research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium chlorido­tris­­(hypersil­­oxy)aluminate dimer

aChemistry Division, Code 6100, Naval Research Laboratory, 4555 overlook Av, SW, Washington, DC 20375-5342, USA, and bHoward University, Chemistry Department, 525 College St NW, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 11 December 2018; accepted 16 April 2019; online 3 May 2019)

The tris­(tri­methyl­silylsiloxide) ligand, also known as hypersiloxide, is an extremely bulky group. In an attempt to make the monomeric Al(OSi(SiMe3)3)3, AlCl3 was combined with 3 equiv. of potassium hypersiloxide. The crystalline product isolated (40% yield), namely di-μ3-chlorido-bis­[μ2-tris­(tri­methyl­sil­yl)silanolato]tetra­kis­[tris­(tri­methyl­sil­yl)silanolato]dialuminium­dipotassium, [Al2K2Cl2(C19H27OSi4)6], is a KCl adduct of aluminium tris(hypersilyloxide) that is dimerized through a planar K2Cl2 ring, with K—Cl distances of 3.1131 (8) and 3.319 (3) Å, and ring angles of 77.41 (2) and 102.60 (2)°. This ring is on an inversion center, and there is no supra­molecular coordination.

1. Chemical context

Alkoxides and siloxides of electropositive metals with empty p and d orbitals, such as aluminum, tend to be dimers, trimers, or higher oligomers, from coordination between the alk­oxy oxygens and the metal atom on another mol­ecule. One way to prepare monomeric homoleptic compounds of such metals is by using extremely bulky ligands that prevent inter­molecular coordination. One of the bulkiest siloxide ligands known is tris­(tri­methyl­sil­yl)silyl, also known as hypersilyl (Niemeyer, 2006[Niemeyer, M. (2006). Inorg. Chem. 45, 9085-9095.]). While the hypersiloxide (Boyle et al., 2018[Boyle, T. J., Sears, J. M., Perales, D., Cramer, R. E., Lu, P., Chan, R. O. & Hernandez-Sanchez, B. A. (2018). Inorg. Chem. 57, 8806-8820.]) could potentially have enough steric bulk to enable a homoleptic monomeric aluminum alkoxide to be prepared, we isolated a dimer of a KCl addition compound, dimerized through potassium and chlorine. The title compound was the only product that crystallized, but there were other products present, and these products decomposed during an attempt at sublimation. If less bulky, and thus more volatile, aluminum siloxides or alkoxides can form a stable soluble KCl adducts, which could lead to a means of solubilizing alkali metal halides from organometallic reactions without using protic solvents.

2. Structural commentary

Each tris­(hypersil­oxy)chloro­aluminate ion is joined into the dimeric structure by a K+ ion coordinated to the chlorine atoms and one of the sil­oxy oxygen atoms, O1 (Fig. 1[link]). The K2Cl2 ring is constrained by symmetry to be planar as it is on an inversion center, but the adjoined four-membered K1–Cl1–O1–Al1 rings deviate slightly from planarity, with the angle between the K2Cl2 plane and mean K1–Cl1–Al1–O1 planes being 47.8 (1)°. The coordination around the aluminum atom is approximately tetra­hedral with angles ranging from 100.32 (6) to 114.63 (8)°. Both Al—O bonds to the terminal sil­oxy ligands are 1.711 (1) Å, and the Al1—O1 bond is slightly longer at 1.746 (1) Å, within the normal range for aluminum siloxides. In a series of aluminum complexes of silanediols, terminal Al—O bonds ranged from 1.709 (2) to 1.781 (4) Å, and all Al—O bonds to siloxide oxygen atoms bridging between aluminum atoms were longer than 1.8 Å (Krempner et al., 2007[Krempner, C., Reinke, H. & Weichert, K. (2007). Organometallics, 26, 1386-1392.]). Likewise, the aluminum phenyl­siloxide Al(OSiPh3)3(THF) with all terminal siloxides has Al—O bond lengths ranging from 1.696 (5) to 1.709 (5) Å (Apblett et al. 1992[Apblett, A. W., Warren, A. C. & Barron, A. R. (1992). Can. J. Chem. 70, 771-778.]).

[Figure 1]
Figure 1
Diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms omitted for clarity. Symmetry code A: 1 − x, 1 − y, 1 − z.

K2Cl2 rings in organometallic complexes can be isolated or part of larger K—Cl assemblages. For isolated K2Cl2 rings, both planar and puckered rings are known, with planar rings lying on an inversion center the most common. The K—Cl distances in the title compound at 3.1131 (8) and 3.319 (3) Å are normal for this kind of feature, and the ring angles of 77.41 (2) and 102.60 (2)° around K and Cl, respectively, are typical for this kind of ring. Reported examples of similar features are in K[GaCl]{Co2(CO)6(μ-CO)}{Co(CO)4}, which has K—Cl distances of 3.129 (1) and 3.197 (1) Å and angles of 73.82 (3) and 106.18 (3)° (Leiner et al., 2002[Leiner, E., Hampe, O. & Scheer, M. (2002). Eur. J. Inorg. Chem. pp. 584-590.]), and in a chloro­aluminate complex [K—Cl distances of 3.160 (2) and 3.192 (1) Å and angles of 75.66 (3) and 104.24 (4)°; Abdalla, et al., 2015[Abdalla, J. A. B., Riddlestone, I. M., Tirfoin, R. & Aldridge, S. (2015). Angew. Chem. Int. Ed. 54, 5098-5102.]].

3. Supra­molecular features

The mol­ecule is completely surrounded by ligands and thus there are no supra­molecular features.

4. Database survey

A search of the Cambridge Structural Database (V 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Al siloxides produced 255 hits, and the most common moieties have either phenyl or methyl attached to the silicon. However, no aluminum complexes of the tris­(tri­methyl­sil­yl)sil­oxy ligand were found. The closest analogs are some complexes of chelating silanediols HO(Me3Si)2SiSi(SiMe3)2OH and HO(Me)[(Me3Si)3Si]SiSi[Si(SiMe3)3](Me)OH (Krempner et al., 2007[Krempner, C., Reinke, H. & Weichert, K. (2007). Organometallics, 26, 1386-1392.]). A search for a tri(organosil­yl)sil­oxy ligand attached to a metal produced six unique hits. These include FeII and CoII complexes (Kornev et al., 1997[Kornev, N. A., Chesnokova, T. A., Semenov, V. V., Zhezlova, E. V., Zakharov, L. N., Klapshina, L. G., Domrachev, G. A. & Rusakov, V. S. (1997). J. Organomet. Chem. 547, 113-119.] and Chesnokova et al., 2002[Chesnokova, T. A., Zhezlova, E. V., Kornev, A. N., Fedotova, Y. V., Zakharov, L. N., Fukin, G. K., Kursky, Y. A., Mushtina, T. G. & Domrachev, G. A. (2002). J. Organomet. Chem. 642, 20-31.]), lanthanide(III) complexes (Kornev et al., 1999[Kornev, N. A., Chesnokova, T. A., Zhezlova, E. V., Zakharov, L. N., Fukin, G. K., Kursky, Y. A., Domrachev, G. A. & Lickiss, P. D. (1999). J. Organomet. Chem. 587, 113-121.]), and TaV complexes (Wu et al., 2002[Wu, Z., Cai, H., Yu, X., Blanton, J. R., Diminnie, J. B., Pan, H., Xue, Z. & Bryan, J. C. (2002). Organometallics, 21, 3973-3978.]).

5. Synthesis and crystallization

Hypersilanol was prepared by literature methods (Gilman & Harrell, 1966[Gilman, H. & Harrell, R. L. (1966). J. Organomet. Chem. 5, 199-200.]). The silanol HOSi(SiMe3)3 (3.00 g, 11.3 mmol) was mixed with KH (0.45 g, 11.2 mmol) and dry heptane (15 mL) in a reaction bulb equipped with a Kontes valve in an argon-filled drybox. After 1 day, sublimed AlCl3 (0.50 g, 3.75 mmol) was added to the bulb with another 5 mL of heptane, and the bulb was sonicated for 1 day in a bath sonicator. The reaction was returned to the drybox and filtration was attempted through a fine frit. The frit clogged after a small amount of filtrate went through. Filtration was resumed through 1 cm diameter PTFE membranes with a nominal 0.22 µm size. The membrane had to be changed twice, but filtration was finally completed after two weeks. Crystals of the title compound grew in the filtrate (64 mg isolated). The liquid was deca­nted from the crystals, the solvent removed, leaving a semi-solid mixture. An attempt at sublimation resulted in decomposition.

A repeat preparation using the same qu­anti­ties of reactants in 40 mL heptane was sonicated for 3 h and then stirred at 338 K overnight. The mixture was filtered through a 47 mm diameter 0.22 µm PVDF filter membrane, and the filtrate pumped to a white solid, whose NMR showed multiple products. This white solid was recrystallized from a minimum amount of hot heptane under argon, affording 1.335 g (40%) of colorless crystals of the title compound. NMR (C6D6): 1H δ0.36; 13C 3.36; 29Si −22.39 (Si), −18.36 (SiMe3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Al2K2Cl2(C19H27OSi4)6]
Mr 1785.05
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 18.8247 (3), 13.8850 (2), 22.2056 (4)
β (°) 109.413 (2)
V3) 5474.14 (17)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.16
Crystal size (mm) 0.37 × 0.31 × 0.24
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.441, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25914, 10450, 8699
Rint 0.035
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.04
No. of reflections 10450
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.28
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ3-chlorido-bis[µ2-tris(trimethylsilyl)silanolato]tetrakis[tris(trimethylsilyl)silanolato]dialuminiumdipotassium top
Crystal data top
[Al2K2Cl2(C19H27OSi4)6]F(000) = 1936
Mr = 1785.05Dx = 1.083 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 18.8247 (3) ÅCell parameters from 9927 reflections
b = 13.8850 (2) Åθ = 4.0–71.3°
c = 22.2056 (4) ŵ = 4.16 mm1
β = 109.413 (2)°T = 173 K
V = 5474.14 (17) Å3Block, colorless
Z = 20.37 × 0.31 × 0.24 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
10450 independent reflections
Radiation source: Enhance (Cu) X-ray Source8699 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.035
ω scansθmax = 71.4°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2319
Tmin = 0.441, Tmax = 1.000k = 1616
25914 measured reflectionsl = 2725
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.624P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
10450 reflectionsΔρmax = 0.76 e Å3
433 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.57420 (3)0.37104 (4)0.48201 (3)0.04295 (14)
Cl10.47952 (3)0.53645 (4)0.41286 (3)0.03676 (13)
Si10.73143 (3)0.46759 (4)0.44589 (3)0.02465 (12)
Si20.57625 (3)0.80409 (4)0.38317 (3)0.02508 (13)
Si30.47806 (3)0.47751 (4)0.23042 (3)0.02570 (13)
Si110.76601 (4)0.30398 (5)0.44632 (3)0.03327 (14)
Si120.77130 (4)0.51357 (5)0.55459 (3)0.03630 (15)
Si130.79768 (3)0.55732 (5)0.39166 (3)0.03275 (14)
Si210.44683 (3)0.83662 (5)0.33310 (3)0.03364 (14)
Si220.63846 (4)0.88865 (5)0.32264 (4)0.04016 (16)
Si230.61445 (4)0.86915 (5)0.48644 (3)0.03486 (15)
Si310.52190 (4)0.31699 (5)0.23980 (3)0.03842 (16)
Si320.48618 (3)0.54112 (5)0.13426 (3)0.03018 (14)
Si330.34999 (4)0.46420 (5)0.22239 (3)0.03741 (16)
Al10.56972 (3)0.56860 (4)0.37091 (3)0.02094 (13)
O10.63984 (8)0.48937 (10)0.41485 (7)0.0261 (3)
O20.59216 (8)0.68797 (10)0.38410 (7)0.0278 (3)
O30.53047 (8)0.53867 (11)0.29203 (7)0.0288 (3)
C1110.75888 (18)0.2512 (2)0.36675 (14)0.0534 (7)
H11A0.7800110.1860110.3727800.080*
H11B0.7870220.2915100.3462810.080*
H11C0.7058700.2485510.3396140.080*
C1120.71162 (17)0.22111 (19)0.48223 (13)0.0451 (6)
H11D0.7357330.1576290.4896080.068*
H11E0.6598480.2147670.4528590.068*
H11F0.7109900.2478370.5228960.068*
C1130.86772 (16)0.2993 (2)0.49849 (15)0.0540 (7)
H11G0.8848870.2322380.5036480.081*
H11H0.8730350.3267840.5404220.081*
H11I0.8982320.3364930.4785920.081*
C1210.76369 (18)0.4170 (2)0.61159 (12)0.0530 (7)
H12A0.7794740.4431140.6550560.080*
H12B0.7962500.3627630.6098870.080*
H12C0.7113700.3949340.5995180.080*
C1220.8713 (2)0.5559 (3)0.58315 (15)0.0752 (12)
H12D0.8846430.5782070.6274060.113*
H12E0.8770710.6090610.5560980.113*
H12F0.9045210.5027310.5809110.113*
C1230.7030 (3)0.6105 (3)0.55869 (17)0.0743 (11)
H12G0.7247580.6480990.5978900.111*
H12H0.6558160.5808770.5587500.111*
H12I0.6930220.6530510.5215650.111*
C1310.74560 (17)0.5443 (2)0.30394 (12)0.0478 (6)
H13A0.7675120.5877680.2800790.072*
H13B0.6924430.5606600.2950380.072*
H13C0.7496220.4776770.2908650.072*
C1320.79786 (18)0.6873 (2)0.41371 (15)0.0513 (7)
H13D0.8186510.7259430.3865730.077*
H13E0.8288430.6960020.4585610.077*
H13F0.7461870.7081850.4075530.077*
C1330.89776 (16)0.5175 (3)0.40851 (17)0.0598 (8)
H13G0.9224400.5602440.3864040.090*
H13H0.8983810.4513530.3933290.090*
H13I0.9246750.5201850.4545850.090*
C2110.38795 (14)0.77173 (19)0.37411 (14)0.0448 (6)
H21A0.3347640.7751160.3475020.067*
H21B0.3947370.8021120.4154850.067*
H21C0.4036730.7041620.3806990.067*
C2120.42149 (18)0.7911 (2)0.24922 (13)0.0543 (7)
H21D0.3670710.7976140.2277170.082*
H21E0.4358270.7232110.2498160.082*
H21F0.4483130.8288070.2262330.082*
C2130.41897 (17)0.9676 (2)0.33006 (18)0.0574 (8)
H21G0.3670200.9752420.3012920.086*
H21H0.4527431.0061070.3143210.086*
H21I0.4226720.9893460.3729750.086*
C2210.6506 (2)0.8050 (2)0.26151 (17)0.0658 (9)
H22A0.6737660.8395120.2342910.099*
H22B0.6013040.7801090.2352630.099*
H22C0.6830720.7513150.2827080.099*
C2220.5826 (2)0.9958 (2)0.2800 (2)0.0682 (10)
H22D0.6105761.0289230.2559490.102*
H22E0.5742741.0401420.3113120.102*
H22F0.5339500.9740010.2505130.102*
C2230.73237 (18)0.9395 (2)0.37176 (19)0.0645 (9)
H22G0.7572500.9672870.3434180.097*
H22H0.7638440.8880250.3973320.097*
H22I0.7249970.9896690.4001560.097*
C2310.56436 (17)0.8067 (2)0.53611 (13)0.0477 (6)
H23A0.5849520.8291410.5803920.072*
H23B0.5716240.7369870.5346850.072*
H23C0.5104500.8215940.5191090.072*
C2320.5892 (2)1.00077 (19)0.47939 (16)0.0545 (7)
H23D0.6065571.0303770.5218650.082*
H23E0.5344651.0078300.4606540.082*
H23F0.6135251.0326390.4519890.082*
C2330.71955 (18)0.8631 (3)0.52913 (16)0.0627 (8)
H23G0.7302990.8747700.5748270.094*
H23H0.7446730.9122970.5117120.094*
H23I0.7381780.7992600.5229650.094*
C3110.4504 (2)0.2270 (2)0.19217 (15)0.0671 (10)
H31A0.4742010.1636270.1949050.101*
H31B0.4308460.2474780.1474290.101*
H31C0.4087890.2229380.2093860.101*
C3120.6072 (2)0.3029 (2)0.21447 (15)0.0596 (8)
H31D0.6287080.2385800.2262630.089*
H31E0.6447080.3517170.2358360.089*
H31F0.5925930.3111320.1681070.089*
C3130.54652 (17)0.28382 (19)0.32684 (12)0.0446 (6)
H31G0.5649460.2173230.3332730.067*
H31H0.5015960.2896440.3395740.067*
H31I0.5857810.3272950.3528510.067*
C3210.4486 (2)0.4501 (2)0.06848 (13)0.0594 (8)
H32A0.4554400.4742870.0292880.089*
H32B0.3949370.4394180.0610080.089*
H32C0.4760250.3893090.0809090.089*
C3220.43252 (19)0.6563 (2)0.10763 (14)0.0564 (7)
H32D0.4361730.6758910.0663640.085*
H32E0.4538870.7067650.1393310.085*
H32F0.3795200.6462610.1033050.085*
C3230.58614 (15)0.5661 (3)0.14213 (14)0.0519 (7)
H32G0.5887070.5891390.1011780.078*
H32H0.6157900.5069530.1544610.078*
H32I0.6064910.6155070.1748900.078*
C3310.33467 (19)0.3778 (3)0.28202 (14)0.0657 (10)
H33A0.2805830.3715970.2746800.099*
H33B0.3600120.4020470.3253140.099*
H33C0.3554270.3146800.2771600.099*
C3320.29642 (15)0.4164 (2)0.14070 (12)0.0471 (6)
H33D0.2427480.4125440.1355690.071*
H33E0.3151930.3521440.1356710.071*
H33F0.3034000.4597140.1082490.071*
C3330.30521 (16)0.5810 (3)0.23174 (17)0.0604 (8)
H33G0.2520480.5701930.2264890.091*
H33H0.3090200.6266850.1992850.091*
H33I0.3311250.6074480.2743380.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0524 (3)0.0352 (3)0.0494 (3)0.0059 (2)0.0278 (3)0.0117 (2)
Cl10.0353 (3)0.0404 (3)0.0420 (3)0.0060 (2)0.0228 (2)0.0082 (2)
Si10.0240 (3)0.0245 (3)0.0269 (3)0.0041 (2)0.0104 (2)0.0041 (2)
Si20.0270 (3)0.0184 (3)0.0336 (3)0.0010 (2)0.0153 (2)0.0031 (2)
Si30.0269 (3)0.0277 (3)0.0226 (3)0.0050 (2)0.0083 (2)0.0025 (2)
Si110.0381 (3)0.0288 (3)0.0358 (3)0.0127 (2)0.0162 (3)0.0085 (2)
Si120.0408 (3)0.0391 (4)0.0291 (3)0.0003 (3)0.0117 (3)0.0002 (3)
Si130.0298 (3)0.0355 (3)0.0379 (3)0.0023 (2)0.0178 (2)0.0055 (3)
Si210.0303 (3)0.0282 (3)0.0436 (3)0.0052 (2)0.0138 (3)0.0051 (3)
Si220.0499 (4)0.0252 (3)0.0597 (4)0.0017 (3)0.0375 (3)0.0051 (3)
Si230.0404 (3)0.0271 (3)0.0401 (3)0.0048 (2)0.0175 (3)0.0115 (3)
Si310.0528 (4)0.0270 (3)0.0310 (3)0.0010 (3)0.0079 (3)0.0054 (2)
Si320.0312 (3)0.0366 (3)0.0236 (3)0.0053 (2)0.0103 (2)0.0019 (2)
Si330.0304 (3)0.0495 (4)0.0332 (3)0.0151 (3)0.0118 (2)0.0052 (3)
Al10.0223 (3)0.0180 (3)0.0226 (3)0.0010 (2)0.0075 (2)0.0008 (2)
O10.0240 (7)0.0234 (7)0.0308 (7)0.0039 (5)0.0088 (6)0.0026 (6)
O20.0302 (7)0.0190 (7)0.0343 (7)0.0003 (6)0.0108 (6)0.0037 (6)
O30.0320 (7)0.0294 (8)0.0238 (7)0.0048 (6)0.0075 (6)0.0048 (6)
C1110.0675 (18)0.0499 (17)0.0515 (15)0.0184 (14)0.0315 (14)0.0021 (13)
C1120.0609 (16)0.0307 (13)0.0491 (14)0.0054 (11)0.0257 (12)0.0119 (11)
C1130.0431 (14)0.0533 (17)0.0627 (17)0.0198 (13)0.0135 (13)0.0171 (14)
C1210.0633 (17)0.0625 (19)0.0324 (12)0.0003 (15)0.0146 (12)0.0096 (13)
C1220.065 (2)0.107 (3)0.0441 (16)0.042 (2)0.0053 (15)0.0160 (18)
C1230.118 (3)0.058 (2)0.0582 (19)0.032 (2)0.045 (2)0.0017 (16)
C1310.0582 (16)0.0527 (16)0.0373 (13)0.0033 (13)0.0224 (12)0.0050 (12)
C1320.0608 (17)0.0366 (14)0.0649 (17)0.0077 (12)0.0322 (14)0.0028 (13)
C1330.0366 (14)0.076 (2)0.075 (2)0.0113 (14)0.0303 (14)0.0167 (17)
C2110.0378 (12)0.0379 (14)0.0663 (17)0.0050 (10)0.0275 (12)0.0052 (12)
C2120.0565 (16)0.0589 (18)0.0407 (14)0.0038 (14)0.0069 (12)0.0012 (13)
C2130.0492 (16)0.0353 (15)0.090 (2)0.0140 (12)0.0258 (16)0.0115 (14)
C2210.099 (3)0.0534 (19)0.070 (2)0.0097 (17)0.061 (2)0.0019 (16)
C2220.081 (2)0.0392 (16)0.105 (3)0.0161 (15)0.058 (2)0.0314 (17)
C2230.0545 (17)0.0474 (17)0.105 (3)0.0157 (14)0.0445 (18)0.0011 (17)
C2310.0620 (16)0.0406 (14)0.0496 (14)0.0032 (12)0.0305 (13)0.0003 (12)
C2320.078 (2)0.0283 (13)0.0685 (18)0.0056 (13)0.0391 (16)0.0143 (13)
C2330.0481 (16)0.066 (2)0.0626 (19)0.0140 (15)0.0029 (14)0.0167 (16)
C3110.093 (3)0.0316 (14)0.0540 (17)0.0107 (15)0.0057 (16)0.0135 (13)
C3120.077 (2)0.0561 (19)0.0505 (16)0.0246 (16)0.0274 (15)0.0020 (14)
C3130.0589 (16)0.0329 (13)0.0356 (12)0.0020 (11)0.0071 (11)0.0028 (10)
C3210.080 (2)0.066 (2)0.0346 (13)0.0285 (17)0.0223 (14)0.0183 (13)
C3220.0623 (18)0.0596 (19)0.0481 (15)0.0176 (15)0.0195 (14)0.0193 (14)
C3230.0360 (13)0.076 (2)0.0490 (15)0.0073 (13)0.0212 (11)0.0049 (14)
C3310.0564 (17)0.097 (3)0.0460 (15)0.0347 (18)0.0200 (13)0.0073 (16)
C3320.0406 (13)0.0558 (17)0.0375 (12)0.0154 (12)0.0033 (10)0.0077 (12)
C3330.0378 (14)0.071 (2)0.077 (2)0.0106 (14)0.0254 (14)0.0253 (17)
Geometric parameters (Å, º) top
K1—O12.7703 (16)C123—H12G0.9800
K1—Cl12.9984 (8)C123—H12H0.9800
K1—Cl1i3.1131 (8)C123—H12I0.9800
K1—C1123.319 (3)C131—H13A0.9800
K1—C231i3.516 (3)C131—H13B0.9800
K1—C3133.524 (3)C131—H13C0.9800
K1—Si13.5747 (8)C132—H13D0.9800
K1—Al13.6714 (8)C132—H13E0.9800
K1—K1i4.7699 (11)C132—H13F0.9800
Cl1—Al12.2366 (7)C133—H13G0.9800
Si1—O11.6581 (14)C133—H13H0.9800
Si1—Si132.3573 (8)C133—H13I0.9800
Si1—Si112.3623 (8)C211—H21A0.9800
Si1—Si122.3648 (8)C211—H21B0.9800
Si2—O21.6387 (15)C211—H21C0.9800
Si2—Si232.3443 (8)C212—H21D0.9800
Si2—Si212.3612 (8)C212—H21E0.9800
Si2—Si222.3670 (8)C212—H21F0.9800
Si3—O31.6337 (15)C213—H21G0.9800
Si3—Si312.3617 (9)C213—H21H0.9800
Si3—Si322.3623 (8)C213—H21I0.9800
Si3—Si332.3648 (8)C221—H22A0.9800
Si11—C1111.876 (3)C221—H22B0.9800
Si11—C1131.881 (3)C221—H22C0.9800
Si11—C1121.884 (3)C222—H22D0.9800
Si12—C1221.870 (3)C222—H22E0.9800
Si12—C1211.882 (3)C222—H22F0.9800
Si12—C1231.884 (3)C223—H22G0.9800
Si13—C1321.870 (3)C223—H22H0.9800
Si13—C1311.876 (3)C223—H22I0.9800
Si13—C1331.878 (3)C231—H23A0.9800
Si21—C2121.872 (3)C231—H23B0.9800
Si21—C2111.882 (3)C231—H23C0.9800
Si21—C2131.887 (3)C232—H23D0.9800
Si22—C2211.857 (3)C232—H23E0.9800
Si22—C2231.879 (3)C232—H23F0.9800
Si22—C2221.885 (3)C233—H23G0.9800
Si23—C2321.882 (3)C233—H23H0.9800
Si23—C2311.884 (3)C233—H23I0.9800
Si23—C2331.890 (3)C311—H31A0.9800
Si31—C3121.879 (3)C311—H31B0.9800
Si31—C3111.884 (3)C311—H31C0.9800
Si31—C3131.889 (3)C312—H31D0.9800
Si32—C3231.864 (3)C312—H31E0.9800
Si32—C3221.879 (3)C312—H31F0.9800
Si32—C3211.882 (3)C313—H31G0.9800
Si33—C3331.871 (3)C313—H31H0.9800
Si33—C3311.879 (3)C313—H31I0.9800
Si33—C3321.879 (2)C321—H32A0.9800
Al1—O31.7107 (14)C321—H32B0.9800
Al1—O21.7115 (15)C321—H32C0.9800
Al1—O11.7459 (15)C322—H32D0.9800
C111—H11A0.9800C322—H32E0.9800
C111—H11B0.9800C322—H32F0.9800
C111—H11C0.9800C323—H32G0.9800
C112—H11D0.9800C323—H32H0.9800
C112—H11E0.9800C323—H32I0.9800
C112—H11F0.9800C331—H33A0.9800
C113—H11G0.9800C331—H33B0.9800
C113—H11H0.9800C331—H33C0.9800
C113—H11I0.9800C332—H33D0.9800
C121—H12A0.9800C332—H33E0.9800
C121—H12B0.9800C332—H33F0.9800
C121—H12C0.9800C333—H33G0.9800
C122—H12D0.9800C333—H33H0.9800
C122—H12E0.9800C333—H33I0.9800
C122—H12F0.9800
O1—K1—Cl164.26 (3)Si12—C121—H12A109.5
O1—K1—Cl1i118.23 (4)Si12—C121—H12B109.5
Cl1—K1—Cl1i77.41 (2)H12A—C121—H12B109.5
O1—K1—C11283.45 (5)Si12—C121—H12C109.5
Cl1—K1—C112144.25 (5)H12A—C121—H12C109.5
Cl1i—K1—C112134.82 (5)H12B—C121—H12C109.5
O1—K1—C231i143.27 (6)Si12—C122—H12D109.5
Cl1—K1—C231i100.78 (5)Si12—C122—H12E109.5
Cl1i—K1—C231i87.82 (5)H12D—C122—H12E109.5
C112—K1—C231i96.20 (7)Si12—C122—H12F109.5
O1—K1—C31367.97 (6)H12D—C122—H12F109.5
Cl1—K1—C31383.86 (5)H12E—C122—H12F109.5
Cl1i—K1—C313153.60 (5)Si12—C123—H12G109.5
C112—K1—C31369.38 (7)Si12—C123—H12H109.5
C231i—K1—C31377.51 (7)H12G—C123—H12H109.5
O1—K1—Si126.64 (3)Si12—C123—H12I109.5
Cl1—K1—Si189.626 (18)H12G—C123—H12I109.5
Cl1i—K1—Si1120.87 (2)H12H—C123—H12I109.5
C112—K1—Si162.13 (5)Si13—C131—H13A109.5
C231i—K1—Si1151.13 (5)Si13—C131—H13B109.5
C313—K1—Si176.93 (5)H13A—C131—H13B109.5
O1—K1—Al127.12 (3)Si13—C131—H13C109.5
Cl1—K1—Al137.498 (14)H13A—C131—H13C109.5
Cl1i—K1—Al1104.77 (2)H13B—C131—H13C109.5
C112—K1—Al1108.27 (5)Si13—C132—H13D109.5
C231i—K1—Al1126.67 (5)Si13—C132—H13E109.5
C313—K1—Al168.71 (4)H13D—C132—H13E109.5
Si1—K1—Al153.478 (14)Si13—C132—H13F109.5
O1—K1—K1i92.05 (3)H13D—C132—H13F109.5
Cl1—K1—K1i39.564 (13)H13E—C132—H13F109.5
Cl1i—K1—K1i37.842 (13)Si13—C133—H13G109.5
C112—K1—K1i165.98 (6)Si13—C133—H13H109.5
C231i—K1—K1i95.32 (5)H13G—C133—H13H109.5
C313—K1—K1i121.15 (5)Si13—C133—H13I109.5
Si1—K1—K1i109.31 (2)H13G—C133—H13I109.5
Al1—K1—K1i70.590 (15)H13H—C133—H13I109.5
Al1—Cl1—K187.81 (2)Si21—C211—H21A109.5
Al1—Cl1—K1i135.30 (3)Si21—C211—H21B109.5
K1—Cl1—K1i102.60 (2)H21A—C211—H21B109.5
O1—Si1—Si13110.18 (6)Si21—C211—H21C109.5
O1—Si1—Si11115.10 (6)H21A—C211—H21C109.5
Si13—Si1—Si11108.57 (3)H21B—C211—H21C109.5
O1—Si1—Si12107.96 (6)Si21—C212—H21D109.5
Si13—Si1—Si12109.66 (3)Si21—C212—H21E109.5
Si11—Si1—Si12105.19 (3)H21D—C212—H21E109.5
O1—Si1—K148.51 (5)Si21—C212—H21F109.5
Si13—Si1—K1158.58 (3)H21D—C212—H21F109.5
Si11—Si1—K183.46 (2)H21E—C212—H21F109.5
Si12—Si1—K182.98 (2)Si21—C213—H21G109.5
O2—Si2—Si23111.81 (6)Si21—C213—H21H109.5
O2—Si2—Si21110.47 (6)H21G—C213—H21H109.5
Si23—Si2—Si21108.66 (3)Si21—C213—H21I109.5
O2—Si2—Si22111.86 (6)H21G—C213—H21I109.5
Si23—Si2—Si22108.39 (3)H21H—C213—H21I109.5
Si21—Si2—Si22105.39 (3)Si22—C221—H22A109.5
O3—Si3—Si31108.71 (6)Si22—C221—H22B109.5
O3—Si3—Si32111.10 (6)H22A—C221—H22B109.5
Si31—Si3—Si32107.87 (3)Si22—C221—H22C109.5
O3—Si3—Si33114.87 (6)H22A—C221—H22C109.5
Si31—Si3—Si33104.51 (3)H22B—C221—H22C109.5
Si32—Si3—Si33109.37 (3)Si22—C222—H22D109.5
C111—Si11—C113107.83 (14)Si22—C222—H22E109.5
C111—Si11—C112106.33 (14)H22D—C222—H22E109.5
C113—Si11—C112107.66 (13)Si22—C222—H22F109.5
C111—Si11—Si1116.00 (10)H22D—C222—H22F109.5
C113—Si11—Si1104.97 (10)H22E—C222—H22F109.5
C112—Si11—Si1113.65 (9)Si22—C223—H22G109.5
C122—Si12—C121106.80 (16)Si22—C223—H22H109.5
C122—Si12—C123112.6 (2)H22G—C223—H22H109.5
C121—Si12—C123105.71 (16)Si22—C223—H22I109.5
C122—Si12—Si1111.92 (11)H22G—C223—H22I109.5
C121—Si12—Si1115.15 (10)H22H—C223—H22I109.5
C123—Si12—Si1104.60 (12)Si23—C231—K1i138.83 (13)
C132—Si13—C131108.65 (14)Si23—C231—H23A109.5
C132—Si13—C133108.52 (16)K1i—C231—H23A111.6
C131—Si13—C133108.79 (14)Si23—C231—H23B109.5
C132—Si13—Si1109.36 (9)K1i—C231—H23B53.8
C131—Si13—Si1107.27 (10)H23A—C231—H23B109.5
C133—Si13—Si1114.13 (11)Si23—C231—H23C109.5
C212—Si21—C211108.89 (14)K1i—C231—H23C58.0
C212—Si21—C213108.26 (16)H23A—C231—H23C109.5
C211—Si21—C213106.10 (13)H23B—C231—H23C109.5
C212—Si21—Si2106.61 (11)Si23—C232—H23D109.5
C211—Si21—Si2111.23 (9)Si23—C232—H23E109.5
C213—Si21—Si2115.60 (10)H23D—C232—H23E109.5
C221—Si22—C223109.79 (17)Si23—C232—H23F109.5
C221—Si22—C222108.03 (17)H23D—C232—H23F109.5
C223—Si22—C222104.79 (17)H23E—C232—H23F109.5
C221—Si22—Si2108.00 (11)Si23—C233—H23G109.5
C223—Si22—Si2113.84 (12)Si23—C233—H23H109.5
C222—Si22—Si2112.23 (11)H23G—C233—H23H109.5
C232—Si23—C231109.51 (13)Si23—C233—H23I109.5
C232—Si23—C233106.12 (15)H23G—C233—H23I109.5
C231—Si23—C233109.29 (15)H23H—C233—H23I109.5
C232—Si23—Si2107.82 (11)Si31—C311—H31A109.5
C231—Si23—Si2110.18 (9)Si31—C311—H31B109.5
C233—Si23—Si2113.77 (11)H31A—C311—H31B109.5
C312—Si31—C311106.59 (17)Si31—C311—H31C109.5
C312—Si31—C313109.72 (14)H31A—C311—H31C109.5
C311—Si31—C313107.41 (14)H31B—C311—H31C109.5
C312—Si31—Si3112.33 (11)Si31—C312—H31D109.5
C311—Si31—Si3114.40 (11)Si31—C312—H31E109.5
C313—Si31—Si3106.26 (9)H31D—C312—H31E109.5
C323—Si32—C322106.93 (15)Si31—C312—H31F109.5
C323—Si32—C321107.74 (15)H31D—C312—H31F109.5
C322—Si32—C321107.65 (16)H31E—C312—H31F109.5
C323—Si32—Si3110.59 (9)Si31—C313—K1145.40 (12)
C322—Si32—Si3114.41 (10)Si31—C313—H31G109.5
C321—Si32—Si3109.27 (10)K1—C313—H31G104.6
C333—Si33—C331107.17 (17)Si31—C313—H31H109.5
C333—Si33—C332107.22 (14)K1—C313—H31H63.3
C331—Si33—C332107.23 (14)H31G—C313—H31H109.5
C333—Si33—Si3114.17 (10)Si31—C313—H31I109.5
C331—Si33—Si3112.84 (11)K1—C313—H31I51.3
C332—Si33—Si3107.87 (9)H31G—C313—H31I109.5
O3—Al1—O2114.11 (8)H31H—C313—H31I109.5
O3—Al1—O1114.09 (8)Si32—C321—H32A109.5
O2—Al1—O1114.64 (7)Si32—C321—H32B109.5
O3—Al1—Cl1104.39 (6)H32A—C321—H32B109.5
O2—Al1—Cl1107.48 (6)Si32—C321—H32C109.5
O1—Al1—Cl1100.32 (6)H32A—C321—H32C109.5
O3—Al1—K1114.34 (6)H32B—C321—H32C109.5
O2—Al1—K1131.25 (6)Si32—C322—H32D109.5
O1—Al1—K146.33 (5)Si32—C322—H32E109.5
Cl1—Al1—K154.69 (2)H32D—C322—H32E109.5
Si1—O1—Al1146.69 (10)Si32—C322—H32F109.5
Si1—O1—K1104.85 (7)H32D—C322—H32F109.5
Al1—O1—K1106.56 (6)H32E—C322—H32F109.5
Si2—O2—Al1156.49 (10)Si32—C323—H32G109.5
Si3—O3—Al1156.75 (10)Si32—C323—H32H109.5
Si11—C111—H11A109.5H32G—C323—H32H109.5
Si11—C111—H11B109.5Si32—C323—H32I109.5
H11A—C111—H11B109.5H32G—C323—H32I109.5
Si11—C111—H11C109.5H32H—C323—H32I109.5
H11A—C111—H11C109.5Si33—C331—H33A109.5
H11B—C111—H11C109.5Si33—C331—H33B109.5
Si11—C112—K198.58 (10)H33A—C331—H33B109.5
Si11—C112—H11D109.5Si33—C331—H33C109.5
K1—C112—H11D151.9H33A—C331—H33C109.5
Si11—C112—H11E109.5H33B—C331—H33C109.5
K1—C112—H11E56.9Si33—C332—H33D109.5
H11D—C112—H11E109.5Si33—C332—H33E109.5
Si11—C112—H11F109.5H33D—C332—H33E109.5
K1—C112—H11F61.0Si33—C332—H33F109.5
H11D—C112—H11F109.5H33D—C332—H33F109.5
H11E—C112—H11F109.5H33E—C332—H33F109.5
Si11—C113—H11G109.5Si33—C333—H33G109.5
Si11—C113—H11H109.5Si33—C333—H33H109.5
H11G—C113—H11H109.5H33G—C333—H33H109.5
Si11—C113—H11I109.5Si33—C333—H33I109.5
H11G—C113—H11I109.5H33G—C333—H33I109.5
H11H—C113—H11I109.5H33H—C333—H33I109.5
Si13—Si1—O1—Al122.36 (19)Cl1—Al1—O2—Si251.9 (3)
Si11—Si1—O1—Al1145.50 (15)K1—Al1—O2—Si2109.9 (2)
Si12—Si1—O1—Al197.37 (17)Si31—Si3—O3—Al162.1 (3)
K1—Si1—O1—Al1160.1 (2)Si32—Si3—O3—Al1179.4 (2)
Si13—Si1—O1—K1177.54 (4)Si33—Si3—O3—Al154.6 (3)
Si11—Si1—O1—K154.39 (7)O2—Al1—O3—Si3151.8 (3)
Si12—Si1—O1—K162.73 (6)O1—Al1—O3—Si373.8 (3)
O3—Al1—O1—Si198.69 (18)Cl1—Al1—O3—Si334.7 (3)
O2—Al1—O1—Si135.5 (2)K1—Al1—O3—Si322.7 (3)
Cl1—Al1—O1—Si1150.32 (16)C111—Si11—C112—K1114.26 (11)
K1—Al1—O1—Si1159.9 (2)C113—Si11—C112—K1130.39 (12)
O3—Al1—O1—K1101.38 (8)Si1—Si11—C112—K114.58 (11)
O2—Al1—O1—K1124.41 (7)C232—Si23—C231—K1i115.2 (2)
Cl1—Al1—O1—K19.61 (6)C233—Si23—C231—K1i129.0 (2)
Si23—Si2—O2—Al1118.7 (2)Si2—Si23—C231—K1i3.3 (2)
Si21—Si2—O2—Al12.4 (3)C312—Si31—C313—K1110.5 (2)
Si22—Si2—O2—Al1119.5 (2)C311—Si31—C313—K1134.0 (2)
O3—Al1—O2—Si263.4 (3)Si3—Si31—C313—K111.2 (3)
O1—Al1—O2—Si2162.4 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: The Office of Naval Research .

References

First citationAbdalla, J. A. B., Riddlestone, I. M., Tirfoin, R. & Aldridge, S. (2015). Angew. Chem. Int. Ed. 54, 5098–5102.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationApblett, A. W., Warren, A. C. & Barron, A. R. (1992). Can. J. Chem. 70, 771–778.  CSD CrossRef CAS Web of Science Google Scholar
First citationBoyle, T. J., Sears, J. M., Perales, D., Cramer, R. E., Lu, P., Chan, R. O. & Hernandez-Sanchez, B. A. (2018). Inorg. Chem. 57, 8806–8820.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChesnokova, T. A., Zhezlova, E. V., Kornev, A. N., Fedotova, Y. V., Zakharov, L. N., Fukin, G. K., Kursky, Y. A., Mushtina, T. G. & Domrachev, G. A. (2002). J. Organomet. Chem. 642, 20–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilman, H. & Harrell, R. L. (1966). J. Organomet. Chem. 5, 199–200.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKornev, N. A., Chesnokova, T. A., Semenov, V. V., Zhezlova, E. V., Zakharov, L. N., Klapshina, L. G., Domrachev, G. A. & Rusakov, V. S. (1997). J. Organomet. Chem. 547, 113–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationKornev, N. A., Chesnokova, T. A., Zhezlova, E. V., Zakharov, L. N., Fukin, G. K., Kursky, Y. A., Domrachev, G. A. & Lickiss, P. D. (1999). J. Organomet. Chem. 587, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrempner, C., Reinke, H. & Weichert, K. (2007). Organometallics, 26, 1386–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeiner, E., Hampe, O. & Scheer, M. (2002). Eur. J. Inorg. Chem. pp. 584–590.  CSD CrossRef Google Scholar
First citationNiemeyer, M. (2006). Inorg. Chem. 45, 9085–9095.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, Z., Cai, H., Yu, X., Blanton, J. R., Diminnie, J. B., Pan, H., Xue, Z. & Bryan, J. C. (2002). Organometallics, 21, 3973–3978.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds