research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of 4,4′-{[1,3-phenyl­enebis(methyl­ene)]bis­­(­­oxy)}bis­­(3-meth­­oxy­benzaldehyde) and 4,4′-{[(1,4-phenyl­ene­bis­(methyl­ene)]bis­­(­­oxy)}bis­­(3-meth­­oxy­benzalde­hyde)

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India, and cDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: gunaunom@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 February 2019; accepted 9 May 2019; online 24 May 2019)

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10[\overline{1}]] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.

1. Chemical context

Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its anti­oxidant, anti-inflammatory and anti­apoptotic properties. Vanillin is a potential future therapeutic agent by virtue of its multiple pharmacological properties relevant to the treatment of neurodegenerative diseases (Dhanalakshmi et al., 2015[Dhanalakshmi, C., Manivasagam, T., Nataraj, J., Justin Thenmozhi, A. & Essa, M. M. (2015). Evid.-Based Complement. Altern. Med. pp. 1-11.]). Structural elements of vanillin have been observed to show anti­fungal activity (Fitzgerald et al., 2005[Fitzgerald, D. J., Stratford, M., Gasson, M. J. & Narbad, A. (2005). J. Agric. Food Chem. 53, 1769-1775.]). Studies have revealed that the root and pod extracts of the plants Heiidesmus Indicus and vanilla planifola (plant-based food-flavouring agents) produce the fragrant phenolic compounds 2-hy­droxy-4-meth­oxy­benz­aldehyde (MBALD) and 4-hy­droxy-3-meth­oxy­benzaldehyde (vanillin). These compounds have been shown to be effective in treating Alzheimer's disease and other neurological dysfunctions (Kundu & Mitra, 2013[Kundu, A. & Mitra, A. (2013). Plant Foods Hum. Nutr. 68, 247-253.]). Vanillin derivatives with various homocyclic or heterocyclic and hydro­phobic or hydro­philic moieties have shown tyrosinase inhibitory activity (Ashraf et al., 2015[Ashraf, Z., Rafiq, M., Seo, S. Y., Babar, M. M. & Zaidi, N. U. (2015). Bioorg. Med. Chem. 23, 5870-5880.]). In view of the inter­est in such compounds we have synthesized 4,4′-{[1,3-phenyl­enebis(methyl­ene)]bis(oxy)}bis­(3-meth­oxy­benzaldehyde) (I)[link] and 4,4′-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) (II)[link], and report herein on their crystal structures and Hirshfeld surface analyses.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The asymmetric unit consists of half a mol­ecule, the other half being generated by twofold rotation symmetry; the twofold axis bis­ects atoms C11 and C13 of the central benzene ring. The dihedral angle between the central benzene ring (C10–C13/C10′/C12′) and the outer benzene ring (C2–C7/C2′–C7′) is 36.74 (9)° [symmetry code: (') −x + 2, y, −z + [{1\over 2}]). The outer benzene rings are inclined to each other by 59.96 (10)°. The acetaldehyde and meth­oxy­methane groups adopt extended conformations, as can be seen from the torsion angles C3—C2—C1—O1 = 180.0 (3)° and C5—C6—O2—C8 = −160.7 (3)°. Atoms C1 and O1 deviate from the plane of the benzene ring by 0.021 (2) and 0.034 (2) Å, respectively, while atoms O2 and C8 deviate from the plane of the benzene ring by −0.032 (2) and −0.471 (4)Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with atom labelling (unlabelled atoms are related to labelled atoms by the symmetry operationx + 2, y, −z + [{1\over 2}]). Displacement ellipsoids are drawn at 30% probability level.

The mol­ecular structure of compound (II)[link] is shown in Fig. 2[link]. The asymmetric unit consists of half a mol­ecule, the other half being generated by inversion symmetry; the central benzene ring being situated about the inversion center. The outer benzene rings are parallel to each other and normal to the central benzene ring with a dihedral angle of 89.87 (12)°. The meth­oxy­methane and acetaldehyde groups adopt extended conformations, as can be seen from the torsion angles C5—C6—O2—C8 = 172.7 (2) Å and C7—C2—C1—O3 = −178.5 (3)°. Here, atoms O2 and C8 deviate from the plane of the benzene ring by −0.025 (2) and −0.211 (4) Å, respectively, while atoms C1 and O1 deviate from the plane of the benzene ring by 0.023 (3) and 0.056 (2) Å, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with atom labelling (unlabelled atoms are related to labelled atoms by the symmetry operationx + 1, −y + 1, −z + 1). Displacement ellipsoids are drawn at 30% probability level.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by C3—H3⋯Oi hydrogen bonds forming ribbons propagating along the [10[\overline{1}]] direction (Table 1[link] and Fig. 3[link]). Within the ribbons mol­ecules are also linked by C—H⋯π inter­actions (Table 1[link]), as shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.3723 (1) 151
C9—H9BCg1ii 0.97 2.81 3.7808 (1) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the b axis. The C—H⋯O hydrogen bonds (Table 1[link]) are shown as dashed lines. For clarity, only the hydrogen atoms involved in hydrogen bonding have been included.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the b axis. The C—H⋯π inter­actions (Table 1[link]) are shown as dashed lines. For clarity, only the hydrogen atoms involved in these inter­actions have been included.

In the crystal of (II)[link], mol­ecules are linked by C7—H7⋯O3i and C12—H12⋯O2ii hydrogen bonds (Table 2[link]), forming a supra­molecular framework, as shown in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.47 3.338 (1) 156
C12—H12⋯O2ii 0.93 2.52 3.399 (1) 157
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the b axis. the C—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines. For clarity, only the hydrogen atoms involved in hydrogen bonding have been included.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]).

The Hirshfeld surfaces of compounds (I)[link] and (II)[link] mapped over dnorm are given in Fig. 6[link]a and 6b, respectively. Views of the inter­molecular contacts in the crystals are shown in Figs. 7[link] and 8[link], for compounds (I)[link] and (II)[link], respectively. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The blue region represents the positive electrostatic potential over the surface. The dnorm surface was mapped over a colour scale in arbitrary units of −0.156 (red) to 1.705 (blue) for compound (I)[link] and −0.207 (red) to 1.206 (blue) for compound (II)[link], where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding.

[Figure 6]
Figure 6
The Hirshfeld surface mapped over dnorm, for (a) compound (I)[link] and (b) compound (II)[link].
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm for compound (I)[link], showing the various inter­molecular contacts in the crystal.
[Figure 8]
Figure 8
A view of the Hirshfeld surface mapped over dnorm for compound (II)[link], showing the various inter­molecular contacts in the crystal.

The two-dimensional fingerprint plots [Fig. 9[link] for (I)[link] and Fig. 10[link] for (II)] are deconvoluted to highlight atom-pair close contacts by which different atomic types, overlapping the full fingerprint plot can be separated based on different inter­action types. For compound (I)[link], inter­molecular H⋯H contacts of 40.4% (Fig. 9[link]b) are the most significant, followed by 29.1% for O⋯H/H⋯O (Fig. 9[link]c), 26.4% for C⋯H/H⋯C (Fig. 9[link]d) and 3.1% for C⋯C (Fig. 9[link]e) contacts. In contrast, for compound (II)[link] the H⋯H contacts at 42.2% (Fig. 10[link]b) make a slightly higher contribution than in (I)[link], while the C⋯H/H⋯C contacts at 23.6% (Fig. 10[link]d) make a slightly lower contribution than in (I)[link]. The O⋯H/H⋯O contacts (Fig. 10[link]c) in both compounds are similar; 29.1% in (I)[link] cf. 29.0% in (II)[link].

[Figure 9]
Figure 9
(a) The two-dimensional fingerprint plot for compound (I)[link], and the fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.
[Figure 10]
Figure 10
(a) The two-dimensional fingerprint plot for compound (II)[link], and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.

5. Database survey

A search of the Cambridge Structure Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar compounds gave one hit for 1,3-bis­[(2-meth­oxy­phen­oxy)meth­yl]benzene (CSD refcode KACQEL; Bryan et al., 2003[Bryan, J. C., Hay, B. P., Sachleben, R. A., Eagle, C. T., Zhang, C. & Bonnesen, P. V. (2003). J. Chem. Crystallogr. 33, 349-355.]) but no hits for a 1,4-derivative. In KACQEL, the central benzene ring is inclined to the outer benzene rings by 67.60 (4) and 72.68 (6)°, while the outer benzene rings are inclined to each other by 69.61 (6)°. In compound (I)[link], the central benzene ring is inclined to the outer benzene ring(s) by 36.74 (9)°, while the outer benzene rings are inclined to each other by 59.96 (10)°. In compound (II)[link], the corresponding dihedral angles are 89.87 (2) and 0.0°, respectively.

A search for 4-benz­yloxy-3-meth­oxy­benzaldehydes gave eight hits. Apart from 4-benz­yloxy-3-meth­oxy­benzaldehyde itself (vanillin benzyl ether: COBNUC; Gerkin, 1999[Gerkin, R. E. (1999). Acta Cryst. C55, 2140-2142.]), the other hits include the 4-nitro­benz­yloxy derivative (VOHYUN; Li & Chen, 2008[Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291.]), the 4-fluoro­benz­yloxy derivative (POMQIT; Bernard-Gauthier & Schirrmacher, 2014[Bernard-Gauthier, V. & Schirrmacher, R. (2014). Bioorg. Med. Chem. Lett. 24, 4784-4790.]) and the 4-chloro­benz­yloxy derivative (WINROB; Liu et al., 2007[Liu, S.-X., Tian, X., Zhen, X.-L., Li, Z.-C. & Han, J.-R. (2007). Acta Cryst. E63, o4481.]). In VOHYUN, the 3-meth­oxy­benzaldehyde ring is inclined to the 4-benz­yloxy ring by 5.00 (11)°, while in COBNUC this dihedral angle is 78.11 (9)°. In POMQIT and WINROB, the corresponding dihedral angles are 69.02 (5) and 72.59 (19)°, respectively, similar to the values observed in KACQEL, viz. 67.60 (4) and 72.68 (6)°.

6. Synthesis and crystallization

Compound (I): To vanillin (0.63 g, 4.1 mmol) dissolved in 20 ml DMF was added potassium carbonate (1.7 g, 12.5 mmol) and the mixture was stirred at room temperature followed by addition of 1,3-bis­(bromo­meth­yl)benzene (0.5 g, 1.9 mmol). The reaction was allowed to proceed for 12 h. Then the reaction mixture was partitioned between water and ethyl acetate. The ethyl acetate layer was collected and concentrated under reduced pressure. The crude product obtained was recrystallized by using ethyl acetate. Colourless block-like crystals were obtained on slow evaporation of the solvent (98%).

Compound (II): To vanillin (0.63 g, 4.1 mmol) dissolved in 20 ml DMF, was added potassium carbonate (1.7 g, 12.5 mmol) and the mixture was stirred at room temperature followed by addition of 1,4-bis­(bromo­meth­yl)benzene (0.5 g, 1.9 mmol). The reaction was allowed to proceed for 12 h. After the reaction mixture was partitioned between water and ethyl acetate, the ethyl acetate layer was collected and concentrated under reduced pressure. The crude product was recrystallized by using ethyl acetate. Colourless block-like crystals were obtained on slow evaporation of the solvent (98%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N,C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C24H22O6 C24H22O6
Mr 406.41 406.41
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 293 296
a, b, c (Å) 11.7026 (3), 14.6628 (4), 12.7512 (3) 12.6668 (5), 7.7470 (3), 10.4244 (4)
β (°) 107.863 (2) 102.126 (2)
V3) 2082.54 (9) 1000.12 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.26 × 0.19 × 0.11 0.24 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII area detector Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.753, 0.842 0.741, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 10081, 2595, 1497 9260, 2488, 1764
Rint 0.024 0.028
(sin θ/λ)max−1) 0.668 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.178, 1.05 0.057, 0.190, 1.14
No. of reflections 2595 2488
No. of parameters 138 138
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.22 0.21, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015) and PLATON (Spek, 2009).

4,4'-{[1,3-Phenylenebis(methylene)]bis(oxy)}bis(3-methoxybenzaldehyde) (I) top
Crystal data top
C24H22O6F(000) = 856
Mr = 406.41Dx = 1.296 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.7026 (3) ÅCell parameters from 2595 reflections
b = 14.6628 (4) Åθ = 2.3–28.4°
c = 12.7512 (3) ŵ = 0.09 mm1
β = 107.863 (2)°T = 293 K
V = 2082.54 (9) Å3Block, colourless
Z = 40.26 × 0.19 × 0.11 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
1497 reflections with I > 2σ(I)
ω and φ scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 2.3°
Tmin = 0.753, Tmax = 0.842h = 1515
10081 measured reflectionsk = 1319
2595 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.5811P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.93872 (11)0.15775 (9)0.04447 (9)0.0615 (4)
C100.94216 (16)0.02577 (13)0.15339 (13)0.0541 (5)
C90.87534 (17)0.07592 (13)0.05044 (14)0.0605 (5)
H9A0.8691210.0381800.0135540.073*
H9B0.7948490.0903220.0516310.073*
C20.81181 (18)0.33726 (15)0.21384 (14)0.0668 (6)
C50.89059 (16)0.21460 (13)0.04217 (12)0.0550 (5)
C40.78416 (17)0.19835 (14)0.12530 (14)0.0632 (5)
H40.7392810.1462210.1241670.076*
C111.0000000.07241 (18)0.2500000.0563 (6)
H111.0000000.1358370.2500020.068*
O21.05928 (15)0.30383 (11)0.04307 (12)0.0928 (6)
C30.74587 (18)0.26096 (15)0.20991 (14)0.0683 (6)
H30.6738460.2510440.2652790.082*
C60.95715 (17)0.29375 (14)0.04386 (14)0.0648 (5)
C120.94372 (17)0.06856 (13)0.15437 (15)0.0621 (5)
H120.9065320.1006850.0900510.075*
C131.0000000.1151 (2)0.2500000.0713 (8)
H131.0000020.1785460.2499990.086*
O10.81947 (19)0.47012 (15)0.31880 (14)0.1063 (7)
C70.91931 (18)0.35402 (15)0.12987 (15)0.0691 (6)
H70.9646570.4055810.1324290.083*
C10.7698 (2)0.4010 (2)0.30609 (17)0.0851 (7)
H10.6980900.3867820.3598460.102*
C81.1085 (3)0.3927 (2)0.0642 (3)0.1509 (18)
H8A1.1370860.4114460.0045520.226*
H8B1.1739460.3924830.1315600.226*
H8C1.0477470.4343660.0706720.226*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0645 (8)0.0617 (8)0.0401 (6)0.0032 (6)0.0109 (5)0.0053 (5)
C100.0556 (10)0.0551 (11)0.0448 (8)0.0004 (8)0.0052 (7)0.0028 (7)
C90.0664 (11)0.0584 (12)0.0413 (8)0.0049 (9)0.0060 (7)0.0057 (8)
C20.0714 (12)0.0714 (14)0.0412 (9)0.0141 (10)0.0072 (8)0.0046 (8)
C50.0586 (10)0.0587 (11)0.0342 (7)0.0051 (9)0.0057 (7)0.0016 (7)
C40.0626 (11)0.0659 (13)0.0444 (9)0.0019 (9)0.0082 (8)0.0051 (8)
C110.0637 (15)0.0482 (15)0.0437 (12)0.0000.0031 (10)0.000
O20.0826 (10)0.0899 (12)0.0666 (9)0.0222 (8)0.0352 (7)0.0219 (7)
C30.0660 (12)0.0761 (14)0.0416 (9)0.0075 (11)0.0145 (8)0.0031 (8)
C60.0623 (11)0.0712 (14)0.0420 (9)0.0009 (9)0.0119 (8)0.0034 (8)
C120.0711 (12)0.0556 (12)0.0541 (10)0.0039 (9)0.0110 (9)0.0113 (8)
C130.090 (2)0.0497 (17)0.0703 (17)0.0000.0194 (15)0.000
O10.1169 (15)0.0983 (14)0.0792 (11)0.0096 (11)0.0061 (10)0.0360 (10)
C70.0709 (12)0.0692 (13)0.0496 (9)0.0004 (10)0.0076 (8)0.0088 (9)
C10.0874 (16)0.0919 (18)0.0544 (11)0.0155 (14)0.0100 (10)0.0169 (11)
C80.156 (3)0.125 (3)0.102 (2)0.072 (2)0.063 (2)0.0382 (19)
Geometric parameters (Å, º) top
O3—C51.360 (2)C11—H110.9300
O3—C91.425 (2)O2—C61.366 (2)
C10—C121.383 (3)O2—C81.416 (3)
C10—C111.390 (2)C3—H30.9300
C10—C91.499 (2)C6—C71.372 (3)
C9—H9A0.9700C12—C131.376 (2)
C9—H9B0.9700C12—H120.9300
C2—C31.369 (3)C13—C12i1.376 (2)
C2—C71.401 (3)C13—H130.9300
C2—C11.464 (3)O1—C11.204 (3)
C5—C41.386 (2)C7—H70.9300
C5—C61.402 (3)C1—H10.9300
C4—C31.382 (3)C8—H8A0.9600
C4—H40.9300C8—H8B0.9600
C11—C10i1.390 (2)C8—H8C0.9600
C5—O3—C9117.82 (13)C2—C3—H3119.3
C12—C10—C11118.85 (17)C4—C3—H3119.3
C12—C10—C9120.03 (15)O2—C6—C7124.50 (19)
C11—C10—C9121.09 (17)O2—C6—C5115.42 (16)
O3—C9—C10108.65 (13)C7—C6—C5120.07 (16)
O3—C9—H9A110.0C13—C12—C10120.36 (18)
C10—C9—H9A110.0C13—C12—H12119.8
O3—C9—H9B110.0C10—C12—H12119.8
C10—C9—H9B110.0C12—C13—C12i120.5 (3)
H9A—C9—H9B108.3C12—C13—H13119.7
C3—C2—C7119.97 (17)C12i—C13—H13119.7
C3—C2—C1119.81 (18)C6—C7—C2119.5 (2)
C7—C2—C1120.2 (2)C6—C7—H7120.3
O3—C5—C4124.52 (18)C2—C7—H7120.3
O3—C5—C6115.23 (14)O1—C1—C2126.1 (2)
C4—C5—C6120.25 (16)O1—C1—H1117.0
C3—C4—C5118.9 (2)C2—C1—H1117.0
C3—C4—H4120.6O2—C8—H8A109.5
C5—C4—H4120.6O2—C8—H8B109.5
C10—C11—C10i121.0 (2)H8A—C8—H8B109.5
C10—C11—H11119.5O2—C8—H8C109.5
C10i—C11—H11119.5H8A—C8—H8C109.5
C6—O2—C8117.20 (18)H8B—C8—H8C109.5
C2—C3—C4121.33 (16)
C5—O3—C9—C10178.26 (15)O3—C5—C6—O21.6 (3)
C12—C10—C9—O3145.60 (18)C4—C5—C6—O2178.78 (19)
C11—C10—C9—O336.5 (2)O3—C5—C6—C7177.39 (17)
C9—O3—C5—C40.1 (3)C4—C5—C6—C72.2 (3)
C9—O3—C5—C6179.75 (17)C11—C10—C12—C131.1 (3)
O3—C5—C4—C3178.96 (17)C9—C10—C12—C13176.87 (16)
C6—C5—C4—C30.6 (3)C10—C12—C13—C12i0.54 (13)
C12—C10—C11—C10i0.52 (13)O2—C6—C7—C2179.0 (2)
C9—C10—C11—C10i177.38 (19)C5—C6—C7—C22.1 (3)
C7—C2—C3—C41.2 (3)C3—C2—C7—C60.4 (3)
C1—C2—C3—C4178.6 (2)C1—C2—C7—C6179.8 (2)
C5—C4—C3—C21.1 (3)C3—C2—C1—O1180.0 (3)
C8—O2—C6—C720.4 (4)C7—C2—C1—O10.2 (4)
C8—O2—C6—C5160.7 (3)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.932.533.3723 (1)151
C9—H9B···Cg1iii0.972.813.7808 (1)144
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z.
4,4'-{[(1,4-Phenylenebis(methylene)]bis(oxy)}bis(3-methoxybenzaldehyde) (II) top
Crystal data top
C24H22O6F(000) = 428
Mr = 406.41Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6668 (5) ÅCell parameters from 2488 reflections
b = 7.7470 (3) Åθ = 1.6–28.4°
c = 10.4244 (4) ŵ = 0.10 mm1
β = 102.126 (2)°T = 296 K
V = 1000.12 (7) Å3Block, colourless
Z = 20.24 × 0.19 × 0.14 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
1764 reflections with I > 2σ(I)
ω and φ scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 1.6°
Tmin = 0.741, Tmax = 0.863h = 1611
9260 measured reflectionsk = 1010
2488 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.067P)2 + 0.6516P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2488 reflectionsΔρmax = 0.21 e Å3
138 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: (SHELXL-2016/4; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.30136 (14)1.1675 (2)0.5834 (2)0.0541 (5)
O10.36397 (14)0.9305 (2)0.44499 (19)0.0523 (5)
C60.23878 (19)1.0232 (3)0.5659 (2)0.0420 (5)
C50.27247 (18)0.8936 (3)0.4887 (2)0.0418 (5)
C70.14955 (19)0.9951 (3)0.6183 (2)0.0443 (6)
H70.1277461.0792010.6708850.053*
C40.2124 (2)0.7427 (3)0.4619 (3)0.0477 (6)
H40.2330300.6586490.4084290.057*
C20.09122 (19)0.8417 (3)0.5933 (2)0.0450 (6)
O30.05970 (18)0.6894 (3)0.6395 (2)0.0730 (7)
C30.1222 (2)0.7173 (3)0.5146 (3)0.0493 (6)
H30.0824190.6160130.4968730.059*
C100.45132 (19)0.6482 (3)0.4372 (2)0.0421 (5)
C90.4032 (2)0.8059 (3)0.3651 (3)0.0543 (7)
H9A0.4573460.8602560.3251720.065*
H9B0.3439840.7708530.2948660.065*
C110.5138 (2)0.6577 (3)0.5620 (3)0.0520 (7)
H110.5239570.7636370.6048120.062*
C10.0040 (2)0.8164 (4)0.6514 (3)0.0582 (7)
H10.0226770.9062650.7014580.070*
C80.2642 (3)1.3100 (3)0.6471 (4)0.0684 (9)
H8A0.1932671.3421790.6006210.103*
H8B0.3125861.4056800.6482610.103*
H8C0.2616801.2785950.7354590.103*
C120.4386 (2)0.4880 (3)0.3760 (3)0.0526 (7)
H120.3971330.4791110.2913770.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0558 (10)0.0340 (9)0.0740 (13)0.0046 (7)0.0172 (9)0.0053 (8)
O10.0537 (10)0.0376 (9)0.0721 (12)0.0043 (8)0.0280 (9)0.0017 (8)
C60.0461 (12)0.0313 (11)0.0468 (13)0.0027 (9)0.0058 (10)0.0020 (9)
C50.0441 (12)0.0339 (11)0.0487 (13)0.0048 (9)0.0128 (10)0.0057 (9)
C70.0468 (12)0.0398 (12)0.0473 (13)0.0049 (10)0.0124 (10)0.0013 (10)
C40.0538 (14)0.0333 (12)0.0562 (15)0.0038 (10)0.0123 (11)0.0059 (10)
C20.0458 (12)0.0413 (12)0.0476 (13)0.0020 (10)0.0087 (10)0.0062 (10)
O30.0699 (13)0.0722 (14)0.0826 (15)0.0165 (11)0.0287 (11)0.0099 (12)
C30.0470 (13)0.0375 (12)0.0618 (16)0.0029 (10)0.0076 (11)0.0005 (11)
C100.0430 (12)0.0393 (12)0.0491 (13)0.0012 (9)0.0214 (10)0.0006 (10)
C90.0628 (16)0.0485 (14)0.0588 (16)0.0096 (12)0.0293 (13)0.0075 (12)
C110.0605 (15)0.0379 (13)0.0584 (16)0.0008 (11)0.0143 (12)0.0130 (11)
C10.0573 (16)0.0614 (17)0.0589 (16)0.0015 (13)0.0188 (13)0.0042 (13)
C80.0711 (19)0.0353 (13)0.097 (2)0.0009 (13)0.0129 (17)0.0173 (14)
C120.0568 (15)0.0518 (15)0.0462 (14)0.0042 (12)0.0041 (11)0.0081 (11)
Geometric parameters (Å, º) top
O2—C61.361 (3)C3—H30.9300
O2—C81.418 (3)C10—C111.375 (4)
O1—C51.362 (3)C10—C121.390 (3)
O1—C91.431 (3)C10—C91.495 (3)
C6—C71.372 (3)C9—H9A0.9700
C6—C51.408 (3)C9—H9B0.9700
C5—C41.390 (3)C11—C12i1.376 (4)
C7—C21.395 (3)C11—H110.9300
C7—H70.9300C1—H10.9300
C4—C31.382 (4)C8—H8A0.9600
C4—H40.9300C8—H8B0.9600
C2—C31.375 (4)C8—H8C0.9600
C2—C11.472 (4)C12—C11i1.376 (4)
O3—C11.202 (3)C12—H120.9300
C6—O2—C8117.4 (2)C12—C10—C9120.2 (2)
C5—O1—C9118.51 (19)O1—C9—C10114.4 (2)
O2—C6—C7125.6 (2)O1—C9—H9A108.7
O2—C6—C5115.1 (2)C10—C9—H9A108.7
C7—C6—C5119.2 (2)O1—C9—H9B108.7
O1—C5—C4125.3 (2)C10—C9—H9B108.7
O1—C5—C6115.0 (2)H9A—C9—H9B107.6
C4—C5—C6119.7 (2)C10—C11—C12i120.6 (2)
C6—C7—C2120.6 (2)C10—C11—H11119.7
C6—C7—H7119.7C12i—C11—H11119.7
C2—C7—H7119.7O3—C1—C2125.5 (3)
C3—C4—C5120.2 (2)O3—C1—H1117.3
C3—C4—H4119.9C2—C1—H1117.3
C5—C4—H4119.9O2—C8—H8A109.5
C3—C2—C7120.1 (2)O2—C8—H8B109.5
C3—C2—C1120.9 (2)H8A—C8—H8B109.5
C7—C2—C1119.0 (2)O2—C8—H8C109.5
C2—C3—C4120.0 (2)H8A—C8—H8C109.5
C2—C3—H3120.0H8B—C8—H8C109.5
C4—C3—H3120.0C11i—C12—C10121.4 (2)
C11—C10—C12118.0 (2)C11i—C12—H12119.3
C11—C10—C9121.7 (2)C10—C12—H12119.3
C8—O2—C6—C78.4 (4)C6—C7—C2—C1180.0 (2)
C8—O2—C6—C5172.7 (2)C7—C2—C3—C41.2 (4)
C9—O1—C5—C40.1 (4)C1—C2—C3—C4179.4 (2)
C9—O1—C5—C6179.6 (2)C5—C4—C3—C20.3 (4)
O2—C6—C5—O11.2 (3)C5—O1—C9—C1071.7 (3)
C7—C6—C5—O1177.7 (2)C11—C10—C9—O139.0 (3)
O2—C6—C5—C4178.3 (2)C12—C10—C9—O1144.6 (2)
C7—C6—C5—C42.8 (3)C12—C10—C11—C12i0.5 (4)
O2—C6—C7—C2179.8 (2)C9—C10—C11—C12i176.9 (2)
C5—C6—C7—C21.3 (3)C3—C2—C1—O32.0 (4)
O1—C5—C4—C3178.3 (2)C7—C2—C1—O3178.5 (3)
C6—C5—C4—C32.3 (4)C11—C10—C12—C11i0.5 (4)
C6—C7—C2—C30.6 (4)C9—C10—C12—C11i177.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3ii0.932.473.338 (1)156
C12—H12···O2iii0.932.523.399 (1)157
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for the data collection.

References

First citationAshraf, Z., Rafiq, M., Seo, S. Y., Babar, M. M. & Zaidi, N. U. (2015). Bioorg. Med. Chem. 23, 5870–5880.  CrossRef CAS PubMed Google Scholar
First citationBernard-Gauthier, V. & Schirrmacher, R. (2014). Bioorg. Med. Chem. Lett. 24, 4784–4790.  CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryan, J. C., Hay, B. P., Sachleben, R. A., Eagle, C. T., Zhang, C. & Bonnesen, P. V. (2003). J. Chem. Crystallogr. 33, 349–355.  CSD CrossRef CAS Google Scholar
First citationDhanalakshmi, C., Manivasagam, T., Nataraj, J., Justin Thenmozhi, A. & Essa, M. M. (2015). Evid.-Based Complement. Altern. Med. pp. 1–11.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitzgerald, D. J., Stratford, M., Gasson, M. J. & Narbad, A. (2005). J. Agric. Food Chem. 53, 1769–1775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGerkin, R. E. (1999). Acta Cryst. C55, 2140–2142.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKundu, A. & Mitra, A. (2013). Plant Foods Hum. Nutr. 68, 247–253.  CrossRef CAS PubMed Google Scholar
First citationLi, M. & Chen, X. (2008). Acta Cryst. E64, o2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-X., Tian, X., Zhen, X.-L., Li, Z.-C. & Han, J.-R. (2007). Acta Cryst. E63, o4481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds