research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-eth­­oxy­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Heterocyclic Organic Chemistry, URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 830, Al Kharj, Saudi Arabia, dMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco, and eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: younos.bouzian19@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 4 April 2019; accepted 22 May 2019; online 31 May 2019)

In the title quinoline derivative, C14H14ClNO3, there is an intra­molecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The mol­ecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-eth­oxy­quinoline mean plane. In the crystal, offset ππ inter­actions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related mol­ecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface.

1. Chemical context

Quinoline derivatives represent an important class of bioactive heterocyclic compounds in the field of pharmaceuticals (Chu et al., 2019[Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101-117.]). Quinoline derivatives possess various pharmacological properties such as anti­bacterial (Panda et al., 2015[Panda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816-3821.]), anti-HCV (Cannalire et al., 2016[Cannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16-41.]), anti­viral (Sekgota et al., 2017[Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310-316.]), anti­cancer (Tang et al., 2018[Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201-213.]), anti­malarial (van Heerden et al., 2012[Heerden, L. van, Cloete, T. T., Breytenbach, J. W., de Kock, C., Smith, P. J., Breytenbach, J. C. & N'Da, D. D. (2012). Eur. J. Med. Chem. 55, 335-345.]), anti­leishmanial (Palit et al., 2009[Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845-853.]), anti­tubecular (Xu et al., 2017[Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429-440.]), anti-inflammatory (de Santos et al., 2015[Santos, R. M. de, Barros, P. R., Bortoluzzi, J. H., Meneghetti, M. R., da Silva, Y. K. C., da Silva, A. E., da Silva Santos, M. & Alexandre-Moreira, M. S. (2015). Bioorg. Med. Chem. 23, 4390-4396.]) and anti-Alzheimer's (Bolognesi et al., 2007[Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446-6449.]) activities. The present work is a continuation of our research work devoted to the synthesis and crystal structure of heterocyclic derivatives (Bouzian et al., 2018[Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.]; Chkirate et al. 2019a[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 33-37.],b[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 154-158.]). As part of our studies in this area, we prepared the title compound by reacting ethyl 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate with bromo­ethane in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide. We report herein on its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]a. The mol­ecule consists of a quinoline fused-ring system (N1/C1–C9) with meth­oxy­ethane (O2/C10/C11), ethyl acetate (O3/O4/C13/C14) and a chlorine atom (Cl1) substituents. The intra­molecular C5—H5A⋯O3 hydrogen bond (Table 1[link]) forms an S(6) graph-set motif, stabilizing the mol­ecular structure and preventing free rotation between the 6-chloro­quinoline ring (Cl1/N1/C1–C9) and the ethyl acetate (O3/O4/C12–C14) moiety. Additionally, the presence of this intra­molecular C—H⋯O inter­action leads to an essentially planar mol­ecular structure (Fig. 1[link]b), where the ethyl acetate (O3/O4/C12–C14) mean plane is twisted slightly at a dihedral angle of 5.02 (3)° with respect to the mean plane of the ethyl 6-chloro-2-eth­oxy­quinoline (Cl1/O2/C1–C11) moiety. This essentially planar mol­ecular structure may be considered an important binding mode that can enhance biological activity (Bierbach et al., 1999[Bierbach, U., Qu, Y., Hambley, T. W., Peroutka, J., Nguyen, H. L., Doedee, M. & Farrell, N. (1999). Inorg. Chem. 38, 3535-3542.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3 0.93 2.24 2.872 (4) 125
[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The dashed line represents the intra­molecular C—H⋯O inter­action (Table 1[link]). (b) The essentially planar structure of the title compound.

3. Supra­molecular features

In the crystal, mol­ecules lie in a plane parallel to the (10[\overline{2}]) crystallographic plane (Fig. 2[link]a). They are linked by offset ππ inter­actions (Fig. 2[link]b) involving inversion-related pyridine rings. These inter­actions link the mol­ecules into columns up the c-axis direction with a centroid-to-centroid (CgCgi) distance of 3.4731 (14) Å [Cg is centroid of the N1/C1–C4/C9 ring, inter­planar distance = 3.397 (1) Å, offset = 0.722 Å; symmetry code (i): −x + 1, −y, −z + 1].

[Figure 2]
Figure 2
(a) A partial view along the c axis of the crystal packing of the title compound. (b) A view along the c axis of the crystal packing of the title compound.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). Inter­nal and external (di and de) contact distances from the Hirshfeld surface to the nearest atom inside and outside enables the analysis of the inter­molecular inter­actions through the mapping of dnorm. The Hirshfeld surfaces (HS) mapped over the electrostatic potential (−0.0534 to 0.0319 atomic units) and dnorm (−0.0210 to 1.4779 arbitrary units) are shown in Fig. 3[link]a and 3b. The red spots on the Hirshfeld surface indicate inter­actions involved in H⋯O contacts. The ππ stacking is confirmed by the small blue regions surrounding bright red spots in the aromatic ring in Fig. 3[link]c, the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 3[link]d, the Hirshfeld surface mapped over the curvedness.

[Figure 3]
Figure 3
Hirshfeld surface of the title compound mapped over: (a) electrostatic potential, (b) dnorm, (c) shape-index and (d) curvedness.

There are no significant classical inter­molecular contacts present in the crystal according to the analysis of the crystal structure using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). However, from the Hirshfeld surface analysis and the two-dimensional fingerprint plots it can be seen that H⋯H, C⋯H, Cl⋯H and O⋯H contacts (Fig. 4[link]) contribute to the cohesion of the crystal structure. The two-dimensional fingerprint plots are given in Fig. 5[link]. The two-dimensional fingerprint of the (di, de) points associated with the hydrogen atoms is shown in Fig. 5[link]b. It is characterized by an end point that points to the origin, indicating the presence of the H⋯H contacts that contribution 50.8%. The Cl⋯H/H⋯Cl contacts between the chlorine atoms inside the Hirshfeld surface and the hydrogen atoms outside the surface and vice versa contribute 16.0% (Fig. 5[link]c). The O⋯H/H⋯O (10.3%) plot shows two symmetrical wings on the left and right sides (Fig. 5[link]d). The C⋯C contacts contribute 7.9% (Fig. 5[link]e), the C⋯H/H⋯C contacts contribute 5.3% (Fig. 5[link]e), followed by the C⋯O contacts at 3.7% (Fig. 5[link]g) and the C⋯N contacts at 3.3% (Fig. 3[link]h).

[Figure 4]
Figure 4
A view of the inter­molecular contacts (dashed lines) in the crystal of the title compound. They are all longer by 0.02 Å than the sum of the van der Waals radii of the individual atoms.
[Figure 5]
Figure 5
(a) The two-dimensional fingerprint plot of the title compound, and the fingerprint plots delineated into: (b) H⋯H (50.8%), (c) Cl⋯H/H⋯Cl (16.0%), (d) O⋯H/H⋯O (10.3%), (e) C⋯C (7.9%), (f) C⋯H/H⋯C (5.3%), (g) C⋯O (3.7%) and (h) C⋯N (3.3%) contacts.

5. DFT study

The electrostatic potential surface (ESP) was also calculated using DFT methods at the B3LYP/6-311+G(d,p) level of theory using the Gaussian 09 package (Frisch et al., 2009[Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA.]). The negative region on the electrostatic potential appears in red and corresponds to hydrogen-bond acceptors, while the positive region of electrostatic potential appears in blue and corresponds to hydrogen-bond donors (Fig. 6[link]).

[Figure 6]
Figure 6
EPS of the title compound obtained at the B3LYP/6–31+G(d,p) level of theory.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 6-chloro­quinoline skeleton gave 100 hits, including 6-chloro­quinoline itself (CSD refcode CLQUIN; Merlino, 1968[Merlino, S. (1968). Atti Accad. Naz. Lincei, 45, 147.]). Only a limited number of these structures are similar to the title compound. There are no compounds with a 6-chloro-2-eth­oxy­quinoline moiety and only four compounds with a 6-chloro-2-meth­oxy­quinoline moiety. These include, 1-{6-chloro-2-[(2-chloro-8-methyl­quinolin-3-yl)meth­oxy]-4-phen­yl­quinolin-3-yl}ethanone (DUVJEK; Khan et al., 2010a[Khan, F. N., Hathwar, V. R., Kumar, R., Kumar, A. S. & Akkurt, M. (2010a). Acta Cryst. E66, o1930.]), ethyl 6-chloro-2-[(2-chloro-7,8-di­methyl­quinolin-3-yl)meth­oxy]-4-phenyl­quinoline-3-carboxyl­ate (KUVFEN; Khan et al., 2010b[Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010b). Acta Cryst. E66, o972-o973.]), 1-{6-chloro-2-[(2-chloro­quinolin-3-yl)meth­oxy]-4-phenyl­quinolin-3-yl}ethanone (YUQTAG; Khan et al., 2010c[Khan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010c). Acta Cryst. E66, o1607-o1608.]), and 1-{6-chloro-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]-4-phenyl­quinolin-3-yl}ethanone (YUQVIQ; Khan et al., 2010d[Khan, F. N., Hathwar, V. R., Kumar, R., Kushwaha, A. K. & Akkurt, M. (2010d). Acta Cryst. E66, o1693-o1694.]). Two other relevant compounds with an ethyl carboxyl­ate substituent include ethyl 2,6-di­chloro-4-phenyl­quinoline-3-carboxyl­ate (DUKKUQ; Roopan et al., 2009[Roopan, S. M., Khan, F. N., Vijetha, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2982.]) and ethyl 6-chloro-2-methyl-4-phenyl­quinoline-3-carboxyl­ate (DUKJEZ; Subashini et al., 2009[Subashini, R., Khan, F. N., Mittal, S., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2986.]). In the crystals of all of the above mentioned compounds, mol­ecules are linked by offset ππ inter­actions involving inversion-related quinoline units.

7. Synthesis and crystallization

A solution of 0.5 g (1.99 mmol) of ethyl 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate in 25 ml of DMF was mixed with 0.3 ml (3.98 mmol) of bromo­ethane, 0.55 g (3.98 mmol) of K2CO3 and 0.06 g (0.199 mmol) of tetra-n-butyl­ammonium bromide (TBAB). The reaction mixture was stirred at room temperature in DMF for 24 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane·The organic phase was dried over Na2SO4 then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate/hexane (1:9 v/v)]. Colourless crystals were obtained when the solvent was allowed to evaporate (yield: 32%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied to the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C14H14ClNO3
Mr 279.71
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 14.2634 (7), 16.0124 (7), 13.7732 (6)
β (°) 117.748 (2)
V3) 2783.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.50 × 0.47 × 0.37
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 45458, 3190, 2228
Rint 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.203, 1.10
No. of reflections 3190
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate top
Crystal data top
C14H14ClNO3F(000) = 1168
Mr = 279.71Dx = 1.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.2634 (7) ÅCell parameters from 9928 reflections
b = 16.0124 (7) Åθ = 2.5–24.5°
c = 13.7732 (6) ŵ = 0.28 mm1
β = 117.748 (2)°T = 296 K
V = 2783.9 (2) Å3Block, colourless
Z = 80.50 × 0.47 × 0.37 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
k = 2020
45458 measured reflectionsl = 1717
3190 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0854P)2 + 2.5795P]
where P = (Fo2 + 2Fc2)/3
3190 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56133 (16)0.10176 (12)0.41064 (15)0.0584 (5)
Cl10.10792 (6)0.02217 (6)0.16402 (10)0.1199 (5)
O20.73447 (14)0.05835 (11)0.51005 (15)0.0707 (5)
O30.39144 (18)0.18904 (14)0.3085 (2)0.1148 (9)
O40.55981 (16)0.20506 (11)0.42458 (19)0.0872 (6)
C10.63047 (19)0.04194 (15)0.44989 (19)0.0572 (6)
C20.60502 (19)0.04443 (15)0.43555 (19)0.0577 (5)
H2A0.65820.08450.46550.069*
C30.50216 (18)0.06779 (14)0.37760 (18)0.0547 (5)
C40.42215 (18)0.00513 (14)0.33217 (17)0.0542 (5)
C50.3122 (2)0.02093 (17)0.2719 (2)0.0645 (6)
H5A0.28760.07560.25690.077*
C60.2427 (2)0.04352 (19)0.2358 (2)0.0741 (7)
C70.2757 (2)0.12657 (19)0.2548 (2)0.0759 (7)
H7A0.22640.16970.22940.091*
C80.3812 (2)0.14362 (16)0.3112 (2)0.0682 (7)
H8A0.40370.19890.32330.082*
C90.45660 (19)0.07928 (14)0.35138 (18)0.0554 (5)
C100.7649 (2)0.14510 (18)0.5310 (2)0.0761 (8)
H10A0.72700.17240.56510.091*
H10B0.74860.17370.46290.091*
C110.8808 (3)0.1471 (2)0.6056 (4)0.1162 (14)
H11A0.90450.20410.61950.174*
H11B0.91720.11830.57200.174*
H11C0.89570.12030.67360.174*
C120.4759 (2)0.15957 (16)0.3647 (2)0.0649 (6)
C130.5438 (3)0.29493 (18)0.4194 (4)0.1060 (12)
H13A0.49510.30920.44770.127*
H13B0.51330.31350.34370.127*
C140.6421 (3)0.3350 (2)0.4822 (6)0.181 (3)
H14A0.67390.31390.55590.271*
H14B0.68820.32430.45030.271*
H14C0.63110.39410.48300.271*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0598 (11)0.0493 (10)0.0607 (11)0.0024 (8)0.0234 (9)0.0043 (8)
Cl10.0539 (4)0.0945 (7)0.1717 (10)0.0034 (4)0.0193 (5)0.0156 (6)
O20.0549 (10)0.0585 (10)0.0825 (11)0.0052 (8)0.0183 (9)0.0045 (8)
O30.0763 (14)0.0587 (12)0.152 (2)0.0105 (10)0.0054 (14)0.0116 (13)
O40.0709 (12)0.0473 (10)0.1220 (16)0.0002 (8)0.0268 (11)0.0063 (10)
C10.0556 (13)0.0541 (12)0.0576 (12)0.0060 (10)0.0227 (10)0.0019 (10)
C20.0561 (13)0.0517 (12)0.0624 (13)0.0011 (10)0.0251 (11)0.0036 (10)
C30.0592 (13)0.0486 (12)0.0561 (12)0.0037 (10)0.0267 (10)0.0002 (9)
C40.0579 (13)0.0540 (12)0.0509 (11)0.0003 (10)0.0255 (10)0.0019 (9)
C50.0572 (14)0.0617 (14)0.0696 (15)0.0041 (11)0.0253 (12)0.0001 (11)
C60.0533 (14)0.0739 (17)0.0837 (18)0.0037 (12)0.0223 (13)0.0067 (14)
C70.0659 (16)0.0661 (16)0.0890 (19)0.0116 (13)0.0303 (14)0.0087 (14)
C80.0661 (15)0.0539 (13)0.0782 (16)0.0041 (11)0.0283 (13)0.0067 (12)
C90.0586 (13)0.0519 (12)0.0543 (12)0.0009 (10)0.0251 (10)0.0032 (9)
C100.0634 (15)0.0614 (15)0.0877 (18)0.0145 (12)0.0218 (14)0.0014 (13)
C110.068 (2)0.097 (3)0.140 (3)0.0215 (18)0.012 (2)0.009 (2)
C120.0628 (15)0.0534 (13)0.0731 (15)0.0026 (11)0.0272 (12)0.0030 (11)
C130.100 (2)0.0447 (15)0.152 (3)0.0038 (15)0.041 (2)0.0042 (17)
C140.084 (3)0.057 (2)0.328 (8)0.0106 (18)0.034 (4)0.033 (3)
Geometric parameters (Å, º) top
N1—C11.298 (3)C6—C71.394 (4)
N1—C91.375 (3)C7—C81.361 (4)
Cl1—C61.737 (3)C7—H7A0.9300
O2—C11.346 (3)C8—C91.404 (3)
O2—C101.444 (3)C8—H8A0.9300
O3—C121.186 (3)C10—C111.486 (4)
O4—C121.313 (3)C10—H10A0.9700
O4—C131.454 (3)C10—H10B0.9700
C1—C21.420 (3)C11—H11A0.9600
C2—C31.356 (3)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.427 (3)C13—C141.413 (5)
C3—C121.506 (3)C13—H13A0.9700
C4—C51.415 (3)C13—H13B0.9700
C4—C91.420 (3)C14—H14A0.9600
C5—C61.355 (4)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
C1—N1—C9117.3 (2)C8—C9—C4119.3 (2)
C1—O2—C10117.0 (2)O2—C10—C11107.1 (2)
C12—O4—C13116.2 (2)O2—C10—H10A110.3
N1—C1—O2121.2 (2)C11—C10—H10A110.3
N1—C1—C2124.4 (2)O2—C10—H10B110.3
O2—C1—C2114.4 (2)C11—C10—H10B110.3
C3—C2—C1119.1 (2)H10A—C10—H10B108.6
C3—C2—H2A120.4C10—C11—H11A109.5
C1—C2—H2A120.4C10—C11—H11B109.5
C2—C3—C4119.3 (2)H11A—C11—H11B109.5
C2—C3—C12118.7 (2)C10—C11—H11C109.5
C4—C3—C12122.0 (2)H11A—C11—H11C109.5
C5—C4—C9118.2 (2)H11B—C11—H11C109.5
C5—C4—C3125.0 (2)O3—C12—O4122.8 (3)
C9—C4—C3116.8 (2)O3—C12—C3125.9 (3)
C6—C5—C4120.1 (2)O4—C12—C3111.3 (2)
C6—C5—H5A120.0C14—C13—O4109.3 (3)
C4—C5—H5A120.0C14—C13—H13A109.8
C5—C6—C7122.1 (3)O4—C13—H13A109.8
C5—C6—Cl1119.0 (2)C14—C13—H13B109.8
C7—C6—Cl1118.8 (2)O4—C13—H13B109.8
C8—C7—C6119.0 (3)H13A—C13—H13B108.3
C8—C7—H7A120.5C13—C14—H14A109.5
C6—C7—H7A120.5C13—C14—H14B109.5
C7—C8—C9121.2 (3)H14A—C14—H14B109.5
C7—C8—H8A119.4C13—C14—H14C109.5
C9—C8—H8A119.4H14A—C14—H14C109.5
N1—C9—C8117.6 (2)H14B—C14—H14C109.5
N1—C9—C4123.1 (2)
C9—N1—C1—O2179.1 (2)C6—C7—C8—C90.8 (4)
C9—N1—C1—C20.1 (3)C1—N1—C9—C8178.3 (2)
C10—O2—C1—N11.5 (3)C1—N1—C9—C40.1 (3)
C10—O2—C1—C2177.7 (2)C7—C8—C9—N1177.9 (2)
N1—C1—C2—C30.2 (4)C7—C8—C9—C40.4 (4)
O2—C1—C2—C3179.0 (2)C5—C4—C9—N1178.8 (2)
C1—C2—C3—C40.2 (3)C3—C4—C9—N10.1 (3)
C1—C2—C3—C12178.9 (2)C5—C4—C9—C80.6 (3)
C2—C3—C4—C5178.9 (2)C3—C4—C9—C8178.3 (2)
C12—C3—C4—C50.2 (4)C1—O2—C10—C11175.5 (3)
C2—C3—C4—C90.1 (3)C13—O4—C12—O30.4 (5)
C12—C3—C4—C9179.0 (2)C13—O4—C12—C3179.5 (3)
C9—C4—C5—C61.2 (4)C2—C3—C12—O3172.8 (3)
C3—C4—C5—C6177.5 (2)C4—C3—C12—O38.1 (4)
C4—C5—C6—C70.9 (4)C2—C3—C12—O47.3 (3)
C4—C5—C6—Cl1178.9 (2)C4—C3—C12—O4171.8 (2)
C5—C6—C7—C80.1 (5)C12—O4—C13—C14176.2 (4)
Cl1—C6—C7—C8179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O30.932.242.872 (4)125
 

Funding information

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project No. 2017/01/7199.

References

First citationBierbach, U., Qu, Y., Hambley, T. W., Peroutka, J., Nguyen, H. L., Doedee, M. & Farrell, N. (1999). Inorg. Chem. 38, 3535–3542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446–6449.  CrossRef PubMed CAS Google Scholar
First citationBouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16–41.  CrossRef CAS PubMed Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 33–37.  CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 154–158.  CrossRef IUCr Journals Google Scholar
First citationChu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117.  CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeerden, L. van, Cloete, T. T., Breytenbach, J. W., de Kock, C., Smith, P. J., Breytenbach, J. C. & N'Da, D. D. (2012). Eur. J. Med. Chem. 55, 335–345.  PubMed Google Scholar
First citationKhan, F. N., Hathwar, V. R., Kumar, R., Kumar, A. S. & Akkurt, M. (2010a). Acta Cryst. E66, o1930.  CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Hathwar, V. R., Kumar, R., Kushwaha, A. K. & Akkurt, M. (2010d). Acta Cryst. E66, o1693–o1694.  CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010b). Acta Cryst. E66, o972–o973.  CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Kumar, R., Hathwar, V. R. & Akkurt, M. (2010c). Acta Cryst. E66, o1607–o1608.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMerlino, S. (1968). Atti Accad. Naz. Lincei, 45, 147.  Google Scholar
First citationPalit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853.  CrossRef PubMed CAS Google Scholar
First citationPanda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816–3821.  CrossRef CAS PubMed Google Scholar
First citationRoopan, S. M., Khan, F. N., Vijetha, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, R. M. de, Barros, P. R., Bortoluzzi, J. H., Meneghetti, M. R., da Silva, Y. K. C., da Silva, A. E., da Silva Santos, M. & Alexandre-Moreira, M. S. (2015). Bioorg. Med. Chem. 23, 4390–4396.  CrossRef CAS PubMed Google Scholar
First citationSekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, R., Khan, F. N., Mittal, S., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2986.  CrossRef IUCr Journals Google Scholar
First citationTang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationXu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds