research communications
DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate
aLaboratory of Heterocyclic Organic Chemistry, URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 830, Al Kharj, Saudi Arabia, dMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco, and eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: younos.bouzian19@gmail.com
In the title quinoline derivative, C14H14ClNO3, there is an intramolecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. In the crystal, offset π–π interactions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related molecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface.
CCDC reference: 1890687
1. Chemical context
Quinoline derivatives represent an important class of bioactive et al., 2019). Quinoline derivatives possess various pharmacological properties such as antibacterial (Panda et al., 2015), anti-HCV (Cannalire et al., 2016), antiviral (Sekgota et al., 2017), anticancer (Tang et al., 2018), antimalarial (van Heerden et al., 2012), antileishmanial (Palit et al., 2009), antitubecular (Xu et al., 2017), anti-inflammatory (de Santos et al., 2015) and anti-Alzheimer's (Bolognesi et al., 2007) activities. The present work is a continuation of our research work devoted to the synthesis and of heterocyclic derivatives (Bouzian et al., 2018; Chkirate et al. 2019a,b). As part of our studies in this area, we prepared the title compound by reacting ethyl 6-chloro-2-oxo-1,2-dihydroquinoline-4-carboxylate with bromoethane in the presence of a catalytic quantity of tetra-n-butylammonium bromide. We report herein on its crystal and molecular structures along with the Hirshfeld surface analysis.
in the field of pharmaceuticals (Chu2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1a. The molecule consists of a quinoline fused-ring system (N1/C1–C9) with methoxyethane (O2/C10/C11), ethyl acetate (O3/O4/C13/C14) and a chlorine atom (Cl1) substituents. The intramolecular C5—H5A⋯O3 hydrogen bond (Table 1) forms an S(6) graph-set motif, stabilizing the molecular structure and preventing between the 6-chloroquinoline ring (Cl1/N1/C1–C9) and the ethyl acetate (O3/O4/C12–C14) moiety. Additionally, the presence of this intramolecular C—H⋯O interaction leads to an essentially planar molecular structure (Fig. 1b), where the ethyl acetate (O3/O4/C12–C14) mean plane is twisted slightly at a dihedral angle of 5.02 (3)° with respect to the mean plane of the ethyl 6-chloro-2-ethoxyquinoline (Cl1/O2/C1–C11) moiety. This essentially planar molecular structure may be considered an important binding mode that can enhance biological activity (Bierbach et al., 1999).
|
3. Supramolecular features
In the crystal, molecules lie in a plane parallel to the (10) crystallographic plane (Fig. 2a). They are linked by offset π–π interactions (Fig. 2b) involving inversion-related pyridine rings. These interactions link the molecules into columns up the c-axis direction with a centroid-to-centroid (Cg⋯Cgi) distance of 3.4731 (14) Å [Cg is centroid of the N1/C1–C4/C9 ring, interplanar distance = 3.397 (1) Å, offset = 0.722 Å; symmetry code (i): −x + 1, −y, −z + 1].
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). Internal and external (di and de) contact distances from the Hirshfeld surface to the nearest atom inside and outside enables the analysis of the intermolecular interactions through the mapping of dnorm. The Hirshfeld surfaces (HS) mapped over the electrostatic potential (−0.0534 to 0.0319 atomic units) and dnorm (−0.0210 to 1.4779 arbitrary units) are shown in Fig. 3a and 3b. The red spots on the Hirshfeld surface indicate interactions involved in H⋯O contacts. The π–π stacking is confirmed by the small blue regions surrounding bright red spots in the aromatic ring in Fig. 3c, the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 3d, the Hirshfeld surface mapped over the curvedness.
There are no significant classical intermolecular contacts present in the crystal according to the analysis of the PLATON (Spek, 2009). However, from the Hirshfeld surface analysis and the two-dimensional fingerprint plots it can be seen that H⋯H, C⋯H, Cl⋯H and O⋯H contacts (Fig. 4) contribute to the cohesion of the The two-dimensional fingerprint plots are given in Fig. 5. The two-dimensional fingerprint of the (di, de) points associated with the hydrogen atoms is shown in Fig. 5b. It is characterized by an end point that points to the origin, indicating the presence of the H⋯H contacts that contribution 50.8%. The Cl⋯H/H⋯Cl contacts between the chlorine atoms inside the Hirshfeld surface and the hydrogen atoms outside the surface and vice versa contribute 16.0% (Fig. 5c). The O⋯H/H⋯O (10.3%) plot shows two symmetrical wings on the left and right sides (Fig. 5d). The C⋯C contacts contribute 7.9% (Fig. 5e), the C⋯H/H⋯C contacts contribute 5.3% (Fig. 5e), followed by the C⋯O contacts at 3.7% (Fig. 5g) and the C⋯N contacts at 3.3% (Fig. 3h).
using5. DFT study
The electrostatic potential surface (ESP) was also calculated using DFT methods at the B3LYP/6-311+G(d,p) level of theory using the Gaussian 09 package (Frisch et al., 2009). The negative region on the electrostatic potential appears in red and corresponds to hydrogen-bond acceptors, while the positive region of electrostatic potential appears in blue and corresponds to hydrogen-bond donors (Fig. 6).
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016) for the 6-chloroquinoline skeleton gave 100 hits, including 6-chloroquinoline itself (CSD refcode CLQUIN; Merlino, 1968). Only a limited number of these structures are similar to the title compound. There are no compounds with a 6-chloro-2-ethoxyquinoline moiety and only four compounds with a 6-chloro-2-methoxyquinoline moiety. These include, 1-{6-chloro-2-[(2-chloro-8-methylquinolin-3-yl)methoxy]-4-phenylquinolin-3-yl}ethanone (DUVJEK; Khan et al., 2010a), ethyl 6-chloro-2-[(2-chloro-7,8-dimethylquinolin-3-yl)methoxy]-4-phenylquinoline-3-carboxylate (KUVFEN; Khan et al., 2010b), 1-{6-chloro-2-[(2-chloroquinolin-3-yl)methoxy]-4-phenylquinolin-3-yl}ethanone (YUQTAG; Khan et al., 2010c), and 1-{6-chloro-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]-4-phenylquinolin-3-yl}ethanone (YUQVIQ; Khan et al., 2010d). Two other relevant compounds with an ethyl carboxylate substituent include ethyl 2,6-dichloro-4-phenylquinoline-3-carboxylate (DUKKUQ; Roopan et al., 2009) and ethyl 6-chloro-2-methyl-4-phenylquinoline-3-carboxylate (DUKJEZ; Subashini et al., 2009). In the crystals of all of the above mentioned compounds, molecules are linked by offset π–π interactions involving inversion-related quinoline units.
7. Synthesis and crystallization
A solution of 0.5 g (1.99 mmol) of ethyl 6-chloro-2-oxo-1,2-dihydroquinoline-4-carboxylate in 25 ml of DMF was mixed with 0.3 ml (3.98 mmol) of bromoethane, 0.55 g (3.98 mmol) of K2CO3 and 0.06 g (0.199 mmol) of tetra-n-butylammonium bromide (TBAB). The reaction mixture was stirred at room temperature in DMF for 24 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane·The organic phase was dried over Na2SO4 then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate/hexane (1:9 v/v)]. Colourless crystals were obtained when the solvent was allowed to evaporate (yield: 32%).
8. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied to the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1890687
https://doi.org/10.1107/S2056989019007473/mw2143sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007473/mw2143Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007473/mw2143Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C14H14ClNO3 | F(000) = 1168 |
Mr = 279.71 | Dx = 1.335 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2634 (7) Å | Cell parameters from 9928 reflections |
b = 16.0124 (7) Å | θ = 2.5–24.5° |
c = 13.7732 (6) Å | µ = 0.28 mm−1 |
β = 117.748 (2)° | T = 296 K |
V = 2783.9 (2) Å3 | Block, colourless |
Z = 8 | 0.50 × 0.47 × 0.37 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2228 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
φ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→18 |
k = −20→20 | |
45458 measured reflections | l = −17→17 |
3190 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0854P)2 + 2.5795P] where P = (Fo2 + 2Fc2)/3 |
3190 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.56133 (16) | 0.10176 (12) | 0.41064 (15) | 0.0584 (5) | |
Cl1 | 0.10792 (6) | 0.02217 (6) | 0.16402 (10) | 0.1199 (5) | |
O2 | 0.73447 (14) | 0.05835 (11) | 0.51005 (15) | 0.0707 (5) | |
O3 | 0.39144 (18) | −0.18904 (14) | 0.3085 (2) | 0.1148 (9) | |
O4 | 0.55981 (16) | −0.20506 (11) | 0.42458 (19) | 0.0872 (6) | |
C1 | 0.63047 (19) | 0.04194 (15) | 0.44989 (19) | 0.0572 (6) | |
C2 | 0.60502 (19) | −0.04443 (15) | 0.43555 (19) | 0.0577 (5) | |
H2A | 0.6582 | −0.0845 | 0.4655 | 0.069* | |
C3 | 0.50216 (18) | −0.06779 (14) | 0.37760 (18) | 0.0547 (5) | |
C4 | 0.42215 (18) | −0.00513 (14) | 0.33217 (17) | 0.0542 (5) | |
C5 | 0.3122 (2) | −0.02093 (17) | 0.2719 (2) | 0.0645 (6) | |
H5A | 0.2876 | −0.0756 | 0.2569 | 0.077* | |
C6 | 0.2427 (2) | 0.04352 (19) | 0.2358 (2) | 0.0741 (7) | |
C7 | 0.2757 (2) | 0.12657 (19) | 0.2548 (2) | 0.0759 (7) | |
H7A | 0.2264 | 0.1697 | 0.2294 | 0.091* | |
C8 | 0.3812 (2) | 0.14362 (16) | 0.3112 (2) | 0.0682 (7) | |
H8A | 0.4037 | 0.1989 | 0.3233 | 0.082* | |
C9 | 0.45660 (19) | 0.07928 (14) | 0.35138 (18) | 0.0554 (5) | |
C10 | 0.7649 (2) | 0.14510 (18) | 0.5310 (2) | 0.0761 (8) | |
H10A | 0.7270 | 0.1724 | 0.5651 | 0.091* | |
H10B | 0.7486 | 0.1737 | 0.4629 | 0.091* | |
C11 | 0.8808 (3) | 0.1471 (2) | 0.6056 (4) | 0.1162 (14) | |
H11A | 0.9045 | 0.2041 | 0.6195 | 0.174* | |
H11B | 0.9172 | 0.1183 | 0.5720 | 0.174* | |
H11C | 0.8957 | 0.1203 | 0.6736 | 0.174* | |
C12 | 0.4759 (2) | −0.15957 (16) | 0.3647 (2) | 0.0649 (6) | |
C13 | 0.5438 (3) | −0.29493 (18) | 0.4194 (4) | 0.1060 (12) | |
H13A | 0.4951 | −0.3092 | 0.4477 | 0.127* | |
H13B | 0.5133 | −0.3135 | 0.3437 | 0.127* | |
C14 | 0.6421 (3) | −0.3350 (2) | 0.4822 (6) | 0.181 (3) | |
H14A | 0.6739 | −0.3139 | 0.5559 | 0.271* | |
H14B | 0.6882 | −0.3243 | 0.4503 | 0.271* | |
H14C | 0.6311 | −0.3941 | 0.4830 | 0.271* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0598 (11) | 0.0493 (10) | 0.0607 (11) | −0.0024 (8) | 0.0234 (9) | 0.0043 (8) |
Cl1 | 0.0539 (4) | 0.0945 (7) | 0.1717 (10) | 0.0034 (4) | 0.0193 (5) | 0.0156 (6) |
O2 | 0.0549 (10) | 0.0585 (10) | 0.0825 (11) | −0.0052 (8) | 0.0183 (9) | 0.0045 (8) |
O3 | 0.0763 (14) | 0.0587 (12) | 0.152 (2) | −0.0105 (10) | 0.0054 (14) | −0.0116 (13) |
O4 | 0.0709 (12) | 0.0473 (10) | 0.1220 (16) | 0.0002 (8) | 0.0268 (11) | 0.0063 (10) |
C1 | 0.0556 (13) | 0.0541 (12) | 0.0576 (12) | −0.0060 (10) | 0.0227 (10) | 0.0019 (10) |
C2 | 0.0561 (13) | 0.0517 (12) | 0.0624 (13) | 0.0011 (10) | 0.0251 (11) | 0.0036 (10) |
C3 | 0.0592 (13) | 0.0486 (12) | 0.0561 (12) | −0.0037 (10) | 0.0267 (10) | −0.0002 (9) |
C4 | 0.0579 (13) | 0.0540 (12) | 0.0509 (11) | −0.0003 (10) | 0.0255 (10) | 0.0019 (9) |
C5 | 0.0572 (14) | 0.0617 (14) | 0.0696 (15) | −0.0041 (11) | 0.0253 (12) | −0.0001 (11) |
C6 | 0.0533 (14) | 0.0739 (17) | 0.0837 (18) | 0.0037 (12) | 0.0223 (13) | 0.0067 (14) |
C7 | 0.0659 (16) | 0.0661 (16) | 0.0890 (19) | 0.0116 (13) | 0.0303 (14) | 0.0087 (14) |
C8 | 0.0661 (15) | 0.0539 (13) | 0.0782 (16) | 0.0041 (11) | 0.0283 (13) | 0.0067 (12) |
C9 | 0.0586 (13) | 0.0519 (12) | 0.0543 (12) | −0.0009 (10) | 0.0251 (10) | 0.0032 (9) |
C10 | 0.0634 (15) | 0.0614 (15) | 0.0877 (18) | −0.0145 (12) | 0.0218 (14) | −0.0014 (13) |
C11 | 0.068 (2) | 0.097 (3) | 0.140 (3) | −0.0215 (18) | 0.012 (2) | 0.009 (2) |
C12 | 0.0628 (15) | 0.0534 (13) | 0.0731 (15) | −0.0026 (11) | 0.0272 (12) | −0.0030 (11) |
C13 | 0.100 (2) | 0.0447 (15) | 0.152 (3) | −0.0038 (15) | 0.041 (2) | 0.0042 (17) |
C14 | 0.084 (3) | 0.057 (2) | 0.328 (8) | 0.0106 (18) | 0.034 (4) | 0.033 (3) |
N1—C1 | 1.298 (3) | C6—C7 | 1.394 (4) |
N1—C9 | 1.375 (3) | C7—C8 | 1.361 (4) |
Cl1—C6 | 1.737 (3) | C7—H7A | 0.9300 |
O2—C1 | 1.346 (3) | C8—C9 | 1.404 (3) |
O2—C10 | 1.444 (3) | C8—H8A | 0.9300 |
O3—C12 | 1.186 (3) | C10—C11 | 1.486 (4) |
O4—C12 | 1.313 (3) | C10—H10A | 0.9700 |
O4—C13 | 1.454 (3) | C10—H10B | 0.9700 |
C1—C2 | 1.420 (3) | C11—H11A | 0.9600 |
C2—C3 | 1.356 (3) | C11—H11B | 0.9600 |
C2—H2A | 0.9300 | C11—H11C | 0.9600 |
C3—C4 | 1.427 (3) | C13—C14 | 1.413 (5) |
C3—C12 | 1.506 (3) | C13—H13A | 0.9700 |
C4—C5 | 1.415 (3) | C13—H13B | 0.9700 |
C4—C9 | 1.420 (3) | C14—H14A | 0.9600 |
C5—C6 | 1.355 (4) | C14—H14B | 0.9600 |
C5—H5A | 0.9300 | C14—H14C | 0.9600 |
C1—N1—C9 | 117.3 (2) | C8—C9—C4 | 119.3 (2) |
C1—O2—C10 | 117.0 (2) | O2—C10—C11 | 107.1 (2) |
C12—O4—C13 | 116.2 (2) | O2—C10—H10A | 110.3 |
N1—C1—O2 | 121.2 (2) | C11—C10—H10A | 110.3 |
N1—C1—C2 | 124.4 (2) | O2—C10—H10B | 110.3 |
O2—C1—C2 | 114.4 (2) | C11—C10—H10B | 110.3 |
C3—C2—C1 | 119.1 (2) | H10A—C10—H10B | 108.6 |
C3—C2—H2A | 120.4 | C10—C11—H11A | 109.5 |
C1—C2—H2A | 120.4 | C10—C11—H11B | 109.5 |
C2—C3—C4 | 119.3 (2) | H11A—C11—H11B | 109.5 |
C2—C3—C12 | 118.7 (2) | C10—C11—H11C | 109.5 |
C4—C3—C12 | 122.0 (2) | H11A—C11—H11C | 109.5 |
C5—C4—C9 | 118.2 (2) | H11B—C11—H11C | 109.5 |
C5—C4—C3 | 125.0 (2) | O3—C12—O4 | 122.8 (3) |
C9—C4—C3 | 116.8 (2) | O3—C12—C3 | 125.9 (3) |
C6—C5—C4 | 120.1 (2) | O4—C12—C3 | 111.3 (2) |
C6—C5—H5A | 120.0 | C14—C13—O4 | 109.3 (3) |
C4—C5—H5A | 120.0 | C14—C13—H13A | 109.8 |
C5—C6—C7 | 122.1 (3) | O4—C13—H13A | 109.8 |
C5—C6—Cl1 | 119.0 (2) | C14—C13—H13B | 109.8 |
C7—C6—Cl1 | 118.8 (2) | O4—C13—H13B | 109.8 |
C8—C7—C6 | 119.0 (3) | H13A—C13—H13B | 108.3 |
C8—C7—H7A | 120.5 | C13—C14—H14A | 109.5 |
C6—C7—H7A | 120.5 | C13—C14—H14B | 109.5 |
C7—C8—C9 | 121.2 (3) | H14A—C14—H14B | 109.5 |
C7—C8—H8A | 119.4 | C13—C14—H14C | 109.5 |
C9—C8—H8A | 119.4 | H14A—C14—H14C | 109.5 |
N1—C9—C8 | 117.6 (2) | H14B—C14—H14C | 109.5 |
N1—C9—C4 | 123.1 (2) | ||
C9—N1—C1—O2 | −179.1 (2) | C6—C7—C8—C9 | −0.8 (4) |
C9—N1—C1—C2 | 0.1 (3) | C1—N1—C9—C8 | 178.3 (2) |
C10—O2—C1—N1 | 1.5 (3) | C1—N1—C9—C4 | 0.1 (3) |
C10—O2—C1—C2 | −177.7 (2) | C7—C8—C9—N1 | −177.9 (2) |
N1—C1—C2—C3 | −0.2 (4) | C7—C8—C9—C4 | 0.4 (4) |
O2—C1—C2—C3 | 179.0 (2) | C5—C4—C9—N1 | 178.8 (2) |
C1—C2—C3—C4 | 0.2 (3) | C3—C4—C9—N1 | −0.1 (3) |
C1—C2—C3—C12 | −178.9 (2) | C5—C4—C9—C8 | 0.6 (3) |
C2—C3—C4—C5 | −178.9 (2) | C3—C4—C9—C8 | −178.3 (2) |
C12—C3—C4—C5 | 0.2 (4) | C1—O2—C10—C11 | 175.5 (3) |
C2—C3—C4—C9 | −0.1 (3) | C13—O4—C12—O3 | −0.4 (5) |
C12—C3—C4—C9 | 179.0 (2) | C13—O4—C12—C3 | 179.5 (3) |
C9—C4—C5—C6 | −1.2 (4) | C2—C3—C12—O3 | −172.8 (3) |
C3—C4—C5—C6 | 177.5 (2) | C4—C3—C12—O3 | 8.1 (4) |
C4—C5—C6—C7 | 0.9 (4) | C2—C3—C12—O4 | 7.3 (3) |
C4—C5—C6—Cl1 | −178.9 (2) | C4—C3—C12—O4 | −171.8 (2) |
C5—C6—C7—C8 | 0.1 (5) | C12—O4—C13—C14 | 176.2 (4) |
Cl1—C6—C7—C8 | 179.9 (2) |
Funding information
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project No. 2017/01/7199.
References
Bierbach, U., Qu, Y., Hambley, T. W., Peroutka, J., Nguyen, H. L., Doedee, M. & Farrell, N. (1999). Inorg. Chem. 38, 3535–3542. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446–6449. CrossRef PubMed CAS Google Scholar
Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16–41. CrossRef CAS PubMed Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 33–37. CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 154–158. CrossRef IUCr Journals Google Scholar
Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117. CrossRef CAS PubMed Google Scholar
Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heerden, L. van, Cloete, T. T., Breytenbach, J. W., de Kock, C., Smith, P. J., Breytenbach, J. C. & N'Da, D. D. (2012). Eur. J. Med. Chem. 55, 335–345. PubMed Google Scholar
Khan, F. N., Hathwar, V. R., Kumar, R., Kumar, A. S. & Akkurt, M. (2010a). Acta Cryst. E66, o1930. CrossRef IUCr Journals Google Scholar
Khan, F. N., Hathwar, V. R., Kumar, R., Kushwaha, A. K. & Akkurt, M. (2010d). Acta Cryst. E66, o1693–o1694. CrossRef IUCr Journals Google Scholar
Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010b). Acta Cryst. E66, o972–o973. CrossRef IUCr Journals Google Scholar
Khan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010c). Acta Cryst. E66, o1607–o1608. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Merlino, S. (1968). Atti Accad. Naz. Lincei, 45, 147. Google Scholar
Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853. CrossRef PubMed CAS Google Scholar
Panda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816–3821. CrossRef CAS PubMed Google Scholar
Roopan, S. M., Khan, F. N., Vijetha, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2982. Web of Science CSD CrossRef IUCr Journals Google Scholar
Santos, R. M. de, Barros, P. R., Bortoluzzi, J. H., Meneghetti, M. R., da Silva, Y. K. C., da Silva, A. E., da Silva Santos, M. & Alexandre-Moreira, M. S. (2015). Bioorg. Med. Chem. 23, 4390–4396. CrossRef CAS PubMed Google Scholar
Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subashini, R., Khan, F. N., Mittal, S., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2986. CrossRef IUCr Journals Google Scholar
Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.