research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of tris­­(2,2′-bi­pyridine)­nickel(II) bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenide) dihydrate

aDepartment of Physics, Universidad of Santiago Chile, Av. Ecuador 3493, Estaciín Central, Santiago 9170124, Chile, bMillennium Institute for Research in Optics, MIRO, Chile, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, dLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, eCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, fFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, gDepartamento de Ciencias Quimicas, Universidad Nacional Andres Bello, Av Republica 275 3er Piso, Santiago, Region Metropolitana, Chile, and hLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco
*Correspondence e-mail: ignacio.chi@usach.cl, fat_setifi@yahoo.fr

Edited by J. T. Mague, Tulane University, USA (Received 14 January 2019; accepted 14 May 2019; online 24 May 2019)

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.

1. Chemical context

The use of polynitrile anions as ligands, either alone or in combination with neutral co-ligands, is a very promising and appealing strategy to obtain mol­ecular architectures with different topologies and dimensionalities owing to their ability to coordinate and bridge metal ions in many different ways (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2007[Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.], 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255-262.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Setifi et al., 2010[Setifi, Z., Gaamoune, B., Stoeckli-Evans, H., Rouag, D.-A. & Setifi, F. (2010). Acta Cryst. C66, m286-m289.], 2013a[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013a). Acta Cryst. C69, 1351-1356.],b[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013b). Acta Cryst. E69, m12-m13.], 2014a[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014a). Acta Cryst. C70, 19-22.],b[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014b). Acta Cryst. C70, 338-341.], 2015[Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509-515.], 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.], 2017[Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149-154.]). The presence of several potentially coordinating nitrile groups, their rigidity and their electronic delocalization, allows the synthesis of original magnetic high-dimensional coordination polymers with transition-metal ions (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]).

[Scheme 1]

In view of the possible roles of these versatile polynitrile ligands, we have been inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of mol­ecular materials exhibiting inter­esting magnetic exchange coupling. During the course of attempts to prepare such complexes with 2,2-dipyridyl, we isolated the title compound, whose structure is described herein along with the Hirshfeld surface analysis.

2. Structural commentary

The asymmetric unit of the title compound comprises a half of [Ni(bpy)3]2+ cation, one (tcnoet) anion and a solvent water mol­ecule within the monoclinic C2/c-centred cell (Fig. 1[link]). In addition, this compound crystallizes presenting Δ and Λ chiral configurations and related to each other by inversion, forming a racemic mixture as illustrated in Fig. 2[link]; this compound is isostructural to Fe(bpy)3(tcnoet)2(2H2O) (Setifi et al., 2014c[Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014c). Acta Cryst. C70, 465-469.]). The Ni atom is located on the Wyckoff position 4e on the twofold axis. The [Ni(bpy)3]2+ complex presents a slightly distorted octa­hedral geometry of C2 point-group symmetry (Table 1[link]). The Ni—N bond lengths are very similar to each other, being in the range 2.077 (3)–2.090 (3) Å, which is in agreement with the Ni—N distances for other [Ni(bpy)3]2+ complexes reported in the literature (Freire et al., 2000[Freire, E., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 541-543.]; Su et al., 2007[Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Zhang, Y.-N. (2007). Acta Cryst. E63, m1206-m1207.]; Yang et al., 1998[Yang, G.-Y., Gao, D.-W., Chen, Y., Xu, J.-Q., Zeng, Q.-X., Sun, H.-R., Pei, Z.-W., Su, Q., Xing, Y., Ling, Y.-H. & Jia, H.-Q. (1998). Acta Cryst. C54, 616-618.]). In addition, the Ni—N distances are slightly longer than the Fe—N bonds [Fe(bpy)3]2+ [1.971 (2)–1.972 (2) Å] because of the larger Ni2+ radius compared to Fe2+ in a low-spin configuration (Shannon & Prewitt, 1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.]). The distorted N—Ni—N angles of the chelating bi­pyridine ligands [78.26 (16)–78.64 (12)°] are significantly less than 90°, as is usually found for [Ni(bpy)3]2+ complexes (Freire et al., 2000[Freire, E., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 541-543.]; Yang et al., 1998[Yang, G.-Y., Gao, D.-W., Chen, Y., Xu, J.-Q., Zeng, Q.-X., Sun, H.-R., Pei, Z.-W., Su, Q., Xing, Y., Ling, Y.-H. & Jia, H.-Q. (1998). Acta Cryst. C54, 616-618.]).

Table 1
Selected geometric parameters (Å, °)

Ni—N2 2.077 (3) Ni—N3 2.090 (3)
Ni—N1 2.088 (3)    
       
N1—Ni—N2 78.64 (12) N2—Ni—N3 92.87 (11)
N1i—Ni—N2 93.73 (11) N1—Ni—N3 95.55 (11)
N1—Ni—N1i 91.20 (16) N2—Ni—N3i 95.52 (11)
N1—Ni—N3i 171.36 (11) N3—Ni—N3i 78.26 (16)
N2—Ni—N2i 169.18 (16)    
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms on the [Ni(bpy)3]2+ cation and (tcnoet) were omitted for clarity. Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.
[Figure 2]
Figure 2
Disposition of Δ (red) and Λ (blue) stereoisomers in the unit cell.

3. Supra­molecular features

As shown in Fig. 2[link], there are four [Ni(bpy)3]2+ cationic units within the unit cell of the compound, charge-balancing the1,1,3,3-tetra­cyano-2-eth­oxy­propenide anions. These, together with the hydration water, define planar and zigzag hydrogen-bonded chains, in which anions and water mol­ecules alternate, running along the [010] direction, as shown in Fig. 3[link]. The O(water)—H⋯N(cyano) hydrogen-bonding inter­actions (Table 2[link]) define the chain, with H⋯N distances of 2.11 and 2.10 Å. Finally, a C—H⋯π inter­action between the CH3 group of the (tcnoet) anion and the bpy ligand is observed, with a H⋯centroid distance of 3.01 Å (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H25⋯N5 0.86 2.11 2.945 (5) 164
O2—H26⋯N4ii 0.86 2.10 2.955 (5) 175
C24—H24ACg1iii 0.98 3.01 3.921 156
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 3]
Figure 3
Partial crystal packing diagram showing the alternating zigzag (tcnoet)–water chains defined by O—H⋯N hydrogen bonds running along the [010] direction. Symmetry code: (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].

4. Hirshfeld surface analysis

The fingerprint plots (Fig. 4[link]) of the inter­molecular contacts were computed using program CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The short contacts spikes are due to the N⋯H hydrogen bonds (outer spikes) and to the Ni⋯N coordination bonds (inner spikes).

[Figure 4]
Figure 4
Hirshfeld surface fingerprint plot for the title compound showing the C⋯C, C⋯H, H⋯O, H⋯H, H⋯N and Ni⋯N contacts in detail.

The proportions of the different contacts and their enrichment (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]; Table 3[link]) were computed with program MoProViewer (Guillot et al., 2014[Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.]). The enrichment ratios Exy are obtained from the actual contacts between the different chemical species (x, y) and equi-probable proportions computed from the surface chemical content (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). They allow contacts that are favored (over-represented) and which are likely to be the crystal driving force to be highlighted.

Table 3
Nature of inter­molecular contacts on the Hirshfeld surface by chemical type

The top part of the table gives the contribution Sx of each chemical type X to the Hirshfeld surface. The chemical types are grouped as hydro­phobic (C, Hc) and charged (N, Ho, O) atoms. The next part shows the percentage contributions Cxy of the actual contact types to the surface. The lower part of the table shows the Exy contact enrichment ratios. The major Cxy contact types and the Exy ratios much larger than unity (enriched contacts) are highlighted in bold. The hydro­phobic Hc atoms bound to carbon are distinguished from the more polar Ho water hydrogen atoms.

Atom type Ho O N Hc C
Surface (%) 5.3 4.5 16.5 38.0 35.7
Ho 0.0        
O 0.0 0.0      
           
Contacts (%)          
N 5.0 0.0 0.0    
Hc 4.7 6.1 20.9 7.5  
C 1.9 3.0 8.5 27.8 14.7
Ho 0.0        
O 0.0 0.0      
           
Enrichment          
N 2.5 0.0 0.0    
Hc 1.1 1.8 1.6 0.54  
C 0.47 0.92 0.7 1.06 1.2

The Hirshfeld surface was computed for all the entities present in the crystal – the (tcnoet) anion, the [Ni(bpy)3]2+ complex and the water mol­ecule – in order to analyze the crystal contacts. Moieties not in contact with each other were selected in the crystal packing in order to obtain integral surfaces.

The nickel cation does not contribute to the mol­ecular surface, as it is coordinated by six nitro­gen atoms within the [Ni(bpy)3]2+ complex. Nearly three quarters of the Hirshfeld surface is of hydro­phobic in nature, constituted by atoms C and Hc. The most abundant contact is of the C⋯Hc type as a result of the extensive C—H⋯π inter­actions involving the aromatic rings. The second major contact is N⋯Hc, which is due to the abundance of the N and Hc chemical types and to the significant enrichment of this favorable weak hydrogen bond. The third major contact is of the C⋯C type and is due to stacking between the [Ni(bpy)3]2+ aromatic rings and the C(C(C≡N)2)2 group of the (tcnoet) anion.

The other significantly over-represented contacts are the strong hydrogen bonds N⋯H—O (E = 2.5) between the water mol­ecule and two nitrile groups. These are the hydrogen bonds with shortest distance d(N5⋯H25) = 2.11 Å and d(N4⋯H26) = 2.10 Å (Table 1[link]). There is a deficit of strong hydrogen-bond donors compared to acceptors in this crystal structure. As a result, weak hydrogen bonds to H—C groups are formed. N⋯H—C weak hydrogen bonds occur and are slightly enriched. The oxygen atoms form only weak O⋯H—C hydrogen bonds, which are quite favored at E = 1.8. Globally there are two O—H⋯N strong hydrogen bonds, six C—H⋯N and two C—H⋯O weak hydrogen bonds (Table 2[link]). The two major hydro­phobic contacts, C⋯Hc and C⋯C, are both slightly enriched. If all hydro­phobic contacts (within C and Hc atoms) are considered together, they are globally slightly under-represented with an enrichment ratio E = 0.92 because of the avoidance of the less favorable Hc⋯Hc contacts. All contacts between charged atoms (O, Ho, N) are absent except for the attractive N⋯Ho hydrogen bond. The cross hydro­philic/hydro­phobic contacts are slightly over-represented at E = 1.16 because of the occurrence of many weak O⋯Hc and N⋯Hc hydrogen bonds, which result from an unbalanced number of strong hydrogen-bond acceptors versus donors.

5. Database survey

The Cambridge Structural Database (CSD, Version 5.39, update August 2018, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) includes a few structures involving polycyano­propide counter-ions, of which only 16 entries are hexa­cyano derivatives and four have (tcnoet) anions. There are no significant differences in C—N and C—C bond lengths between the hexa­cyano derivatives and (tcnoet) anions. However, the C21—C20—C16—C17 torsion angles in (tcnoet) anion (15.78°) are slightly smaller than the analogous torsion angle in other anions (16.32–21.68°). This difference can be explained by this compound and its isostructural structure featuring two hydrogen bonds, O2—H25⋯N5 and O2—H25⋯N4ii. These inter­actions orient the cyano groups toward to coplanarity with respect to other (tcnoet) mol­ecules that exhibit fewer hydrogen bonds. Finally, this compound has been used for the synthesis of low-dimensional metal–organic frameworks employing MnII, CuII, CoII and FeII ions because the half cyano groups inter­act by hydrogen bonding with the metal aqua complexes, avoiding the formation of high-dimensional frameworks (Thétiot et al., 2003[Thétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837-1843.]).

6. Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure from a mixture of Ni(NO3)2·6H2O (29 mg, 0.1 mmol), 2,2-dipyridyl (16 mg, 0.1 mmol) and K(tcnoet) (45 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 cm−3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for three days, and then cooled to ambient temperature at a rate of 10 K h−1 (yield: 54%). Light-green blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were located in difference-Fourier maps. C-bound H atoms were then treated as riding atoms: C—H = 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all others. H atoms bonded to the water O atom were permitted to ride at the positions located in the difference map, with Uiso(H) = 1.5Ueq(O).

Table 4
Experimental details

Crystal data
Chemical formula [Ni(C10H8N2)3](C9H5N4O)2·2H2O
Mr 933.63
Crystal system, space group Monoclinic, C2/c
Temperature (K) 162
a, b, c (Å) 20.345 (3), 12.439 (3), 19.575 (4)
β (°) 112.800 (9)
V3) 4566.8 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.17 × 0.14 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.683, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 22477, 4670, 2483
Rint 0.108
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.125, 1.00
No. of reflections 4670
No. of parameters 310
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(2,2'-bipyridine)nickel(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) dihydrate top
Crystal data top
[Ni(C10H8N2)3](C9H5N4O)2·2H2OF(000) = 1936
Mr = 933.63Dx = 1.358 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.345 (3) ÅCell parameters from 1400 reflections
b = 12.439 (3) Åθ = 2.5–19.1°
c = 19.575 (4) ŵ = 0.49 mm1
β = 112.800 (9)°T = 162 K
V = 4566.8 (17) Å3Block, light green
Z = 40.17 × 0.14 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2483 reflections with I > 2σ(I)
φ and ω scansRint = 0.108
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 26.5°, θmin = 2.0°
Tmin = 0.683, Tmax = 0.745h = 2522
22477 measured reflectionsk = 1215
4670 independent reflectionsl = 2424
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0372P)2 + 4.4221P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4670 reflectionsΔρmax = 0.36 e Å3
310 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.13563 (5)0.25000.0258 (2)
N10.44888 (16)0.2530 (2)0.28779 (16)0.0277 (7)
N20.56997 (15)0.1514 (2)0.35984 (15)0.0258 (7)
N30.44732 (16)0.0053 (2)0.27341 (15)0.0251 (7)
C10.3878 (2)0.3033 (3)0.2479 (2)0.0358 (10)
H10.36240.28100.19810.043*
C20.3600 (2)0.3857 (3)0.2755 (2)0.0412 (11)
H20.31600.41850.24590.049*
C30.3976 (2)0.4192 (3)0.3472 (2)0.0424 (11)
H30.38020.47660.36750.051*
C40.4604 (2)0.3688 (3)0.3890 (2)0.0375 (10)
H40.48680.39110.43860.045*
C50.48510 (19)0.2855 (3)0.3585 (2)0.0272 (9)
C60.55264 (19)0.2279 (3)0.3992 (2)0.0250 (9)
C70.5973 (2)0.2508 (3)0.4718 (2)0.0336 (10)
H70.58440.30450.49890.040*
C80.6604 (2)0.1949 (3)0.5044 (2)0.0353 (10)
H80.69160.20970.55400.042*
C90.6777 (2)0.1174 (3)0.4641 (2)0.0344 (10)
H90.72100.07840.48520.041*
C100.6310 (2)0.0976 (3)0.3927 (2)0.0319 (10)
H100.64270.04300.36530.038*
C110.3952 (2)0.0107 (3)0.29930 (19)0.0335 (10)
H110.37760.07950.30500.040*
C120.3661 (2)0.0790 (3)0.3179 (2)0.0380 (10)
H120.32890.07200.33550.046*
C130.3915 (2)0.1782 (3)0.3106 (2)0.0391 (11)
H130.37320.24110.32430.047*
C140.4440 (2)0.1851 (3)0.2830 (2)0.0354 (10)
H140.46180.25330.27660.042*
C150.47114 (19)0.0920 (3)0.26463 (18)0.0273 (9)
N40.2358 (2)0.9371 (3)0.0957 (2)0.0518 (10)
N50.25094 (19)0.6205 (3)0.1895 (2)0.0578 (11)
N60.3282 (2)0.4535 (3)0.10158 (19)0.0561 (11)
N70.5030 (2)0.6277 (3)0.07484 (19)0.0488 (9)
O10.38199 (14)0.8243 (2)0.08018 (14)0.0389 (7)
C160.3536 (2)0.7331 (3)0.0959 (2)0.0341 (10)
C170.2966 (2)0.7526 (3)0.1182 (2)0.0345 (10)
C180.2635 (2)0.8550 (4)0.1055 (2)0.0385 (11)
C190.2720 (2)0.6775 (4)0.1570 (2)0.0435 (11)
C200.3857 (2)0.6355 (3)0.0944 (2)0.0378 (10)
C210.3536 (2)0.5348 (4)0.0987 (2)0.0412 (11)
C220.4508 (2)0.6307 (3)0.0835 (2)0.0379 (10)
C230.3802 (2)0.8371 (3)0.0057 (2)0.0412 (11)
H23A0.33620.87550.02570.049*
H23B0.38030.76570.01660.049*
C240.4438 (2)0.8993 (3)0.0101 (2)0.0489 (12)
H24A0.44510.96760.03550.073*
H24B0.44140.91360.04000.073*
H24C0.48700.85790.03770.073*
O20.2745 (2)0.6530 (3)0.3463 (2)0.0829 (11)
H250.274 (3)0.634 (4)0.3041 (15)0.099*
H260.271 (3)0.592 (2)0.365 (3)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0223 (4)0.0255 (4)0.0259 (4)0.0000.0053 (3)0.000
N10.0243 (18)0.0273 (18)0.0285 (19)0.0033 (16)0.0070 (16)0.0031 (15)
N20.0226 (17)0.0255 (18)0.0262 (17)0.0024 (16)0.0059 (15)0.0002 (15)
N30.0239 (18)0.0253 (18)0.0218 (17)0.0001 (16)0.0040 (15)0.0005 (14)
C10.030 (2)0.036 (2)0.037 (2)0.007 (2)0.008 (2)0.005 (2)
C20.034 (2)0.039 (3)0.052 (3)0.013 (2)0.018 (2)0.007 (2)
C30.041 (3)0.036 (3)0.053 (3)0.011 (2)0.022 (2)0.005 (2)
C40.039 (3)0.038 (2)0.037 (2)0.005 (2)0.015 (2)0.004 (2)
C50.024 (2)0.026 (2)0.033 (2)0.0029 (19)0.0130 (19)0.0025 (19)
C60.028 (2)0.020 (2)0.027 (2)0.0019 (18)0.0105 (19)0.0012 (17)
C70.036 (3)0.035 (2)0.030 (2)0.003 (2)0.013 (2)0.003 (2)
C80.032 (2)0.041 (3)0.024 (2)0.004 (2)0.002 (2)0.001 (2)
C90.022 (2)0.039 (3)0.032 (2)0.004 (2)0.0004 (19)0.003 (2)
C100.025 (2)0.032 (2)0.033 (2)0.003 (2)0.005 (2)0.0005 (19)
C110.029 (2)0.039 (3)0.031 (2)0.003 (2)0.008 (2)0.005 (2)
C120.027 (2)0.045 (3)0.038 (3)0.001 (2)0.009 (2)0.009 (2)
C130.034 (3)0.036 (3)0.038 (3)0.011 (2)0.003 (2)0.008 (2)
C140.036 (3)0.031 (2)0.032 (2)0.003 (2)0.005 (2)0.001 (2)
C150.023 (2)0.029 (2)0.020 (2)0.0042 (19)0.0026 (17)0.0011 (17)
N40.048 (3)0.047 (3)0.067 (3)0.006 (2)0.030 (2)0.003 (2)
N50.055 (3)0.067 (3)0.056 (3)0.010 (2)0.027 (2)0.013 (2)
N60.065 (3)0.044 (2)0.046 (2)0.021 (2)0.007 (2)0.002 (2)
N70.051 (2)0.043 (2)0.053 (2)0.003 (2)0.020 (2)0.0022 (19)
O10.0416 (17)0.0363 (17)0.0430 (17)0.0162 (14)0.0211 (14)0.0076 (13)
C160.035 (3)0.037 (3)0.022 (2)0.015 (2)0.003 (2)0.0040 (19)
C170.031 (2)0.035 (3)0.031 (2)0.015 (2)0.005 (2)0.000 (2)
C180.033 (3)0.049 (3)0.035 (2)0.016 (3)0.014 (2)0.002 (2)
C190.034 (3)0.054 (3)0.038 (3)0.013 (2)0.008 (2)0.004 (2)
C200.043 (3)0.035 (2)0.034 (2)0.009 (3)0.013 (2)0.004 (2)
C210.041 (3)0.047 (3)0.027 (2)0.008 (3)0.002 (2)0.003 (2)
C220.050 (3)0.031 (2)0.029 (2)0.004 (3)0.011 (2)0.003 (2)
C230.043 (3)0.045 (3)0.030 (2)0.006 (2)0.008 (2)0.003 (2)
C240.050 (3)0.052 (3)0.048 (3)0.010 (2)0.023 (2)0.002 (2)
O20.112 (3)0.070 (3)0.078 (3)0.017 (3)0.049 (3)0.009 (2)
Geometric parameters (Å, º) top
Ni—N22.077 (3)C11—C121.376 (5)
Ni—N2i2.077 (3)C11—H110.9500
Ni—N12.088 (3)C12—C131.366 (5)
Ni—N1i2.088 (3)C12—H120.9500
Ni—N32.090 (3)C13—C141.373 (5)
Ni—N3i2.090 (3)C13—H130.9500
N1—C11.339 (4)C14—C151.389 (5)
N1—C51.353 (4)C14—H140.9500
N2—C101.335 (4)C15—C15i1.493 (7)
N2—C61.354 (4)N4—C181.146 (5)
N3—C151.339 (4)N5—C191.141 (5)
N3—C111.343 (4)N6—C211.146 (5)
C1—C21.379 (5)N7—C221.139 (5)
C1—H10.9500O1—C161.361 (4)
C2—C31.376 (5)O1—C231.453 (4)
C2—H20.9500C16—C201.384 (5)
C3—C41.373 (5)C16—C171.409 (5)
C3—H30.9500C17—C191.413 (5)
C4—C51.384 (5)C17—C181.417 (6)
C4—H40.9500C20—C221.422 (6)
C5—C61.479 (5)C20—C211.431 (6)
C6—C71.388 (5)C23—C241.482 (5)
C7—C81.381 (5)C23—H23A0.9900
C7—H70.9500C23—H23B0.9900
C8—C91.374 (5)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.374 (5)C24—H24C0.9800
C9—H90.9500O2—H250.856 (10)
C10—H100.9500O2—H260.860 (10)
N1—Ni—N278.64 (12)C8—C9—C10118.7 (4)
N1i—Ni—N293.73 (11)C8—C9—H9120.7
N1i—Ni—N293.73 (11)C10—C9—H9120.7
N2i—Ni—N1i78.64 (12)N2—C10—C9123.2 (3)
N1—Ni—N1i91.20 (16)N2—C10—H10118.4
N1i—Ni—N3171.36 (11)C9—C10—H10118.4
N1—Ni—N3i171.36 (11)N3—C11—C12122.8 (4)
N2—Ni—N2i169.18 (16)N3—C11—H11118.6
N2—Ni—N392.87 (11)C12—C11—H11118.6
N2i—Ni—N395.51 (11)C13—C12—C11119.1 (4)
N1—Ni—N395.55 (11)C13—C12—H12120.5
N2—Ni—N3i95.52 (11)C11—C12—H12120.5
N2i—Ni—N3i92.87 (11)C12—C13—C14118.8 (4)
N1i—Ni—N3i95.55 (11)C12—C13—H13120.6
N3—Ni—N3i78.26 (16)C14—C13—H13120.6
C1—N1—C5118.2 (3)C13—C14—C15119.8 (4)
C1—N1—Ni126.6 (3)C13—C14—H14120.1
C5—N1—Ni115.0 (2)C15—C14—H14120.1
C10—N2—C6118.5 (3)N3—C15—C14121.3 (3)
C10—N2—Ni126.0 (2)N3—C15—C15i115.3 (2)
C6—N2—Ni115.5 (2)C14—C15—C15i123.4 (2)
C15—N3—C11118.2 (3)C16—O1—C23118.1 (3)
C15—N3—Ni115.5 (2)O1—C16—C20118.7 (3)
C11—N3—Ni126.2 (3)O1—C16—C17113.5 (4)
N1—C1—C2123.2 (4)C20—C16—C17127.6 (4)
N1—C1—H1118.4C16—C17—C19124.0 (4)
C2—C1—H1118.4C16—C17—C18119.5 (3)
C3—C2—C1118.3 (4)C19—C17—C18116.4 (4)
C3—C2—H2120.8N4—C18—C17178.8 (4)
C1—C2—H2120.8N5—C19—C17177.1 (5)
C4—C3—C2119.4 (4)C16—C20—C22121.0 (4)
C4—C3—H3120.3C16—C20—C21122.4 (4)
C2—C3—H3120.3C22—C20—C21116.5 (4)
C3—C4—C5119.5 (4)N6—C21—C20179.0 (5)
C3—C4—H4120.2N7—C22—C20179.4 (5)
C5—C4—H4120.2O1—C23—C24108.5 (3)
N1—C5—C4121.4 (3)O1—C23—H23A110.0
N1—C5—C6115.5 (3)C24—C23—H23A110.0
C4—C5—C6123.1 (3)O1—C23—H23B110.0
N2—C6—C7121.0 (3)C24—C23—H23B110.0
N2—C6—C5115.2 (3)H23A—C23—H23B108.4
C7—C6—C5123.7 (3)C23—C24—H24A109.5
C8—C7—C6119.5 (3)C23—C24—H24B109.5
C8—C7—H7120.3H24A—C24—H24B109.5
C6—C7—H7120.3C23—C24—H24C109.5
C9—C8—C7119.1 (4)H24A—C24—H24C109.5
C9—C8—H8120.4H24B—C24—H24C109.5
C7—C8—H8120.4H25—O2—H26102 (5)
C5—N1—C1—C20.4 (5)C3—C4—C5—C6179.2 (3)
Ni—N1—C1—C2175.1 (3)C10—N2—C6—C70.4 (5)
N1—C1—C2—C31.2 (6)Ni—N2—C6—C7176.1 (3)
C1—C2—C3—C41.1 (6)C10—N2—C6—C5178.7 (3)
C2—C3—C4—C50.2 (6)Ni—N2—C6—C52.2 (4)
C1—N1—C5—C40.5 (5)N1—C5—C6—N21.1 (4)
Ni—N1—C5—C4174.8 (3)C4—C5—C6—N2177.5 (3)
C1—N1—C5—C6179.2 (3)N1—C5—C6—C7179.4 (3)
Ni—N1—C5—C63.8 (4)C4—C5—C6—C70.8 (5)
C3—C4—C5—N10.6 (5)N2—C6—C7—C80.3 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
O2—H25···N50.862.112.945 (5)164
O2—H26···N4ii0.862.102.955 (5)175
C24—H24A···Cg1iii0.983.013.921156
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z.
Nature of intermolecular contacts on the Hirshfeld surface by chemical type top
The top part of the table gives the contribution Sx of each chemical type X to the Hirshfeld surface. The chemical types are grouped as hydrophobic (C, Hc) and charged (N, Ho, O) atoms. The next part shows the percentage contributions Cxy of the actual contact types to the surface. The lower part of the table shows the Exy contact enrichment ratios. The major Cxy contact types and the Exy ratios much larger than unity (enriched contacts) are highlighted in bold. The hydrophobic Hc atoms bound to carbon are distinguished from the more polar Ho water hydrogen atoms.
Atom typeHoONHcC
Surface (%)5.34.516.538.035.7
Ho0.0
O0.00.0
Contacts (%)
N5.00.00.0
Hc4.76.120.97.5
C1.93.08.527.814.7
Ho0.0
O0.00.0
Enrichment
N2.50.00.0
Hc1.11.81.60.54
C0.470.920.71.061.2
Selected geometry parameters (Å,°) top
Ni-N12.088 (3)
Ni-N22.077 (3)
Ni-N32.090 (3)
N1-Ni-N278.64 (12)
N1-Ni-N395.55 (11)
N2-Ni-N392.87 (11)

Funding information

FS gratefully acknowledges the Algerian DG-RSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support. FH is supported by CONICYT through the Proyecto REDES ETAPA INICIAL, Convocatoria 2017 No. REDI 170423, and FONDECYT Regular 1181743. DPS and FH are grateful for support from the Iniciativa Cientifica Milenio (ICM) through the Millennium Institute for Research in Optics (MIRO).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreire, E., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 541–543.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.  CrossRef IUCr Journals Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationSetifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.  Web of Science CrossRef CAS Google Scholar
First citationSetifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246–1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013a). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Gaamoune, B., Stoeckli-Evans, H., Rouag, D.-A. & Setifi, F. (2010). Acta Cryst. C66, m286–m289.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014b). Acta Cryst. C70, 338–341.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014c). Acta Cryst. C70, 465–469.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014a). Acta Cryst. C70, 19–22.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013b). Acta Cryst. E69, m12–m13.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Zhang, Y.-N. (2007). Acta Cryst. E63, m1206–m1207.  CSD CrossRef IUCr Journals Google Scholar
First citationThétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837–1843.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationYang, G.-Y., Gao, D.-W., Chen, Y., Xu, J.-Q., Zeng, Q.-X., Sun, H.-R., Pei, Z.-W., Su, Q., Xing, Y., Ling, Y.-H. & Jia, H.-Q. (1998). Acta Cryst. C54, 616–618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds