2056989019006959/mw2141sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006959/mw2141Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C10H8N2)3](C9H5N4O)2·2H2O | F(000) = 1936 |
Mr = 933.63 | Dx = 1.358 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.345 (3) Å | Cell parameters from 1400 reflections |
b = 12.439 (3) Å | θ = 2.5–19.1° |
c = 19.575 (4) Å | µ = 0.49 mm−1 |
β = 112.800 (9)° | T = 162 K |
V = 4566.8 (17) Å3 | Block, light green |
Z = 4 | 0.17 × 0.14 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2483 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.108 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 26.5°, θmin = 2.0° |
Tmin = 0.683, Tmax = 0.745 | h = −25→22 |
22477 measured reflections | k = −12→15 |
4670 independent reflections | l = −24→24 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0372P)2 + 4.4221P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
4670 reflections | Δρmax = 0.36 e Å−3 |
310 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.5000 | 0.13563 (5) | 0.2500 | 0.0258 (2) | |
N1 | 0.44888 (16) | 0.2530 (2) | 0.28779 (16) | 0.0277 (7) | |
N2 | 0.56997 (15) | 0.1514 (2) | 0.35984 (15) | 0.0258 (7) | |
N3 | 0.44732 (16) | 0.0053 (2) | 0.27341 (15) | 0.0251 (7) | |
C1 | 0.3878 (2) | 0.3033 (3) | 0.2479 (2) | 0.0358 (10) | |
H1 | 0.3624 | 0.2810 | 0.1981 | 0.043* | |
C2 | 0.3600 (2) | 0.3857 (3) | 0.2755 (2) | 0.0412 (11) | |
H2 | 0.3160 | 0.4185 | 0.2459 | 0.049* | |
C3 | 0.3976 (2) | 0.4192 (3) | 0.3472 (2) | 0.0424 (11) | |
H3 | 0.3802 | 0.4766 | 0.3675 | 0.051* | |
C4 | 0.4604 (2) | 0.3688 (3) | 0.3890 (2) | 0.0375 (10) | |
H4 | 0.4868 | 0.3911 | 0.4386 | 0.045* | |
C5 | 0.48510 (19) | 0.2855 (3) | 0.3585 (2) | 0.0272 (9) | |
C6 | 0.55264 (19) | 0.2279 (3) | 0.3992 (2) | 0.0250 (9) | |
C7 | 0.5973 (2) | 0.2508 (3) | 0.4718 (2) | 0.0336 (10) | |
H7 | 0.5844 | 0.3045 | 0.4989 | 0.040* | |
C8 | 0.6604 (2) | 0.1949 (3) | 0.5044 (2) | 0.0353 (10) | |
H8 | 0.6916 | 0.2097 | 0.5540 | 0.042* | |
C9 | 0.6777 (2) | 0.1174 (3) | 0.4641 (2) | 0.0344 (10) | |
H9 | 0.7210 | 0.0784 | 0.4852 | 0.041* | |
C10 | 0.6310 (2) | 0.0976 (3) | 0.3927 (2) | 0.0319 (10) | |
H10 | 0.6427 | 0.0430 | 0.3653 | 0.038* | |
C11 | 0.3952 (2) | 0.0107 (3) | 0.29930 (19) | 0.0335 (10) | |
H11 | 0.3776 | 0.0795 | 0.3050 | 0.040* | |
C12 | 0.3661 (2) | −0.0790 (3) | 0.3179 (2) | 0.0380 (10) | |
H12 | 0.3289 | −0.0720 | 0.3355 | 0.046* | |
C13 | 0.3915 (2) | −0.1782 (3) | 0.3106 (2) | 0.0391 (11) | |
H13 | 0.3732 | −0.2411 | 0.3243 | 0.047* | |
C14 | 0.4440 (2) | −0.1851 (3) | 0.2830 (2) | 0.0354 (10) | |
H14 | 0.4618 | −0.2533 | 0.2766 | 0.042* | |
C15 | 0.47114 (19) | −0.0920 (3) | 0.26463 (18) | 0.0273 (9) | |
N4 | 0.2358 (2) | 0.9371 (3) | 0.0957 (2) | 0.0518 (10) | |
N5 | 0.25094 (19) | 0.6205 (3) | 0.1895 (2) | 0.0578 (11) | |
N6 | 0.3282 (2) | 0.4535 (3) | 0.10158 (19) | 0.0561 (11) | |
N7 | 0.5030 (2) | 0.6277 (3) | 0.07484 (19) | 0.0488 (9) | |
O1 | 0.38199 (14) | 0.8243 (2) | 0.08018 (14) | 0.0389 (7) | |
C16 | 0.3536 (2) | 0.7331 (3) | 0.0959 (2) | 0.0341 (10) | |
C17 | 0.2966 (2) | 0.7526 (3) | 0.1182 (2) | 0.0345 (10) | |
C18 | 0.2635 (2) | 0.8550 (4) | 0.1055 (2) | 0.0385 (11) | |
C19 | 0.2720 (2) | 0.6775 (4) | 0.1570 (2) | 0.0435 (11) | |
C20 | 0.3857 (2) | 0.6355 (3) | 0.0944 (2) | 0.0378 (10) | |
C21 | 0.3536 (2) | 0.5348 (4) | 0.0987 (2) | 0.0412 (11) | |
C22 | 0.4508 (2) | 0.6307 (3) | 0.0835 (2) | 0.0379 (10) | |
C23 | 0.3802 (2) | 0.8371 (3) | 0.0057 (2) | 0.0412 (11) | |
H23A | 0.3362 | 0.8755 | −0.0257 | 0.049* | |
H23B | 0.3803 | 0.7657 | −0.0166 | 0.049* | |
C24 | 0.4438 (2) | 0.8993 (3) | 0.0101 (2) | 0.0489 (12) | |
H24A | 0.4451 | 0.9676 | 0.0355 | 0.073* | |
H24B | 0.4414 | 0.9136 | −0.0400 | 0.073* | |
H24C | 0.4870 | 0.8579 | 0.0377 | 0.073* | |
O2 | 0.2745 (2) | 0.6530 (3) | 0.3463 (2) | 0.0829 (11) | |
H25 | 0.274 (3) | 0.634 (4) | 0.3041 (15) | 0.099* | |
H26 | 0.271 (3) | 0.592 (2) | 0.365 (3) | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0223 (4) | 0.0255 (4) | 0.0259 (4) | 0.000 | 0.0053 (3) | 0.000 |
N1 | 0.0243 (18) | 0.0273 (18) | 0.0285 (19) | 0.0033 (16) | 0.0070 (16) | 0.0031 (15) |
N2 | 0.0226 (17) | 0.0255 (18) | 0.0262 (17) | 0.0024 (16) | 0.0059 (15) | 0.0002 (15) |
N3 | 0.0239 (18) | 0.0253 (18) | 0.0218 (17) | −0.0001 (16) | 0.0040 (15) | 0.0005 (14) |
C1 | 0.030 (2) | 0.036 (2) | 0.037 (2) | 0.007 (2) | 0.008 (2) | 0.005 (2) |
C2 | 0.034 (2) | 0.039 (3) | 0.052 (3) | 0.013 (2) | 0.018 (2) | 0.007 (2) |
C3 | 0.041 (3) | 0.036 (3) | 0.053 (3) | 0.011 (2) | 0.022 (2) | −0.005 (2) |
C4 | 0.039 (3) | 0.038 (2) | 0.037 (2) | 0.005 (2) | 0.015 (2) | −0.004 (2) |
C5 | 0.024 (2) | 0.026 (2) | 0.033 (2) | 0.0029 (19) | 0.0130 (19) | 0.0025 (19) |
C6 | 0.028 (2) | 0.020 (2) | 0.027 (2) | −0.0019 (18) | 0.0105 (19) | 0.0012 (17) |
C7 | 0.036 (3) | 0.035 (2) | 0.030 (2) | 0.003 (2) | 0.013 (2) | −0.003 (2) |
C8 | 0.032 (2) | 0.041 (3) | 0.024 (2) | −0.004 (2) | 0.002 (2) | −0.001 (2) |
C9 | 0.022 (2) | 0.039 (3) | 0.032 (2) | 0.004 (2) | −0.0004 (19) | 0.003 (2) |
C10 | 0.025 (2) | 0.032 (2) | 0.033 (2) | 0.003 (2) | 0.005 (2) | −0.0005 (19) |
C11 | 0.029 (2) | 0.039 (3) | 0.031 (2) | 0.003 (2) | 0.008 (2) | 0.005 (2) |
C12 | 0.027 (2) | 0.045 (3) | 0.038 (3) | −0.001 (2) | 0.009 (2) | 0.009 (2) |
C13 | 0.034 (3) | 0.036 (3) | 0.038 (3) | −0.011 (2) | 0.003 (2) | 0.008 (2) |
C14 | 0.036 (3) | 0.031 (2) | 0.032 (2) | −0.003 (2) | 0.005 (2) | −0.001 (2) |
C15 | 0.023 (2) | 0.029 (2) | 0.020 (2) | −0.0042 (19) | −0.0026 (17) | −0.0011 (17) |
N4 | 0.048 (3) | 0.047 (3) | 0.067 (3) | −0.006 (2) | 0.030 (2) | −0.003 (2) |
N5 | 0.055 (3) | 0.067 (3) | 0.056 (3) | −0.010 (2) | 0.027 (2) | 0.013 (2) |
N6 | 0.065 (3) | 0.044 (2) | 0.046 (2) | −0.021 (2) | 0.007 (2) | −0.002 (2) |
N7 | 0.051 (2) | 0.043 (2) | 0.053 (2) | 0.003 (2) | 0.020 (2) | −0.0022 (19) |
O1 | 0.0416 (17) | 0.0363 (17) | 0.0430 (17) | −0.0162 (14) | 0.0211 (14) | −0.0076 (13) |
C16 | 0.035 (3) | 0.037 (3) | 0.022 (2) | −0.015 (2) | 0.003 (2) | −0.0040 (19) |
C17 | 0.031 (2) | 0.035 (3) | 0.031 (2) | −0.015 (2) | 0.005 (2) | 0.000 (2) |
C18 | 0.033 (3) | 0.049 (3) | 0.035 (2) | −0.016 (3) | 0.014 (2) | −0.002 (2) |
C19 | 0.034 (3) | 0.054 (3) | 0.038 (3) | −0.013 (2) | 0.008 (2) | −0.004 (2) |
C20 | 0.043 (3) | 0.035 (2) | 0.034 (2) | −0.009 (3) | 0.013 (2) | −0.004 (2) |
C21 | 0.041 (3) | 0.047 (3) | 0.027 (2) | −0.008 (3) | 0.002 (2) | −0.003 (2) |
C22 | 0.050 (3) | 0.031 (2) | 0.029 (2) | −0.004 (3) | 0.011 (2) | −0.003 (2) |
C23 | 0.043 (3) | 0.045 (3) | 0.030 (2) | −0.006 (2) | 0.008 (2) | 0.003 (2) |
C24 | 0.050 (3) | 0.052 (3) | 0.048 (3) | −0.010 (2) | 0.023 (2) | 0.002 (2) |
O2 | 0.112 (3) | 0.070 (3) | 0.078 (3) | −0.017 (3) | 0.049 (3) | −0.009 (2) |
Ni—N2 | 2.077 (3) | C11—C12 | 1.376 (5) |
Ni—N2i | 2.077 (3) | C11—H11 | 0.9500 |
Ni—N1 | 2.088 (3) | C12—C13 | 1.366 (5) |
Ni—N1i | 2.088 (3) | C12—H12 | 0.9500 |
Ni—N3 | 2.090 (3) | C13—C14 | 1.373 (5) |
Ni—N3i | 2.090 (3) | C13—H13 | 0.9500 |
N1—C1 | 1.339 (4) | C14—C15 | 1.389 (5) |
N1—C5 | 1.353 (4) | C14—H14 | 0.9500 |
N2—C10 | 1.335 (4) | C15—C15i | 1.493 (7) |
N2—C6 | 1.354 (4) | N4—C18 | 1.146 (5) |
N3—C15 | 1.339 (4) | N5—C19 | 1.141 (5) |
N3—C11 | 1.343 (4) | N6—C21 | 1.146 (5) |
C1—C2 | 1.379 (5) | N7—C22 | 1.139 (5) |
C1—H1 | 0.9500 | O1—C16 | 1.361 (4) |
C2—C3 | 1.376 (5) | O1—C23 | 1.453 (4) |
C2—H2 | 0.9500 | C16—C20 | 1.384 (5) |
C3—C4 | 1.373 (5) | C16—C17 | 1.409 (5) |
C3—H3 | 0.9500 | C17—C19 | 1.413 (5) |
C4—C5 | 1.384 (5) | C17—C18 | 1.417 (6) |
C4—H4 | 0.9500 | C20—C22 | 1.422 (6) |
C5—C6 | 1.479 (5) | C20—C21 | 1.431 (6) |
C6—C7 | 1.388 (5) | C23—C24 | 1.482 (5) |
C7—C8 | 1.381 (5) | C23—H23A | 0.9900 |
C7—H7 | 0.9500 | C23—H23B | 0.9900 |
C8—C9 | 1.374 (5) | C24—H24A | 0.9800 |
C8—H8 | 0.9500 | C24—H24B | 0.9800 |
C9—C10 | 1.374 (5) | C24—H24C | 0.9800 |
C9—H9 | 0.9500 | O2—H25 | 0.856 (10) |
C10—H10 | 0.9500 | O2—H26 | 0.860 (10) |
N1—Ni—N2 | 78.64 (12) | C8—C9—C10 | 118.7 (4) |
N1i—Ni—N2 | 93.73 (11) | C8—C9—H9 | 120.7 |
N1i—Ni—N2 | 93.73 (11) | C10—C9—H9 | 120.7 |
N2i—Ni—N1i | 78.64 (12) | N2—C10—C9 | 123.2 (3) |
N1—Ni—N1i | 91.20 (16) | N2—C10—H10 | 118.4 |
N1i—Ni—N3 | 171.36 (11) | C9—C10—H10 | 118.4 |
N1—Ni—N3i | 171.36 (11) | N3—C11—C12 | 122.8 (4) |
N2—Ni—N2i | 169.18 (16) | N3—C11—H11 | 118.6 |
N2—Ni—N3 | 92.87 (11) | C12—C11—H11 | 118.6 |
N2i—Ni—N3 | 95.51 (11) | C13—C12—C11 | 119.1 (4) |
N1—Ni—N3 | 95.55 (11) | C13—C12—H12 | 120.5 |
N2—Ni—N3i | 95.52 (11) | C11—C12—H12 | 120.5 |
N2i—Ni—N3i | 92.87 (11) | C12—C13—C14 | 118.8 (4) |
N1i—Ni—N3i | 95.55 (11) | C12—C13—H13 | 120.6 |
N3—Ni—N3i | 78.26 (16) | C14—C13—H13 | 120.6 |
C1—N1—C5 | 118.2 (3) | C13—C14—C15 | 119.8 (4) |
C1—N1—Ni | 126.6 (3) | C13—C14—H14 | 120.1 |
C5—N1—Ni | 115.0 (2) | C15—C14—H14 | 120.1 |
C10—N2—C6 | 118.5 (3) | N3—C15—C14 | 121.3 (3) |
C10—N2—Ni | 126.0 (2) | N3—C15—C15i | 115.3 (2) |
C6—N2—Ni | 115.5 (2) | C14—C15—C15i | 123.4 (2) |
C15—N3—C11 | 118.2 (3) | C16—O1—C23 | 118.1 (3) |
C15—N3—Ni | 115.5 (2) | O1—C16—C20 | 118.7 (3) |
C11—N3—Ni | 126.2 (3) | O1—C16—C17 | 113.5 (4) |
N1—C1—C2 | 123.2 (4) | C20—C16—C17 | 127.6 (4) |
N1—C1—H1 | 118.4 | C16—C17—C19 | 124.0 (4) |
C2—C1—H1 | 118.4 | C16—C17—C18 | 119.5 (3) |
C3—C2—C1 | 118.3 (4) | C19—C17—C18 | 116.4 (4) |
C3—C2—H2 | 120.8 | N4—C18—C17 | 178.8 (4) |
C1—C2—H2 | 120.8 | N5—C19—C17 | 177.1 (5) |
C4—C3—C2 | 119.4 (4) | C16—C20—C22 | 121.0 (4) |
C4—C3—H3 | 120.3 | C16—C20—C21 | 122.4 (4) |
C2—C3—H3 | 120.3 | C22—C20—C21 | 116.5 (4) |
C3—C4—C5 | 119.5 (4) | N6—C21—C20 | 179.0 (5) |
C3—C4—H4 | 120.2 | N7—C22—C20 | 179.4 (5) |
C5—C4—H4 | 120.2 | O1—C23—C24 | 108.5 (3) |
N1—C5—C4 | 121.4 (3) | O1—C23—H23A | 110.0 |
N1—C5—C6 | 115.5 (3) | C24—C23—H23A | 110.0 |
C4—C5—C6 | 123.1 (3) | O1—C23—H23B | 110.0 |
N2—C6—C7 | 121.0 (3) | C24—C23—H23B | 110.0 |
N2—C6—C5 | 115.2 (3) | H23A—C23—H23B | 108.4 |
C7—C6—C5 | 123.7 (3) | C23—C24—H24A | 109.5 |
C8—C7—C6 | 119.5 (3) | C23—C24—H24B | 109.5 |
C8—C7—H7 | 120.3 | H24A—C24—H24B | 109.5 |
C6—C7—H7 | 120.3 | C23—C24—H24C | 109.5 |
C9—C8—C7 | 119.1 (4) | H24A—C24—H24C | 109.5 |
C9—C8—H8 | 120.4 | H24B—C24—H24C | 109.5 |
C7—C8—H8 | 120.4 | H25—O2—H26 | 102 (5) |
C5—N1—C1—C2 | −0.4 (5) | C3—C4—C5—C6 | 179.2 (3) |
Ni—N1—C1—C2 | −175.1 (3) | C10—N2—C6—C7 | 0.4 (5) |
N1—C1—C2—C3 | 1.2 (6) | Ni—N2—C6—C7 | −176.1 (3) |
C1—C2—C3—C4 | −1.1 (6) | C10—N2—C6—C5 | 178.7 (3) |
C2—C3—C4—C5 | 0.2 (6) | Ni—N2—C6—C5 | 2.2 (4) |
C1—N1—C5—C4 | −0.5 (5) | N1—C5—C6—N2 | 1.1 (4) |
Ni—N1—C5—C4 | 174.8 (3) | C4—C5—C6—N2 | −177.5 (3) |
C1—N1—C5—C6 | −179.2 (3) | N1—C5—C6—C7 | 179.4 (3) |
Ni—N1—C5—C6 | −3.8 (4) | C4—C5—C6—C7 | 0.8 (5) |
C3—C4—C5—N1 | 0.6 (5) | N2—C6—C7—C8 | 0.3 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the N2/C6–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H25···N5 | 0.86 | 2.11 | 2.945 (5) | 164 |
O2—H26···N4ii | 0.86 | 2.10 | 2.955 (5) | 175 |
C24—H24A···Cg1iii | 0.98 | 3.01 | 3.921 | 156 |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, −y+3/2, −z. |
The top part of the table gives the contribution Sx of each chemical type X to the Hirshfeld surface. The chemical types are grouped as hydrophobic (C, Hc) and charged (N, Ho, O) atoms. The next part shows the percentage contributions Cxy of the actual contact types to the surface. The lower part of the table shows the Exy contact enrichment ratios. The major Cxy contact types and the Exy ratios much larger than unity (enriched contacts) are highlighted in bold. The hydrophobic Hc atoms bound to carbon are distinguished from the more polar Ho water hydrogen atoms. |
Atom type | Ho | O | N | Hc | C |
Surface (%) | 5.3 | 4.5 | 16.5 | 38.0 | 35.7 |
Ho | 0.0 | ||||
O | 0.0 | 0.0 | |||
Contacts (%) | |||||
N | 5.0 | 0.0 | 0.0 | ||
Hc | 4.7 | 6.1 | 20.9 | 7.5 | |
C | 1.9 | 3.0 | 8.5 | 27.8 | 14.7 |
Ho | 0.0 | ||||
O | 0.0 | 0.0 | |||
Enrichment | |||||
N | 2.5 | 0.0 | 0.0 | ||
Hc | 1.1 | 1.8 | 1.6 | 0.54 | |
C | 0.47 | 0.92 | 0.7 | 1.06 | 1.2 |
Ni-N1 | 2.088 (3) |
Ni-N2 | 2.077 (3) |
Ni-N3 | 2.090 (3) |
N1-Ni-N2 | 78.64 (12) |
N1-Ni-N3 | 95.55 (11) |
N2-Ni-N3 | 92.87 (11) |
Funding information
FS gratefully acknowledges the Algerian DG-RSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support. FH is supported by CONICYT through the Proyecto REDES ETAPA INICIAL, Convocatoria 2017 No. REDI 170423, and FONDECYT Regular 1181743. DPS and FH are grateful for support from the Iniciativa Cientifica Milenio (ICM) through the Millennium Institute for Research in Optics (MIRO).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194. Web of Science CSD CrossRef Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Freire, E., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 541–543. CSD CrossRef CAS IUCr Journals Google Scholar
Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279. CrossRef IUCr Journals Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154. Web of Science CrossRef CAS Google Scholar
Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246–1250. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013a). Acta Cryst. C69, 1351–1356. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Gaamoune, B., Stoeckli-Evans, H., Rouag, D.-A. & Setifi, F. (2010). Acta Cryst. C66, m286–m289. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014b). Acta Cryst. C70, 338–341. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014c). Acta Cryst. C70, 465–469. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014a). Acta Cryst. C70, 19–22. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013b). Acta Cryst. E69, m12–m13. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Zhang, Y.-N. (2007). Acta Cryst. E63, m1206–m1207. CSD CrossRef IUCr Journals Google Scholar
Thétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837–1843. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
Yang, G.-Y., Gao, D.-W., Chen, Y., Xu, J.-Q., Zeng, Q.-X., Sun, H.-R., Pei, Z.-W., Su, Q., Xing, Y., Ling, Y.-H. & Jia, H.-Q. (1998). Acta Cryst. C54, 616–618. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.