research communications
Hirshfeld surface analysis and N-(2-methoxyphenyl)acetamide
ofaOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, bDepartment of Chemistry, College of Education, Salahaddin University-Erbil, Erbil-Kurdistan, Iraq, 44002, cDepartment of Chemistry, College of Education, Salahaddin University – Hawler, Erbil-Kurdistan, Iraq, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maviseseker@hotmail.com, necmid@omu.edu.tr, ifritsky@univ.kiev.ua
The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benzyloxy-5-[(E)-(3-chloro-4-methylphenyl)diazenyl]benzylidene}-2-phenyloxazol-5(4H)-one) with 2-methoxyaniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) interactions.
CCDC reference: 1899995
1. Chemical context
The amide function is one of the most important linkages in natural chemistry. It is the key linker in et al., 2010) with natural activity, including about 25% of commercially available drugs. Consequentially, the amide bond is a standout amongst the most vital changes in a current natural blend (Ojeda-Porras & Gamba-Sánchez, 2016). In the light of such discoveries, we report the of the title compound.
and a number of polymers, and is additionally found in numerous pharmaceuticals and other items (Dam2. Structural commentary
The molecular structure of the 9H11NO2 compound is shown in Fig. 1. The N1—C2, C2—O2 and C2—C1 bond lengths are 1.347 (2), 1.2285 (19) and 1.480 (3) Å, respectively. The C2—O2 bond in the amide group shows partial double-bond character and is similar in length to those found in amide compounds in the literature [1.215 (2) Å (Kansiz et al., 2018), 1.240 (2) Å (Aydemir et al., 2018) and 1.2205 (10) Å (Chkirate et al., 2019)]. The C3—C8 benzene ring is planar with an r.m.s. deviation of 0.0019. The amide group is not coplanar with the benzene ring, as shown by the C3—N1—C2—O2 and C3—N1—C2—C1 torsion angles of −2.5 (3) and 176.54 (19)°, respectively.
of the C3. Supramolecular features
In the crystal, adjacent molecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction (Table 1 and Fig. 2). The chains are further connected by weak C—H⋯π interactions.
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated using CrystalExplorer17 (Turner et al., 2017). Plots of the Hirshfeld surface mapped over dnorm, di and de using a fixed colour scale of −0.5051 (red) to 1.2978 (blue) a.u. are shown in Fig. 3.. The red spots in the dnorm plot indicate the intermolecular contacts associated with the strong hydrogen bonds and interatomic contacts such as N—H⋯O. Fig. 4 shows the dnorm mapped on the Hirshfeld surface to visualize the intermolecular interactions of the title compound. The fingerprint plots complement the Hirshfeld surface, quantitatively summarizing the nature and type of the intermolecular contacts by illustrating atominside/atomoutside interactions (Fig. 5). The contribution from the H⋯H contacts is observed to be highest towards the Hirshfeld surface with a 53.9% contribution. The contribution from the C—H⋯O hydrogen bond (21.4% contribution) appears as a pair of sharp spikes at de + di =1.9 Å. A view of the three-dimensional Hirshfeld surface plotted over electrostatic potentials in the range −0.1028 to 0.1158 a.u. is shown in Fig. 6. The hydrogen-bond donors and acceptors are showed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
5. Database survey
A search in the Cambridge Structural Database (CSD version 5.39, update of August 2018; Groom et al., 2016) for N-(2-methoxyphenyl)acetamide derivatives found several similar structures: 3-hydroxy-7,8-dimethoxyquinolin-2(1H)-one (BIZGAT; Song et al., 2008), 1-(2-methoxyphenyl)-1H-pyrrole-2,5-dione (XEBZIP; Sirajuddin et al., 2012) and cis-cyclohexane-1,2-carboxylic anhydride with o- and p-anisidine and m- and p-aminobenzoic acids (BECVAI; Smith et al., 2012). In the structure of BIZGAT, the molecules are linked into chains by N—H⋯O hydrogen bonds as in the title structure.
6. Synthesis and crystallization
This compound was formed as by-product in the synthesis of a benzamide derivative from the reaction between an oxazolone with o- methoxyaniline (Samad & Hawaiz, 2019) in the presence of acetic acid as solvent. The reaction mixture was refluxed for 2 h, cooled, poured into water, filtered and dried. The remaining filtrate was left for seven days to obtain good-quality crystals.
7. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H atoms, C—H = 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2–1.5 Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1899995
https://doi.org/10.1107/S2056989019006972/mw2145sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006972/mw2145Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C9H11NO2 | Dx = 1.229 Mg m−3 |
Mr = 165.19 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 26458 reflections |
a = 9.5115 (7) Å | θ = 2.0–28.3° |
b = 18.7385 (19) Å | µ = 0.09 mm−1 |
c = 10.0216 (8) Å | T = 296 K |
V = 1786.2 (3) Å3 | Prism, yellow |
Z = 8 | 0.43 × 0.39 × 0.37 mm |
F(000) = 704 |
Stoe IPDS 2 diffractometer | 1748 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1168 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.090 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.2° |
rotation method scans | h = −11→10 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −22→22 |
Tmin = 0.946, Tmax = 0.978 | l = −12→12 |
14575 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1748 reflections | Δρmax = 0.13 e Å−3 |
111 parameters | Δρmin = −0.12 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.64879 (13) | 0.70439 (8) | 0.55583 (15) | 0.0835 (5) | |
O2 | 0.25840 (10) | 0.58665 (10) | 0.69551 (15) | 0.0943 (6) | |
N1 | 0.49079 (12) | 0.60150 (8) | 0.65857 (16) | 0.0654 (5) | |
H1 | 0.572027 | 0.603270 | 0.696112 | 0.078* | |
C3 | 0.48608 (15) | 0.61300 (10) | 0.5196 (2) | 0.0622 (5) | |
C8 | 0.57097 (16) | 0.66649 (11) | 0.4655 (2) | 0.0678 (5) | |
C2 | 0.37959 (16) | 0.58800 (10) | 0.7378 (2) | 0.0702 (5) | |
C4 | 0.40284 (18) | 0.57277 (11) | 0.4362 (2) | 0.0739 (6) | |
H4 | 0.346101 | 0.537006 | 0.471444 | 0.089* | |
C7 | 0.5712 (2) | 0.67836 (14) | 0.3299 (2) | 0.0872 (7) | |
H7 | 0.627687 | 0.713842 | 0.293428 | 0.105* | |
C1 | 0.4131 (2) | 0.57364 (14) | 0.8795 (2) | 0.0937 (8) | |
H1A | 0.349072 | 0.599462 | 0.935617 | 0.141* | |
H1B | 0.507637 | 0.588706 | 0.897970 | 0.141* | |
H1C | 0.404506 | 0.523450 | 0.896863 | 0.141* | |
C5 | 0.4032 (2) | 0.58533 (13) | 0.3000 (3) | 0.0917 (7) | |
H5 | 0.346474 | 0.558364 | 0.243764 | 0.110* | |
C6 | 0.4874 (2) | 0.63744 (16) | 0.2492 (3) | 0.0996 (8) | |
H6 | 0.487972 | 0.645447 | 0.157579 | 0.119* | |
C9 | 0.7372 (2) | 0.75987 (14) | 0.5065 (3) | 0.1092 (9) | |
H9A | 0.802856 | 0.740327 | 0.443554 | 0.164* | |
H9B | 0.787667 | 0.781102 | 0.579383 | 0.164* | |
H9C | 0.680779 | 0.795524 | 0.463403 | 0.164* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0703 (8) | 0.0959 (10) | 0.0843 (11) | −0.0264 (7) | 0.0062 (7) | −0.0008 (8) |
O2 | 0.0401 (6) | 0.1531 (15) | 0.0896 (11) | −0.0056 (7) | 0.0017 (6) | 0.0087 (10) |
N1 | 0.0397 (6) | 0.0882 (11) | 0.0682 (11) | −0.0052 (6) | −0.0012 (6) | 0.0051 (8) |
C3 | 0.0445 (7) | 0.0737 (11) | 0.0683 (13) | 0.0031 (7) | 0.0007 (7) | −0.0008 (9) |
C8 | 0.0530 (8) | 0.0804 (12) | 0.0699 (14) | 0.0004 (9) | 0.0043 (8) | 0.0014 (10) |
C2 | 0.0459 (8) | 0.0903 (14) | 0.0744 (14) | −0.0029 (9) | 0.0031 (8) | 0.0061 (11) |
C4 | 0.0579 (9) | 0.0824 (13) | 0.0813 (16) | −0.0002 (9) | −0.0059 (9) | −0.0065 (11) |
C7 | 0.0767 (13) | 0.1117 (18) | 0.0732 (17) | 0.0005 (12) | 0.0110 (11) | 0.0104 (13) |
C1 | 0.0611 (11) | 0.142 (2) | 0.0778 (16) | −0.0005 (12) | 0.0054 (10) | 0.0168 (14) |
C5 | 0.0773 (12) | 0.1154 (19) | 0.0823 (17) | 0.0060 (13) | −0.0135 (12) | −0.0179 (14) |
C6 | 0.0955 (16) | 0.134 (2) | 0.0697 (16) | 0.0068 (15) | 0.0001 (12) | 0.0016 (16) |
C9 | 0.0960 (15) | 0.1067 (18) | 0.125 (2) | −0.0392 (14) | 0.0343 (15) | −0.0085 (17) |
O1—C8 | 1.368 (2) | C7—C6 | 1.370 (3) |
O1—C9 | 1.426 (2) | C7—H7 | 0.9300 |
O2—C2 | 1.2285 (19) | C1—H1A | 0.9600 |
N1—C2 | 1.347 (2) | C1—H1B | 0.9600 |
N1—C3 | 1.410 (2) | C1—H1C | 0.9600 |
N1—H1 | 0.8600 | C5—C6 | 1.362 (3) |
C3—C4 | 1.376 (3) | C5—H5 | 0.9300 |
C3—C8 | 1.397 (3) | C6—H6 | 0.9300 |
C8—C7 | 1.377 (3) | C9—H9A | 0.9600 |
C2—C1 | 1.480 (3) | C9—H9B | 0.9600 |
C4—C5 | 1.385 (3) | C9—H9C | 0.9600 |
C4—H4 | 0.9300 | ||
C8—O1—C9 | 117.93 (18) | C2—C1—H1A | 109.5 |
C2—N1—C3 | 125.90 (14) | C2—C1—H1B | 109.5 |
C2—N1—H1 | 117.1 | H1A—C1—H1B | 109.5 |
C3—N1—H1 | 117.1 | C2—C1—H1C | 109.5 |
C4—C3—C8 | 119.4 (2) | H1A—C1—H1C | 109.5 |
C4—C3—N1 | 122.29 (17) | H1B—C1—H1C | 109.5 |
C8—C3—N1 | 118.33 (16) | C6—C5—C4 | 119.5 (2) |
O1—C8—C7 | 124.65 (18) | C6—C5—H5 | 120.2 |
O1—C8—C3 | 115.38 (18) | C4—C5—H5 | 120.2 |
C7—C8—C3 | 119.97 (19) | C5—C6—C7 | 121.5 (2) |
O2—C2—N1 | 122.48 (19) | C5—C6—H6 | 119.3 |
O2—C2—C1 | 122.00 (16) | C7—C6—H6 | 119.3 |
N1—C2—C1 | 115.51 (15) | O1—C9—H9A | 109.5 |
C3—C4—C5 | 120.2 (2) | O1—C9—H9B | 109.5 |
C3—C4—H4 | 119.9 | H9A—C9—H9B | 109.5 |
C5—C4—H4 | 119.9 | O1—C9—H9C | 109.5 |
C6—C7—C8 | 119.5 (2) | H9A—C9—H9C | 109.5 |
C6—C7—H7 | 120.3 | H9B—C9—H9C | 109.5 |
C8—C7—H7 | 120.3 | ||
C2—N1—C3—C4 | −41.9 (3) | C3—N1—C2—C1 | 176.54 (19) |
C2—N1—C3—C8 | 139.18 (19) | C8—C3—C4—C5 | −0.1 (3) |
C9—O1—C8—C7 | −0.4 (3) | N1—C3—C4—C5 | −179.04 (17) |
C9—O1—C8—C3 | −179.83 (17) | O1—C8—C7—C6 | −179.23 (19) |
C4—C3—C8—O1 | 179.21 (15) | C3—C8—C7—C6 | 0.2 (3) |
N1—C3—C8—O1 | −1.8 (2) | C3—C4—C5—C6 | 0.5 (3) |
C4—C3—C8—C7 | −0.2 (3) | C4—C5—C6—C7 | −0.6 (3) |
N1—C3—C8—C7 | 178.77 (17) | C8—C7—C6—C5 | 0.2 (4) |
C3—N1—C2—O2 | −2.5 (3) |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.10 | 2.9486 (17) | 168 |
C1—H1B···O2i | 0.96 | 2.56 | 3.378 (2) | 143 |
C1—H9B···Cg1ii | 0.96 | 2.61 | 3.387 | 139 |
Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) −x−1, y+1/2, −z+3/2. |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.
References
Aydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674–1677. CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019). Acta Cryst. E75, 154–158. CSD CrossRef IUCr Journals Google Scholar
Dam, J. H., Osztrovszky, G., Nordstrøm, L. U. & Madsen, R. (2010). Chem. Eur. J. 16, 6820–6827. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kansiz, S., Çakmak, Ş., Dege, N., Meral, G. & KÜtÜk, H. (2018). X-ray Struct. Anal. Online, 34, 17–18. CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816. Web of Science CrossRef Google Scholar
Ojeda-Porras, A. & Gamba-Sánchez, D. (2016). J. Org. Chem. 81, 11548–11555. CAS PubMed Google Scholar
Samad, M. K. & Hawaiz, F. E. (2019). Bioorg. Chem. 85, 431–444. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2012). Acta Cryst. C68, o253–o256. Web of Science CSD CrossRef IUCr Journals Google Scholar
Song, J., Lin, Y. & Chan, W. L. (2008). Acta Cryst. E64, o934. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.