research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hirshfeld surface analysis and crystal structure of N-(2-meth­­oxy­phen­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, bDepartment of Chemistry, College of Education, Salahaddin University-Erbil, Erbil-Kurdistan, Iraq, 44002, cDepartment of Chemistry, College of Education, Salahaddin University – Hawler, Erbil-Kurdistan, Iraq, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maviseseker@hotmail.com, necmid@omu.edu.tr, ifritsky@univ.kiev.ua

Edited by J. T. Mague, Tulane University, USA (Received 16 April 2019; accepted 14 May 2019; online 21 May 2019)

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.

1. Chemical context

The amide function is one of the most important linkages in natural chemistry. It is the key linker in peptides and a number of polymers, and is additionally found in numerous pharmaceuticals and other items (Dam et al., 2010[Dam, J. H., Osztrovszky, G., Nordstrøm, L. U. & Madsen, R. (2010). Chem. Eur. J. 16, 6820-6827.]) with natural activity, including about 25% of commercially available drugs. Consequentially, the amide bond is a standout amongst the most vital changes in a current natural blend (Ojeda-Porras & Gamba-Sánchez, 2016[Ojeda-Porras, A. & Gamba-Sánchez, D. (2016). J. Org. Chem. 81, 11548-11555.]). In the light of such discoveries, we report the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the asymmetric unit of the C9H11NO2 compound is shown in Fig. 1[link]. The N1—C2, C2—O2 and C2—C1 bond lengths are 1.347 (2), 1.2285 (19) and 1.480 (3) Å, respectively. The C2—O2 bond in the amide group shows partial double-bond character and is similar in length to those found in amide compounds in the literature [1.215 (2) Å (Kansiz et al., 2018[Kansiz, S., Çakmak, Ş., Dege, N., Meral, G. & KÜtÜk, H. (2018). X-ray Struct. Anal. Online, 34, 17-18.]), 1.240 (2) Å (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674-1677.]) and 1.2205 (10) Å (Chkirate et al., 2019[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019). Acta Cryst. E75, 154-158.])]. The C3—C8 benzene ring is planar with an r.m.s. deviation of 0.0019. The amide group is not coplanar with the benzene ring, as shown by the C3—N1—C2—O2 and C3—N1—C2—C1 torsion angles of −2.5 (3) and 176.54 (19)°, respectively.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, adjacent mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). The chains are further connected by weak C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.10 2.9486 (17) 168
C1—H1B⋯O2i 0.96 2.56 3.378 (2) 143
C1—H9BCg1ii 0.96 2.61 3.387 139
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing. Dashed lines denote the inter­molecular C—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]).

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). Plots of the Hirshfeld surface mapped over dnorm, di and de using a fixed colour scale of −0.5051 (red) to 1.2978 (blue) a.u. are shown in Fig. 3[link].. The red spots in the dnorm plot indicate the inter­molecular contacts associated with the strong hydrogen bonds and inter­atomic contacts such as N—H⋯O. Fig. 4[link] shows the dnorm mapped on the Hirshfeld surface to visualize the inter­molecular inter­actions of the title compound. The fingerprint plots complement the Hirshfeld surface, qu­anti­tatively summarizing the nature and type of the inter­molecular contacts by illustrating atominside/atomoutside inter­actions (Fig. 5[link]). The contribution from the H⋯H contacts is observed to be highest towards the Hirshfeld surface with a 53.9% contribution. The contribution from the C—H⋯O hydrogen bond (21.4% contribution) appears as a pair of sharp spikes at de + di =1.9 Å. A view of the three-dimensional Hirshfeld surface plotted over electrostatic potentials in the range −0.1028 to 0.1158 a.u. is shown in Fig. 6[link]. The hydrogen-bond donors and acceptors are showed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions of the title compound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots with a dnorm view of the H⋯H/H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/ H⋯N (1.7%) contacts in the title compound.
[Figure 6]
Figure 6
The view of the three-dimensional Hirshfeld surface of the title compound plotted over the electrostatic potentials.

5. Database survey

A search in the Cambridge Structural Database (CSD version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for N-(2-meth­oxy­phen­yl)acetamide derivatives found several similar structures: 3-hy­droxy-7,8-di­meth­oxy­quinolin-2(1H)-one (BIZGAT; Song et al., 2008[Song, J., Lin, Y. & Chan, W. L. (2008). Acta Cryst. E64, o934.]), 1-(2-meth­oxy­phen­yl)-1H-pyrrole-2,5-dione (XEBZIP; Sirajuddin et al., 2012[Sirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.]) and cis-cyclo­hexane-1,2-carb­oxy­lic anhydride with o- and p-anisidine and m- and p-amino­benzoic acids (BECVAI; Smith et al., 2012[Smith, G. & Wermuth, U. D. (2012). Acta Cryst. C68, o253-o256.]). In the structure of BIZGAT, the mol­ecules are linked into chains by N—H⋯O hydrogen bonds as in the title structure.

6. Synthesis and crystallization

This compound was formed as by-product in the synthesis of a benzamide derivative from the reaction between an oxazolone with o- meth­oxy­aniline (Samad & Hawaiz, 2019[Samad, M. K. & Hawaiz, F. E. (2019). Bioorg. Chem. 85, 431-444.]) in the presence of acetic acid as solvent. The reaction mixture was refluxed for 2 h, cooled, poured into water, filtered and dried. The remaining filtrate was left for seven days to obtain good-quality crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H atoms, C—H = 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2–1.5 Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C9H11NO2
Mr 165.19
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 9.5115 (7), 18.7385 (19), 10.0216 (8)
V3) 1786.2 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.43 × 0.39 × 0.37
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.946, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 14575, 1748, 1168
Rint 0.090
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.05
No. of reflections 1748
No. of parameters 111
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.12
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

N-(2-Methoxyphenyl)acetamide top
Crystal data top
C9H11NO2Dx = 1.229 Mg m3
Mr = 165.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 26458 reflections
a = 9.5115 (7) Åθ = 2.0–28.3°
b = 18.7385 (19) ŵ = 0.09 mm1
c = 10.0216 (8) ÅT = 296 K
V = 1786.2 (3) Å3Prism, yellow
Z = 80.43 × 0.39 × 0.37 mm
F(000) = 704
Data collection top
Stoe IPDS 2
diffractometer
1748 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1168 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.090
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
rotation method scansh = 1110
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2222
Tmin = 0.946, Tmax = 0.978l = 1212
14575 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1748 reflectionsΔρmax = 0.13 e Å3
111 parametersΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64879 (13)0.70439 (8)0.55583 (15)0.0835 (5)
O20.25840 (10)0.58665 (10)0.69551 (15)0.0943 (6)
N10.49079 (12)0.60150 (8)0.65857 (16)0.0654 (5)
H10.5720270.6032700.6961120.078*
C30.48608 (15)0.61300 (10)0.5196 (2)0.0622 (5)
C80.57097 (16)0.66649 (11)0.4655 (2)0.0678 (5)
C20.37959 (16)0.58800 (10)0.7378 (2)0.0702 (5)
C40.40284 (18)0.57277 (11)0.4362 (2)0.0739 (6)
H40.3461010.5370060.4714440.089*
C70.5712 (2)0.67836 (14)0.3299 (2)0.0872 (7)
H70.6276870.7138420.2934280.105*
C10.4131 (2)0.57364 (14)0.8795 (2)0.0937 (8)
H1A0.3490720.5994620.9356170.141*
H1B0.5076370.5887060.8979700.141*
H1C0.4045060.5234500.8968630.141*
C50.4032 (2)0.58533 (13)0.3000 (3)0.0917 (7)
H50.3464740.5583640.2437640.110*
C60.4874 (2)0.63744 (16)0.2492 (3)0.0996 (8)
H60.4879720.6454470.1575790.119*
C90.7372 (2)0.75987 (14)0.5065 (3)0.1092 (9)
H9A0.8028560.7403270.4435540.164*
H9B0.7876670.7811020.5793830.164*
H9C0.6807790.7955240.4634030.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0703 (8)0.0959 (10)0.0843 (11)0.0264 (7)0.0062 (7)0.0008 (8)
O20.0401 (6)0.1531 (15)0.0896 (11)0.0056 (7)0.0017 (6)0.0087 (10)
N10.0397 (6)0.0882 (11)0.0682 (11)0.0052 (6)0.0012 (6)0.0051 (8)
C30.0445 (7)0.0737 (11)0.0683 (13)0.0031 (7)0.0007 (7)0.0008 (9)
C80.0530 (8)0.0804 (12)0.0699 (14)0.0004 (9)0.0043 (8)0.0014 (10)
C20.0459 (8)0.0903 (14)0.0744 (14)0.0029 (9)0.0031 (8)0.0061 (11)
C40.0579 (9)0.0824 (13)0.0813 (16)0.0002 (9)0.0059 (9)0.0065 (11)
C70.0767 (13)0.1117 (18)0.0732 (17)0.0005 (12)0.0110 (11)0.0104 (13)
C10.0611 (11)0.142 (2)0.0778 (16)0.0005 (12)0.0054 (10)0.0168 (14)
C50.0773 (12)0.1154 (19)0.0823 (17)0.0060 (13)0.0135 (12)0.0179 (14)
C60.0955 (16)0.134 (2)0.0697 (16)0.0068 (15)0.0001 (12)0.0016 (16)
C90.0960 (15)0.1067 (18)0.125 (2)0.0392 (14)0.0343 (15)0.0085 (17)
Geometric parameters (Å, º) top
O1—C81.368 (2)C7—C61.370 (3)
O1—C91.426 (2)C7—H70.9300
O2—C21.2285 (19)C1—H1A0.9600
N1—C21.347 (2)C1—H1B0.9600
N1—C31.410 (2)C1—H1C0.9600
N1—H10.8600C5—C61.362 (3)
C3—C41.376 (3)C5—H50.9300
C3—C81.397 (3)C6—H60.9300
C8—C71.377 (3)C9—H9A0.9600
C2—C11.480 (3)C9—H9B0.9600
C4—C51.385 (3)C9—H9C0.9600
C4—H40.9300
C8—O1—C9117.93 (18)C2—C1—H1A109.5
C2—N1—C3125.90 (14)C2—C1—H1B109.5
C2—N1—H1117.1H1A—C1—H1B109.5
C3—N1—H1117.1C2—C1—H1C109.5
C4—C3—C8119.4 (2)H1A—C1—H1C109.5
C4—C3—N1122.29 (17)H1B—C1—H1C109.5
C8—C3—N1118.33 (16)C6—C5—C4119.5 (2)
O1—C8—C7124.65 (18)C6—C5—H5120.2
O1—C8—C3115.38 (18)C4—C5—H5120.2
C7—C8—C3119.97 (19)C5—C6—C7121.5 (2)
O2—C2—N1122.48 (19)C5—C6—H6119.3
O2—C2—C1122.00 (16)C7—C6—H6119.3
N1—C2—C1115.51 (15)O1—C9—H9A109.5
C3—C4—C5120.2 (2)O1—C9—H9B109.5
C3—C4—H4119.9H9A—C9—H9B109.5
C5—C4—H4119.9O1—C9—H9C109.5
C6—C7—C8119.5 (2)H9A—C9—H9C109.5
C6—C7—H7120.3H9B—C9—H9C109.5
C8—C7—H7120.3
C2—N1—C3—C441.9 (3)C3—N1—C2—C1176.54 (19)
C2—N1—C3—C8139.18 (19)C8—C3—C4—C50.1 (3)
C9—O1—C8—C70.4 (3)N1—C3—C4—C5179.04 (17)
C9—O1—C8—C3179.83 (17)O1—C8—C7—C6179.23 (19)
C4—C3—C8—O1179.21 (15)C3—C8—C7—C60.2 (3)
N1—C3—C8—O11.8 (2)C3—C4—C5—C60.5 (3)
C4—C3—C8—C70.2 (3)C4—C5—C6—C70.6 (3)
N1—C3—C8—C7178.77 (17)C8—C7—C6—C50.2 (4)
C3—N1—C2—O22.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.102.9486 (17)168
C1—H1B···O2i0.962.563.378 (2)143
C1—H9B···Cg1ii0.962.613.387139
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1, y+1/2, z+3/2.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationAydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674–1677.  CSD CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019). Acta Cryst. E75, 154–158.  CSD CrossRef IUCr Journals Google Scholar
First citationDam, J. H., Osztrovszky, G., Nordstrøm, L. U. & Madsen, R. (2010). Chem. Eur. J. 16, 6820–6827.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Çakmak, Ş., Dege, N., Meral, G. & KÜtÜk, H. (2018). X-ray Struct. Anal. Online, 34, 17–18.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.  Web of Science CrossRef Google Scholar
First citationOjeda-Porras, A. & Gamba-Sánchez, D. (2016). J. Org. Chem. 81, 11548–11555.  CAS PubMed Google Scholar
First citationSamad, M. K. & Hawaiz, F. E. (2019). Bioorg. Chem. 85, 431–444.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2012). Acta Cryst. C68, o253–o256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, J., Lin, Y. & Chan, W. L. (2008). Acta Cryst. E64, o934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds