research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N′-(3-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)nicotinohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 February 2019; accepted 7 May 2019; online 14 May 2019)

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.

1. Chemical context

Schiff bases are nitro­gen-containing compounds that were first obtained by the condensation reaction of aromatic amines and aldehydes (Schiff, 1864[Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.]). A wide range of these compounds, with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cyclo­alkyl or heterocyclic groups) have been synthesized. Schiff bases are of great importance in the field of coordination chemistry because they are able to form stable complexes with metal ions (Souza et al., 1985[Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410-412.]). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp2-hybridized orbital of the nitro­gen atom of the azomethine group (Singh et al., 1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]). These compounds are used in the fields of organic synthesis, chemical catalysis, medicine and pharmacy, as well as other new technologies (Tanaka et al., 2010[Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449-452.]). Schiff bases are also used as probes for investigating the structure of DNA (Tiwari et al., 2011[Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050-1056.]) and have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules (Muralisankar et al., 2016[Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82-95.]). Schiff bases showing photochromic and thermochromic properties have been used in information storage, electronic display systems, optical switching devices and ophthalmic glasses (Amimoto et al., 2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207-226.]). As a further contribution to this field of research, we report herein the crystal structure of the title compound, (E)-N′-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) consists of one independent Schiff base mol­ecule displaying a trans configuration with respect to the C=N bond and a water mol­ecule. All the bond lengths are within the normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C7=N3 bond length of 1.274 (2) Å is consistent with a double-bond character. The C6—N2 and N2—N3 bond lengths of 1.343 (2) and 1.3866 (16) Å, respectively, are comparable to those observed in related compounds (Sivajeyanthi et al., 2017[Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Coll. 11-12, 220-231.]; Balasubramani et al., 2018[Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500-1503.]). The O1/C6/N2/N3/C7 core is almost planar (r.m.s. deviation = 0.022 Å) and forms dihedral angles of 20.75 (7) and 8.93 (5)°, respectively, with the pyridine and benzene rings.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level..

3. Supra­molecular features

In the crystal of the title compound (Fig. 2[link]), the water mol­ecule inter­acts with three neighbouring nicotinohydrazide mol­ecules with the O4 water oxygen atom acting as a hydrogen acceptor through N2—H2N⋯O4 and C2—H2⋯O4 hydrogen bonds (Table 1[link]), and both water H atoms acting as bifurcated donors to form rings of R21(5) graph-set motif. The nicotinohydrazide mol­ecules are further linked by O—H⋯N and C—H⋯O hydrogen bonds to form a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4WA⋯O2i 0.85 2.28 3.0483 (17) 150
O4—H4WA⋯O3i 0.85 2.49 3.2011 (16) 141
O4—H4WB⋯O1ii 0.85 2.08 2.8429 (19) 150
O4—H4WB⋯N3ii 0.85 2.50 3.1875 (18) 139
N2—H2N⋯O4 0.86 2.06 2.8889 (18) 162
O2—H10⋯N1iii 0.82 1.96 2.7411 (17) 159
C2—H2⋯O4 0.93 2.25 3.129 (2) 156
C4—H4⋯O3iv 0.93 2.45 3.347 (2) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+2, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

The three-dimensional dnorm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions, as it shows negative or positive values depending on whether an inter­molecular contact is shorter or longer, respectively, than the sum of the van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The dnorm surface of the title compound is shown in Fig. 3[link]. The red points, which represent closer contacts and negative dnorm values, correspond to the N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O inter­actions. Two-dimensional fingerprint plots from the Hirshfeld surface analysis (Fig. 4[link]) provide information about the inter­molecular contacts and their percentage distributions on the Hirshfeld surface. The percentage of H⋯H contacts as closest contacts on the Hirshfeld surfaces is a universally applicable measure of the crystal lattice energy and can be used as a reference for the importance of other types of contacts. In the title compound, the percentage contributions of the various inter­molecular contacts to the total Hirshfeld surface are as follows: H⋯H (37.0%), C⋯H/H⋯C (17.6%), N⋯H/H⋯N (11.9%), C⋯N/N⋯C (3.7%), O⋯H/H⋯O (23.7%), C⋯C (4.5%), N⋯N (0.3%) and O⋯C/C⋯O (1.2%).

[Figure 3]
Figure 3
Hirshfeld surfaces of the title compound mapped over dnorm.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound and relative contributions of the atom pairs to the Hirshfeld surface.

5. Frontier mol­ecular orbitals

The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and LUMO (lowest occupied mol­ecular orbital) acts as an electron acceptor. If the HOMO–LUMO energy gap is small, then the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels for the title compound were computed by DFT-B3LYP/6-311G++(d,p) method (Sivajeyanthi et al., 2017[Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Coll. 11-12, 220-231.]). The energy levels, energy gaps, chemical hardness, chemical potential, electronegativity and electrophilicity index are given in Table 2[link]. As shown in Fig. 5[link], the frontier mol­ecular orbital LUMO is located over the whole of the mol­ecule. The energy gap of the mol­ecule clearly shows the charge-transfer inter­action involving donor and acceptor groups. If the HOMO–LUMO energy gap is small, then the mol­ecule is defined as soft, i.e. it is highly polarizable and has high chemical reactivity, whereas if the energy gap is large the mol­ecule can be defined as hard. Therefore from Table 2[link] we conclude that the title mol­ecule belongs to the really hard materials.

Table 2
Calculated frontier mol­ecular orbital energies (eV)

FMO Energy
EHOMO −5.7171
ELUMO −1.8174
EHOMO−1 −6.5750
ELUMO+1 −1.2770
(EHOMO − ELUMO) gap 3.8997
(EHOMO−1 − ELUMO+1) gap 5.2980
Chemical hardness 1.9498
Chemical potential 3.7672
Electronegativity −3.7672
Electrophilicity index 3.6393
[Figure 5]
Figure 5
Mol­ecular orbital energy levels of the title compound.

6. Database survey

A search of the Cambridge Structural Database (Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for uncoordinated N′-(benzyl­idene)nicotinohydrazide derivatives O-substituted at the 3,4 positions of the benzene ring yielded three hits, namely N′-(1,3-benzodioxol-5-yl­methyl­ene)nicotinohydrazide monohydrate (refcode BUDNIY; Bao et al., 2009[Bao, F.-Y., Zhang, H.-Y., Zhou, Y.-X. & Hui, S. (2009). Acta Cryst. E65, o2331.]), N′-(3,4-di­meth­oxy­benzyl­idene)nicotinohydrazide monohydrate (XODZOH; Novina et al., 2014[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793-o794.]) and the isomer N′-(4-hy­droxy-3-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate (SEZREV; Shi et al., 2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). The conformation of the last mol­ecule differs from the title compound mainly in the relative orientation of the pyridine ring with respect to the carbonyl group, as indicated by the value of 158.03 (15)° for the O1—C6—C1—C2 torsion angle in the title compound and of 10.2 (3)° for the corresponding angle in SEZREV. Moreover, in SEZREV the water mol­ecule acts as acceptor of three H atoms from the same nicotinohydrazide mol­ecule and as donor in two O—H⋯O hydrogen bonds.

7. Synthesis and crystallization

The title compound was synthesized by the reaction of a 1:1 molar ratio mixture of a hot ethano­lic solution (20 ml) of nicotinohydrazide (0.137 mg) and a hot ethano­lic solution of 3-hy­droxy-4-meth­oxy benzaldehyde (0.152 mg). After refluxing for 8 h, the solution was then cooled and kept at room temperature to precipitate. Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a 10 ml dimethyl sulfoxide/water (1:1 v/v) solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically (O—H = 0.82 Å, N–H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O, C-meth­yl)

Table 3
Experimental details

Crystal data
Chemical formula C14H13N3O3·H2O
Mr 289.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.1153 (4), 11.0075 (6), 18.2771 (10)
β (°) 105.766 (5)
V3) 1377.64 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.25 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.969, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 8396, 2549, 2027
Rint 0.027
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.04
No. of reflections 2549
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.13
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

(E)-N'-(3-Hydroxy-4-methoxybenzylidene)nicotinohydrazide monohydrate top
Crystal data top
C14H13N3O3·H2OF(000) = 608
Mr = 289.29Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1153 (4) ÅCell parameters from 3729 reflections
b = 11.0075 (6) Åθ = 3.9–29.2°
c = 18.2771 (10) ŵ = 0.10 mm1
β = 105.766 (5)°T = 295 K
V = 1377.64 (14) Å3Block, colourless
Z = 40.30 × 0.25 × 0.18 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2549 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1Rint = 0.027
ω scansθmax = 25.5°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 88
Tmin = 0.969, Tmax = 0.981k = 1312
8396 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2549 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.03769 (14)0.40424 (10)0.06695 (6)0.0455 (3)
O20.20750 (15)0.23383 (10)0.06507 (7)0.0537 (3)
H100.2870880.1781880.0735270.081*
O11.15498 (17)0.21431 (11)0.30304 (8)0.0604 (4)
N30.85559 (17)0.37007 (12)0.26300 (7)0.0418 (3)
N21.03456 (17)0.40123 (12)0.31206 (7)0.0410 (3)
H2N1.0531280.4722350.3323970.049*
N11.61018 (19)0.51282 (12)0.42610 (8)0.0452 (4)
C80.5291 (2)0.43898 (15)0.20366 (8)0.0371 (4)
C90.4682 (2)0.33704 (14)0.15750 (8)0.0384 (4)
H90.5559240.2744290.1574430.046*
C100.2791 (2)0.32888 (14)0.11216 (8)0.0372 (4)
C110.1465 (2)0.42290 (14)0.11294 (8)0.0355 (4)
C120.2059 (2)0.52410 (15)0.15746 (9)0.0409 (4)
H120.1184190.5867910.1576760.049*
C130.3972 (2)0.53171 (15)0.20196 (9)0.0423 (4)
H130.4377300.6007720.2313190.051*
C140.1795 (2)0.49637 (17)0.06553 (10)0.0492 (4)
H14A0.1929060.5081960.1159020.074*
H14B0.3027910.4720170.0322560.074*
H14C0.1381930.5709370.0474680.074*
C70.7260 (2)0.45278 (15)0.25379 (8)0.0411 (4)
H70.7584410.5253520.2802650.049*
C61.1785 (2)0.31829 (14)0.32729 (9)0.0390 (4)
C21.4323 (2)0.47808 (14)0.38578 (8)0.0387 (4)
H21.3435940.5378880.3627460.046*
C11.3728 (2)0.35815 (13)0.37638 (8)0.0354 (4)
C51.5059 (2)0.27035 (15)0.41019 (10)0.0502 (4)
H51.4720880.1886030.4044000.060*
C41.6891 (2)0.30435 (17)0.45260 (11)0.0599 (5)
H41.7806140.2463980.4762870.072*
C31.7334 (2)0.42511 (17)0.45907 (10)0.0533 (5)
H31.8570460.4476330.4882540.064*
O41.07802 (17)0.65762 (11)0.34578 (7)0.0594 (4)
H4WA1.0340300.6969740.3775880.089*
H4WB1.0435300.6926740.3027880.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0286 (5)0.0448 (7)0.0558 (7)0.0044 (5)0.0009 (5)0.0023 (5)
O20.0385 (6)0.0378 (6)0.0712 (8)0.0062 (5)0.0085 (5)0.0115 (6)
O10.0513 (7)0.0382 (7)0.0744 (9)0.0022 (5)0.0127 (6)0.0079 (6)
N30.0309 (6)0.0455 (8)0.0416 (7)0.0061 (6)0.0029 (5)0.0026 (6)
N20.0311 (6)0.0390 (7)0.0448 (7)0.0032 (6)0.0037 (5)0.0026 (6)
N10.0361 (7)0.0419 (8)0.0509 (8)0.0062 (6)0.0006 (6)0.0030 (6)
C80.0317 (7)0.0424 (9)0.0351 (8)0.0033 (7)0.0054 (6)0.0051 (7)
C90.0306 (7)0.0373 (8)0.0437 (8)0.0036 (6)0.0039 (6)0.0062 (7)
C100.0343 (8)0.0327 (8)0.0408 (8)0.0019 (6)0.0038 (6)0.0024 (7)
C110.0281 (7)0.0388 (9)0.0369 (8)0.0003 (6)0.0039 (6)0.0052 (7)
C120.0369 (8)0.0403 (9)0.0435 (8)0.0051 (7)0.0073 (6)0.0004 (7)
C130.0399 (8)0.0422 (9)0.0412 (8)0.0020 (7)0.0049 (7)0.0052 (7)
C140.0325 (8)0.0598 (11)0.0520 (10)0.0118 (8)0.0056 (7)0.0013 (8)
C70.0348 (8)0.0446 (9)0.0397 (8)0.0055 (7)0.0030 (6)0.0012 (7)
C60.0370 (8)0.0345 (9)0.0398 (8)0.0047 (7)0.0007 (6)0.0025 (7)
C20.0320 (8)0.0364 (8)0.0432 (8)0.0003 (6)0.0023 (6)0.0041 (7)
C10.0321 (7)0.0359 (8)0.0345 (7)0.0008 (6)0.0026 (6)0.0024 (6)
C50.0457 (9)0.0361 (9)0.0580 (10)0.0003 (7)0.0041 (8)0.0050 (8)
C40.0432 (10)0.0477 (11)0.0728 (13)0.0060 (8)0.0114 (9)0.0120 (9)
C30.0328 (8)0.0540 (11)0.0611 (11)0.0043 (8)0.0075 (7)0.0063 (9)
O40.0627 (8)0.0475 (7)0.0583 (7)0.0186 (6)0.0002 (6)0.0017 (6)
Geometric parameters (Å, º) top
O3—C111.3664 (17)C12—C131.386 (2)
O3—C141.4257 (19)C12—H120.9300
O2—C101.3627 (18)C13—H130.9300
O2—H100.8198C14—H14A0.9600
O1—C61.2223 (19)C14—H14B0.9600
N3—C71.274 (2)C14—H14C0.9600
N3—N21.3866 (16)C7—H70.9300
N2—C61.343 (2)C6—C11.4950 (19)
N2—H2N0.8602C2—C11.383 (2)
N1—C31.333 (2)C2—H20.9300
N1—C21.3355 (19)C1—C51.376 (2)
C8—C131.381 (2)C5—C41.376 (2)
C8—C91.400 (2)C5—H50.9300
C8—C71.459 (2)C4—C31.364 (3)
C9—C101.378 (2)C4—H40.9300
C9—H90.9300C3—H30.9300
C10—C111.404 (2)O4—H4WA0.8500
C11—C121.377 (2)O4—H4WB0.8495
C11—O3—C14117.37 (12)H14A—C14—H14B109.5
C10—O2—H10109.5O3—C14—H14C109.5
C7—N3—N2114.41 (13)H14A—C14—H14C109.5
C6—N2—N3118.71 (13)H14B—C14—H14C109.5
C6—N2—H2N120.6N3—C7—C8123.07 (15)
N3—N2—H2N120.7N3—C7—H7118.5
C3—N1—C2116.76 (14)C8—C7—H7118.5
C13—C8—C9118.80 (13)O1—C6—N2122.66 (13)
C13—C8—C7117.90 (14)O1—C6—C1120.37 (14)
C9—C8—C7123.31 (14)N2—C6—C1116.97 (13)
C10—C9—C8120.43 (14)N1—C2—C1123.65 (14)
C10—C9—H9119.8N1—C2—H2118.2
C8—C9—H9119.8C1—C2—H2118.2
O2—C10—C9124.50 (13)C5—C1—C2117.67 (13)
O2—C10—C11115.81 (12)C5—C1—C6118.33 (14)
C9—C10—C11119.69 (14)C2—C1—C6123.84 (13)
O3—C11—C12125.07 (13)C4—C5—C1119.55 (15)
O3—C11—C10114.71 (13)C4—C5—H5120.2
C12—C11—C10120.22 (13)C1—C5—H5120.2
C11—C12—C13119.40 (14)C3—C4—C5118.38 (15)
C11—C12—H12120.3C3—C4—H4120.8
C13—C12—H12120.3C5—C4—H4120.8
C8—C13—C12121.44 (15)N1—C3—C4123.96 (15)
C8—C13—H13119.3N1—C3—H3118.0
C12—C13—H13119.3C4—C3—H3118.0
O3—C14—H14A109.5H4WA—O4—H4WB109.5
O3—C14—H14B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4WA···O2i0.852.283.0483 (17)150
O4—H4WA···O3i0.852.493.2011 (16)141
O4—H4WB···O1ii0.852.082.8429 (19)150
O4—H4WB···N3ii0.852.503.1875 (18)139
N2—H2N···O40.862.062.8889 (18)162
O2—H10···N1iii0.821.962.7411 (17)159
C2—H2···O40.932.253.129 (2)156
C4—H4···O3iv0.932.453.347 (2)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
Calculated frontier molecular orbital energies (eV) top
FMOEnergy
EHOMO-5.7171
ELUMO-1.8174
EHOMO-1-6.5750
ELUMO+1-1.2770
(EHOMO - ELUMO) gap3.8997
(EHOMO-1 - ELUMO+1) gap5.2980
Chemical hardness1.9498
Chemical potential3.7672
Electronegativity-3.7672
Electrophilicity index3.6393
 

Funding information

KB and PS thank the Department of Science and Technology (DST–SERB), New Delhi, India, grant No. SB/FT/CS-058/2013, for financial support.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationBalasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500–1503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, F.-Y., Zhang, H.-Y., Zhou, Y.-X. & Hui, S. (2009). Acta Cryst. E65, o2331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMuralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793–o794.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationSivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Coll. 11-12, 220-231.  Google Scholar
First citationSouza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds