research communications
Zn and Ni complexes of pyridine-2,6-dicarboxylates: crystal field stabilization matters!
aInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de
Six reaction products of ZnII and NiII with pyridine-2,6-dicarboxylic acid (H2Lig1), 4-chloropyridine-2,6-dicarboxylic acid (H2Lig2) and 4-hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octahedral ZnII coordination sphere in bis(6-carboxypicolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis(6-carboxypicolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloropyridine-2,6-dicarboxylato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hydroxypyridine-2,6-dicarboxylato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-dicarboxylate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely triaqua(4-chloropyridine-2,6-dicarboxylato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and triaqua(4-hydroxypyridine-2,6-dicarboxylato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octahedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.
1. Chemical context
Pyridine-2,6-dicarboxylic acid (H2Lig1, Fig. 1) represents a popular building block in coordination chemistry: the Cambridge Structural Database (CSD; Groom et al., 2016) comprises 1404 structurally characterized metal complexes of this ligand. Its 4-chloro (H2Lig2) and 4-hydroxy (H2Lig3) derivatives have been employed less frequently, with only 10 and 136 entries, respectively, in the CSD. We have investigated these three pyridine-2,6-dicarboxylic acids, Lig1–Lig3, in a comprehensive study of their complexes with NiII and ZnII. We focus on these cations for the following reasons: (a) According to the widely used compilation of Shannon (1976), NiII and ZnII adopt comparable ionic radii of 0.69 and 0.74 Å, respectively, in their six-coordinated complexes. Alternative divalent cations might be MnII and CuII; the former is associated with a significantly larger ionic radius, the latter is notoriously Jahn–Teller distorted. (b) For NiII and ZnII, undistorted octahedral complexes can, in principle, be expected. Crystal field stabilization energy for NiII results in a clear preference for regular coordination, with the fully occupied t2g orbitals directed in-between and the only half-occupied eg orbitals towards the octahedrally disposed ligands. No such electronic effects are expected for the d10-configured ZnII ion: in this case, a regular coordination is neither preferred nor excluded. We use our structural results on the NiII and ZnII derivatives compiled in Fig. 1 to pinpoint the different coordination behaviour of these divalent cations; Fig. 1 also reports previous results by other authors that have been obtained for the same compounds and, to the best of our knowledge, have never been put into a common context.
2. Structural comparison
Mononuclear bis(6-carboxypicolinato) complexes
We start our comparison between NiII and ZnII coordination with their mononuclear complexes with two equivalents of monodeprotonated Lig1. The resulting products 1 and 2 have previously been structurally characterized and are isostructural. Their contains a complex molecule and three molecules of water; one of the latter is disordered over three neighbouring and mutually exclusive positions. The previous studies of 1 (Håkansson et al., 1993; Okabe & Oya, 2000) agree with our structural model as far as the bis(Hlig1) complex is concerned, but the three water molecules were treated as ordered; both studies find an equivalent displacement parameter of 0.28 Å2 for one of the water sites, clearly excessive when compared to all other displacement parameters in the structure. A displacement ellipsoid plot of the [Zn(HLig1)2] complex is shown in Fig. 2.
The three ligand functionalities differ significantly in their bond lengths to the six-coordinated metal cation (Table 1): the shortest bonds are subtended by the pyridine N atoms, followed by the distances between ZnII and an oxygen atom of the deprotonated carboxylato groups. The O atoms of the carboxylic acid moieties represent the most distant coordination partners. Our assignment of negatively charged carboxylato and neutral carboxylic acid moieties matches the assignment of local electron-density maxima close to the latter; the positional parameters for the thus located H atoms could be freely refined. Each of these hydroxy H atoms is engaged in a short hydrogen bond to one of the well-ordered water molecules. Our structure model for compound 2 is very similar to that for the isostructural 1; distances and angles are compiled in Table 2. Those references to previous reports of the of 2 that agree with our interpretation are compiled in Fig. 1. We here also mention two dissenting opinions: Wang et al. (2004) indexed their diffraction patterns with the same as we used but interpreted the electron density as [Ni(Lig1)2]·2H3O·2H2O, i.e. as the bis(oxonium) salt of a dianionic nickelate. We doubt this protonation pattern, not only because of the alleged presence of strongly acidic next to carboxylate but also because this alternative structure model comes with short inter-oxygen contacts of ca 2.5 Å without any proton in between. A rather recent compilation of related structures (Mirzaei et al., 2014) refers to 2 as [Ni(HLig1)2]·H3O·2H2O, without further explanation concerning the unbalanced charge; the reported corresponds to that found by us and all consenting authors in Fig. 1.
|
|
After discussing the individual bis-ligand complexes 1 and 2, we come back to the principal aim of our comparison: despite the strict isotypism between these structures, which even extends to the disorder in the co-crystallized water molecules, the coordination spheres about ZnII in 1 and NiII in 2 differ significantly. The numerical values of bond lengths and angles compiled in Tables 1 and 2 reflect a more regular for the crystal-field-stabilized nickel ion. According to classical crystal field theory, the pseudo-octahedrally arranged coordinating N and O atoms avoid the electron density associated with the fully occupied t2g orbitals in the nickel cation with d8. No such effect is observed for the significantly more distorted coordination about the d10-configured ZnII.
We finish the discussion of 1 and 2 by explaining our data-collection temperatures: Upon cooling to low temperature, complexes 1 and 2 undergo a reversible to a larger Despite several attempts at different temperatures and cooling rates, we have not been able to completely index the low-temperature diffraction pattern, neither assuming single crystals nor twins. The most promising indexing attempt suggested a non-centrosymmetric body-centered with four independent complex molecules in the Such a low-temperature phase cannot be traced back to a single t or k type rather, it requires a combination of both (Müller, 2013). In view of the incompletely indexed diffraction pattern, the observed and the large after the we have not been able to deduce a fully satisfactory structural model for the low-temperature phase. In order to establish the transition temperature, we have collected intensity data for 1 as a function of temperature. The temperature dependence of the average Ueq values for the atoms in the complex molecule is depicted in Fig. 3.
Based on this relationship and on the fact that it could be satisfactorily indexed, we decided to use the intensity data set collected at 220 K for the structure 1. Only data collected at room temperature, at 250 K and a tentative data set at 100 K were available for 2; our structure is based on the 250 K data.
ofExtended coordination networks of 4-substituted dicarboxylato pyridine ligands with ZnII
The reaction products of ZnCl2 with H2Lig2 and H2Lig3 in aqueous solution are isostructural and represent two-dimensional extended structures extending parallel to (001). The of 3 contains a single formula unit of Zn(Lig2) and is depicted in Fig. 4a; for easier comparison, an analogous representation for the closely related compound 4 is shown in Fig. 4b.
One might intuitively associate the coordination about the ZnII cation with a trigonal bipyramid, with O1 and O3 as the axial substituents, but the angle O2i—Zn1—N1 [symmetry code: (i) y, 2 − x, 1 − z] also amounts to a relatively large value of 139.20 (10)° (Table 3). A quantitative analysis (Holmes, 1984) places the five-coordination about ZnII almost half-way (48.6%) along a Berry pseudo-rotation coordinate from trigonal–bipyramidal (idealized D3h) to square-pyramidal (idealized C4v). The alternative τ descriptor for fivefold coordination (Addison et al., 1984) adopts values of 0.20 for 3 and 0.27 for 4 and thus suggests describing the coordination polyhedra about the divalent cations as distorted square-pyramidal (τ = 0 for ideal square-pyramidal coordination). The Zn(Lig2) units arrange about the axes in the achiral, non-centrosymmetric P21c. Fig. 5 shows a projection of the in which only those atoms contributing to the extended connectivity of a {4,4} net have been included. The shortest secondary interaction in 3 is a halogen contact, with Cl1⋯O1( − y, − x, + z) = 3.036 (2) Å.
Complex 4 crystallizes in the same as 3, with comparable lattice parameters and similar ZnII coordination (Fig. 4b, Table 4). In addition to a Zn(Lig3) moiety, its contains two water molecules on twofold rotation axes; the compound therefore is a monohydrate. The co-crystallized water molecules occupy the twofold axes associated with Wyckoff positions 4c and 4d. These water molecules subtend short hydrogen bonds with the hydroxy group of Lig3.
|
Mononuclear complexes of 4-substituted dicarboxylato pyridine ligands with NiII
In contrast to the low-symmetry five-coordinated moieties Zn(Lig) (Lig = Lig2, Lig3) which act as building blocks for the extended structures of 3 and 4, coordination of the same ligands to NiII results in the mononuclear pseudooctahedral complexes 5 and 6. Complex 5 crystallizes in the tetragonal I41a, with the complex molecule located on a twofold rotation axis. With the exception of the intra-ligand angle O1—Ni1—O1i [symmetry code: (i) −x + 1, −y + , z], the coordination sphere about the transition-metal cation corresponds to a rather regular octahedron (Fig. 6a, Table 5).
|
Complex 6 is a hydrate; its water content is explained in more detail in the Refinement section. The complex molecule [NiLig2(OH2)3)] (Fig. 6b, Table 6) adopts a very similar geometry to the Cl-substituted compound 5. The analogous mononuclear derivative [NiLig1(OH2)3)] has been structurally characterized by Li & Du (2015).
|
Intermolecular interactions
In all compounds but 3, classical O—H⋯O hydrogen bonds occur. In the isostructural solids 1 (Table 7) and 2 (Table 8) the well-ordered water molecules associated with O9 and O10 connect complex molecules via short hydroxyl-OH⋯water contacts and moderately strong H2O⋯carbonyl contacts into layers in the (100) plane. The disordered water molecule associated with sites O11A, O11B and O11C links adjacent layers along [100] into a three-dimensional hydrogen-bonded network; Fig. 7 shows this arrangement for 2.
|
|
Compound 4 is a two-dimensional coordination polymer extending parallel to (001); the hydroxyl group is involved both as donor and acceptor in the shortest hydrogen bonds (Table 9) within these layers. The longer hydrogen bonds subtended by the water molecule O7 link successive layers in the third dimension along [001]. The Cl substituent in 5 accepts a rather long hydrogen bond from an aqua ligand of a neighbouring molecule (Table 10); even without this interaction, O—H⋯O contacts result in a three-dimensional hydrogen-bonded network. Table 11 compiles the hydrogen bonds in 6. All classical hydrogen-bond donors find an acceptor in a suitable geometry, resulting in a three-dimensional network. In contrast to 4, the hydroxyl group only acts as a hydrogen-bond donor.
|
|
|
3. Conclusion and outlook
In this article we compare coordination compounds of divalent NiII and ZnII cations; they share similar ionic radii but differ with respect to their Crystal-field stabilization can be expected for the d8 configuration of the former cation whereas no such effects will be observed for the latter with its fully occupied d subshell. A first very direct comparison can be made between compounds 1 and 2 with octahedral coordination of the metal cations, facilitated by their strict isotypism. In the octahedral environment, the d subshell of NiII splits into a set of three fully occupied t2g and two half-occupied eg orbitals; the former induce a very regular coordination geometry. In contrast, the fully occupied and hence fully symmetric d subshell of ZnII can adapt to any coordination mode. In line with this expectation the NiII complex 2 is significantly more regular than its ZnII analogue 1. Complexes 3 and 4 with only one fully deprotonated pyridine-2,6-dicarboxylate ligand adopt a low-symmetry fivefold coordination with the ZnII cation – very possible for a fully symmetric d10 subshell without any preference for a certain ligand geometry. No such structures exist for the NiII complexes 5 and 6 of the same pyridine-2,6-dicarboxylates: additional aqua ligands complete rather regular octahedral coordination environments about the crystal-field-stabilized transition-metal cation with its incomplete d subshell. Our analysis of structures with the same metal:ligand ratio, i.e. 1 versus 2 and 3/4 versus 5/6 consistently shows that the central NiII cations with their partially occupied d subshell induce the more regular, crystal-field-stabilized coordination geometry whereas the d10-configured ZnII cation can adapt to even very unsymmetrical coordination geometries. The structures reported here can be considered a direct experimental proof for the concept of crystal-field stabilization. With respect to our interest in extended structures (Kondraçka & Englert, 2008; Merkens & Englert, 2012; Merkens et al., 2012; Kremer & Englert, 2018), we conclude that substituted pyridine-2,6-dicarboxylates may well represent useful linkers between main-group cations in a 1:1 stoichiometry. In this case, the chelating and bridging coordination mode of the dicarboxylato ligand induces a coordination sphere of low symmetry. We expect that the NiII complexes 5 and 6 are mononuclear because the additional aqua ligands allow the formation of a much more symmetric Derivatives of crystal-field-stabilized transition-metal cations can probably not be isostructural with the coordination polymers 3 and 4.
4. Database survey
Our database surveys aimed at complexes in which a metal is coordinated to the pyridine nitrogen atoms and at least one carboxylate oxygen of pyridine-2,6-dicarboxylic acid or one of its derivatives. They were conducted with Version 5.39 of the CSD (Groom et al., 2016), including the updates of August 2018, and restricted to error-free entries without disorder for which atomic coordinates were available.
5. Experimental
5.1. Synthesis and crystallization
Compound 1:
Pyridine-2,6-dicarboxylic acid (H2Lig1) (247.5 mg, 1.48 mmol, Sigma–Aldrich) was dissolved in deionized water (11 ml) at 373 K. This solution was added to a solution of ZnCl2 (101.2 mg, 0.743 mmol) in deionized water (2 ml). Colourless rods were obtained after 15 minutes. Yield: 233.6 mg (0.517mmol, 69.8%). Analysis calculated for (1): ZnC14H8N2O8·3H2O): C 37.23, H 3.12, N 6.20; found: C 37.66, H 2.87, N 5.40. The thermal stability of 1 was investigated in detail; the result of the thermogravimetric analysis is represented in the supporting information to this article. It indicates that decomposition occurs in two steps: first, the three co-crystallized water molecules are lost, followed by a second step probably associated with decarboxylation and slow concomitant decomposition.
Compound 2:
Pyridine-2,6-dicarboxylic acid (H2Lig1) (204.7 mg, 1.23 mmol, Sigma–Aldrich) was dissolved in deionized water (10 ml) at 373 K. This solution was added to a solution of NiCl2·6H2O (146.6 mg, 0.617 mmol) in deionized water (1 ml). Green rods were obtained after several days. Yield: 181.2 mg (0.407 mmol, 66.5%). Analysis calculated for 2: NiC14H8N2O8×3(H2O): C 37.79, H 3.17, N 6.30; found: C 37.90, H 3.13, N 6.06.
Compound 3:
4-Chloropyridine-2,6-dicarboxylic acid (H2Lig2) (60 mg, 0.298 mmol, abcr) was dissolved in deionized water (10 ml) and heated to 368 K without stirring. ZnCl2 (60.2 mg, 0.442 mmol, Gruessing) was added to the solution. After 2 h, the heat source was removed, and the solution was left to cool to ambient temperature overnight. The crystals were obtained as colourless blocks. Yield: 128.0 mg (0.483 mmol, 64.9%). Analysis calculated for 3: ZnC7H2ClNO4: C 31.73, H 0.76, N 5.29; found: C 31.66, H 0.93, N 5.19. indicated stability of the compound up to a 670 K.
Compound 4:
4-Hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) (94.0 mg, 0.513 mmol, abcr) was dissolved in deionized water (11 ml) and heated to 368 K without stirring. ZnCl2 (210 mg, 1.54 mmol, Gruessing) was added to the solution. After 4 h, the heat source was removed, and the solution was left to cool to ambient temperature overnight. A large excess of metal salt was used to prevent the crystallization of the monohydrate of the ligand. The product was obtained as brown crystalline blocks. Yield: 67.2 mg (0.273 mmol, 53.1%). Although no visible decomposition was observed below 570 K, the analytical data indicate that the co-crystallized water molecule evaporates upon drying of the crystals. Analysis calculated for 4 without H2O, ZnC7H3NO5: C 34.11, H 1.23, N 5.68; found: C 34.10, H 2.23, N 5.69.
Compound 5:
4-Chloropyridine-2,6-dicarboxylic acid (H2Lig2) (150 mg, 0.744 mmol, abcr) was dissolved in ethanol (10 ml). This solution was added to a solution of NiCl2·6H2O (176.9 mg, 0.744 mmol, Gruessing) in deionized water (4 ml). The crystals were obtained as green rods after several days. Yield: 101.3 mg (0.324 mmol, 43.6%). Despite the good match between the experimental and simulated powder patterns, no fully satisfactory microchemical analysis could be achieved. Analysis calculated for 5: NiC7H8ClNO7: C 26.92, H 2.58, N 4.46; found: C 27.76, H 2.67, N 4.35. No visible decomposition was observed below 570 K.
In order to improve the match of the elemental analysis, an alternative synthesis was explored: 4-chloropyridine-2,6-dicarboxylic acid (H2Lig2) (94.6 mg, 0.469 mmol, abcr) and NiCO3 (115 mg, 0.469 mmol) were suspended in deionized water (8 ml). CO2 was evolved and the solids dissolved. The resulting solution was stored at 423 K for one h to evaporate most of the solvent and then kept at room temperature. Further evaporation over a period of one night lead to crystallization. Analysis calculated for 5: NiC7H8ClNO7: C 26.92, H 2.58, N 4.46; found: C 26.00, H 2.98, N 4.39.
Compound 6:
4-Hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) (70.0 mg, 0.382 mmol, abcr) was dissolved in deionized water (11 ml) at 373 K. This solution was added to a solution of NiCl2·6H2O (181.7 mg, 0.764 mmol) in deionized water (1 ml). The product was obtained as brown crystalline blocks after several days. An excess of metal salt was used to prevent the crystallization of the monohydrate of the ligand. Yield: 75.8 mg (0.247 mmol, 64.6%). Analysis calculated for 6: C7H9NNiO8·1.7(H2O): C 25.91, H 3.85, N 4.32; found: C 26.11, H 3.69, N 4.44. No visible decomposition was observed below 570 K.
For all solids 1–6 matching powder patterns (see supporting information) confirmed that the bulk samples essentially correspond to the structures derived from single crystal diffraction experiments.
5.2. Powder diffraction
X-ray powder diffraction experiments were performed at ambient temperature on flat samples with a Stoe STADI P diffractometer equipped with an image plate detector with constant ω angle of 55° using germanium–monochromated Cu Kα1 radiation (λ = 1.54059 Å). Powder patterns for 1–6 are given in the supporting information.
5.3. Refinement
Crystal data, data collection parameters and convergence results for the single crystal X-ray diffraction experiments are summarized in Table 12. Non-hydrogen atoms were assigned anisotropic displacement parameters. H atoms attached to carbon were introduced into calculated positions and treated as riding with Uiso(H) = 1.2Ueq(C). H atoms attached to oxygen were located from difference-Fourier maps. In 1 and 2, the coordinates of the hydrogen atoms in the carboxylic acid groups were refined and their Uiso values constrained to 1.5Ueq(O); H atoms in water molecules were refined as riding on O, in the geometry detected by the difference-Fourier syntheses with an idealized O—H distance of 0.84 Å. In 4, the coordinates of the hydroxy H atom were refined with an O—H distance restraint; H atoms in the water molecules were refined as riding on O, in the geometry detected by the difference-Fourier syntheses with an idealized O—H distance of 0.84 Å. In 5, the coordinates of the H atoms associated with the aqua ligands were refined with O—H distance restraints. In 6, the coordinates of the H atoms associated with the aqua ligands and with hydroxy group were refined with O—H distance restraints; H atoms attached to the co-crystallized water molecules were refined as riding on oxygen, in the geometry detected by the difference-Fourier synthesis with an idealized O—-H distance of 0.84 Å. One of the solvent water molecules in 1 and 2 is disordered over three mutually exclusive positions; the sum of its site occupancies was restrained to unity. In 5, the non-coordinating carboxylato O atom in the was treated as disordered; the sum of its site occupancies was constrained to unity. In 6, a water molecule is in part located on a twofold axis, in part on a general position close to this axis. Tentative treatment of the electron density in this void with BYPASS/SQUEEZE (van der Sluis & Spek, 1990; Spek, 2009) suggests an overall content of 50 electrons, corresponding to five water molecules per cell or 0.63 water molecules per in good agreement with our refined water content of 0.7 molecules per One of the two non-coordinating carboxylato O atoms was treated as disordered over two positions; the sum of the site occupancies was constrained to unity. As the occupancies of the mutually exclusive sites converged to very different values, the minority site was only assigned an isotropic displacement parameter. Our structure model, with a disordered water molecule in part located on a twofold axis and in part on a general position close to this axis, is similar to that of Fronczek (2015). In contrast, Cui et al. (2006) and Aghabozorg et al. (2007) have described the same water site by a single electron density maximum associated with a very large displacement parameter.
|
5.4. Thermal analyses
Thermogravimetric analyses (see supporting information) were performed under N2 with a heating rate of 5 K min −1 for (1) and 10 K min −1 for 3 with a Mettler Toledo TGA/SDTA 851e instrument.
Supporting information
https://doi.org/10.1107/S2056989019007461/wm5493sup1.cif
contains datablocks 1, 2, 3, 4, 5, 6, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019007461/wm54931sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019007461/wm54932sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989019007461/wm54933sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989019007461/wm54934sup5.hkl
Structure factors: contains datablock 5. DOI: https://doi.org/10.1107/S2056989019007461/wm54935sup6.hkl
Structure factors: contains datablock 6. DOI: https://doi.org/10.1107/S2056989019007461/wm54936sup7.hkl
Thermal stability investigations and powder patterns. DOI: https://doi.org/10.1107/S2056989019007461/wm5493sup8.pdf
For all structures, data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al. (2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).[Zn(C7H4NO4)2]·3H2O | F(000) = 920 |
Mr = 451.64 | Dx = 1.742 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9953 (8) Å | Cell parameters from 7944 reflections |
b = 10.0081 (6) Å | θ = 2.6–23.8° |
c = 13.7330 (8) Å | µ = 1.49 mm−1 |
β = 116.4303 (14)° | T = 220 K |
V = 1722.48 (18) Å3 | Rod, colourless |
Z = 4 | 0.28 × 0.18 × 0.18 mm |
Bruker APEX CCD diffractometer | 4180 reflections with I > 2σ(I) |
Radiation source: microsource | Rint = 0.054 |
ω scans | θmax = 31.6°, θmin = 1.6° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −20→20 |
Tmin = 0.877, Tmax = 1.000 | k = −14→14 |
56614 measured reflections | l = −20→20 |
5777 independent reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0416P)2 + 1.0164P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5777 reflections | Δρmax = 0.56 e Å−3 |
263 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.25020 (2) | 0.99549 (2) | 0.26138 (2) | 0.03318 (8) | |
O1 | 0.18718 (11) | 1.00856 (15) | 0.37285 (11) | 0.0362 (3) | |
O2 | 0.03924 (12) | 0.96743 (16) | 0.39055 (12) | 0.0394 (3) | |
O3 | 0.23801 (11) | 0.94497 (16) | 0.09052 (11) | 0.0376 (3) | |
O4 | 0.12629 (14) | 0.84401 (16) | −0.06458 (12) | 0.0423 (3) | |
H4O | 0.174 (2) | 0.854 (3) | −0.088 (2) | 0.063* | |
O5 | 0.34985 (13) | 0.82750 (15) | 0.33256 (13) | 0.0429 (3) | |
O6 | 0.52279 (16) | 0.7743 (2) | 0.42790 (16) | 0.0655 (5) | |
O7 | 0.22321 (11) | 1.21877 (14) | 0.21460 (12) | 0.0368 (3) | |
O8 | 0.31855 (13) | 1.40197 (16) | 0.22226 (14) | 0.0445 (4) | |
H8O | 0.2576 (17) | 1.437 (3) | 0.180 (2) | 0.067* | |
N1 | 0.10463 (12) | 0.91469 (15) | 0.17479 (12) | 0.0273 (3) | |
N2 | 0.39644 (11) | 1.07655 (17) | 0.31645 (12) | 0.0296 (3) | |
C1 | 0.04345 (14) | 0.90384 (18) | 0.22605 (14) | 0.0286 (3) | |
C2 | −0.05478 (15) | 0.8403 (2) | 0.17755 (16) | 0.0351 (4) | |
H2 | −0.097679 | 0.832445 | 0.213942 | 0.042* | |
C3 | −0.08801 (16) | 0.7885 (2) | 0.07356 (17) | 0.0379 (4) | |
H3 | −0.154381 | 0.745240 | 0.038598 | 0.045* | |
C4 | −0.02338 (16) | 0.80052 (19) | 0.02125 (16) | 0.0341 (4) | |
H4 | −0.044877 | 0.765742 | −0.048981 | 0.041* | |
C5 | 0.07331 (14) | 0.86496 (18) | 0.07525 (14) | 0.0285 (3) | |
C6 | 0.09289 (15) | 0.96503 (19) | 0.33896 (15) | 0.0307 (4) | |
C7 | 0.15363 (16) | 0.88719 (19) | 0.03184 (15) | 0.0316 (4) | |
C8 | 0.47935 (15) | 0.9954 (2) | 0.36847 (15) | 0.0342 (4) | |
C9 | 0.58359 (16) | 1.0440 (3) | 0.40976 (17) | 0.0457 (5) | |
H9 | 0.642028 | 0.987024 | 0.447096 | 0.055* | |
C10 | 0.59927 (17) | 1.1759 (3) | 0.39499 (19) | 0.0489 (6) | |
H10 | 0.668946 | 1.210052 | 0.421825 | 0.059* | |
C11 | 0.51240 (16) | 1.2593 (3) | 0.34041 (17) | 0.0424 (5) | |
H11 | 0.521956 | 1.350086 | 0.329531 | 0.051* | |
C12 | 0.41133 (14) | 1.2049 (2) | 0.30250 (15) | 0.0323 (4) | |
C13 | 0.45005 (18) | 0.8530 (2) | 0.37782 (17) | 0.0418 (5) | |
C14 | 0.30825 (15) | 1.2785 (2) | 0.24167 (15) | 0.0323 (4) | |
O9 | 0.15287 (13) | 0.52698 (17) | 0.10985 (13) | 0.0443 (4) | |
H9O | 0.100266 | 0.513987 | 0.122694 | 0.053* | |
H9P | 0.124646 | 0.529706 | 0.041594 | 0.053* | |
O10 | 0.25352 (15) | 0.61084 (17) | 0.36169 (14) | 0.0536 (4) | |
H10O | 0.309944 | 0.565544 | 0.386735 | 0.064* | |
H10P | 0.275684 | 0.677054 | 0.340055 | 0.064* | |
O11A | 0.3323 (7) | 1.0949 (9) | −0.0231 (7) | 0.0653 (12)* | 0.283 (5) |
H11O | 0.283003 | 1.152053 | −0.052998 | 0.078* | 0.283 (5) |
H11P | 0.327964 | 1.056784 | 0.029852 | 0.078* | 0.283 (5) |
O11B | 0.4329 (5) | 1.0244 (6) | −0.0055 (5) | 0.0653 (12)* | 0.371 (5) |
H11Q | 0.452158 | 0.999978 | 0.059700 | 0.078* | 0.371 (5) |
H11R | 0.470448 | 1.022909 | −0.039770 | 0.078* | 0.371 (5) |
O11C | 0.3815 (7) | 1.0466 (8) | 0.0158 (6) | 0.0653 (12)* | 0.321 (6) |
H11S | 0.443940 | 1.014077 | 0.041684 | 0.078* | 0.321 (6) |
H11T | 0.341329 | 1.061387 | 0.046024 | 0.078* | 0.321 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02530 (11) | 0.03862 (14) | 0.03201 (12) | −0.00359 (8) | 0.00950 (9) | −0.00199 (9) |
O1 | 0.0296 (6) | 0.0479 (8) | 0.0298 (7) | −0.0058 (6) | 0.0121 (5) | −0.0074 (6) |
O2 | 0.0382 (7) | 0.0507 (9) | 0.0347 (7) | −0.0027 (6) | 0.0211 (6) | −0.0046 (6) |
O3 | 0.0357 (7) | 0.0452 (8) | 0.0334 (7) | −0.0045 (6) | 0.0168 (6) | −0.0053 (6) |
O4 | 0.0551 (9) | 0.0451 (8) | 0.0305 (7) | −0.0081 (7) | 0.0225 (7) | −0.0081 (6) |
O5 | 0.0475 (9) | 0.0386 (8) | 0.0426 (8) | 0.0067 (6) | 0.0201 (7) | 0.0061 (6) |
O6 | 0.0645 (12) | 0.0670 (12) | 0.0634 (12) | 0.0364 (10) | 0.0270 (10) | 0.0235 (10) |
O7 | 0.0258 (6) | 0.0377 (8) | 0.0393 (7) | −0.0005 (5) | 0.0077 (5) | 0.0012 (6) |
O8 | 0.0408 (8) | 0.0393 (8) | 0.0520 (9) | −0.0021 (7) | 0.0193 (7) | 0.0085 (7) |
N1 | 0.0272 (7) | 0.0273 (7) | 0.0254 (7) | 0.0001 (6) | 0.0099 (6) | −0.0002 (5) |
N2 | 0.0224 (6) | 0.0407 (9) | 0.0241 (7) | 0.0030 (6) | 0.0088 (5) | 0.0005 (6) |
C1 | 0.0287 (8) | 0.0280 (8) | 0.0281 (8) | 0.0013 (7) | 0.0118 (7) | 0.0021 (6) |
C2 | 0.0326 (9) | 0.0347 (10) | 0.0376 (10) | −0.0048 (7) | 0.0153 (8) | −0.0001 (8) |
C3 | 0.0317 (9) | 0.0360 (10) | 0.0384 (10) | −0.0087 (8) | 0.0088 (8) | −0.0029 (8) |
C4 | 0.0370 (10) | 0.0293 (9) | 0.0285 (9) | −0.0026 (7) | 0.0078 (7) | −0.0027 (7) |
C5 | 0.0320 (9) | 0.0250 (8) | 0.0249 (8) | 0.0013 (7) | 0.0094 (7) | 0.0013 (6) |
C6 | 0.0315 (9) | 0.0309 (9) | 0.0287 (8) | 0.0017 (7) | 0.0124 (7) | 0.0012 (7) |
C7 | 0.0387 (10) | 0.0276 (9) | 0.0286 (8) | 0.0029 (7) | 0.0150 (7) | 0.0011 (7) |
C8 | 0.0276 (8) | 0.0514 (12) | 0.0232 (8) | 0.0090 (8) | 0.0109 (7) | 0.0018 (8) |
C9 | 0.0254 (9) | 0.0793 (17) | 0.0296 (9) | 0.0107 (10) | 0.0097 (7) | −0.0009 (10) |
C10 | 0.0255 (9) | 0.0786 (18) | 0.0403 (11) | −0.0070 (10) | 0.0125 (8) | −0.0045 (11) |
C11 | 0.0325 (10) | 0.0581 (14) | 0.0362 (10) | −0.0121 (9) | 0.0149 (8) | −0.0045 (9) |
C12 | 0.0281 (8) | 0.0428 (10) | 0.0250 (8) | −0.0030 (7) | 0.0110 (7) | −0.0020 (7) |
C13 | 0.0437 (11) | 0.0502 (12) | 0.0328 (10) | 0.0182 (9) | 0.0184 (9) | 0.0072 (9) |
C14 | 0.0316 (9) | 0.0384 (10) | 0.0261 (8) | −0.0018 (7) | 0.0122 (7) | −0.0009 (7) |
O9 | 0.0416 (8) | 0.0559 (10) | 0.0343 (7) | 0.0058 (7) | 0.0159 (7) | 0.0084 (7) |
O10 | 0.0737 (12) | 0.0474 (10) | 0.0563 (10) | 0.0038 (8) | 0.0438 (9) | 0.0023 (8) |
Zn1—N2 | 2.0102 (15) | C3—C4 | 1.388 (3) |
Zn1—N1 | 2.0155 (15) | C3—H3 | 0.9400 |
Zn1—O1 | 2.0833 (14) | C4—C5 | 1.380 (3) |
Zn1—O5 | 2.1245 (15) | C4—H4 | 0.9400 |
Zn1—O7 | 2.3093 (15) | C5—C7 | 1.505 (3) |
Zn1—O3 | 2.3312 (14) | C8—C9 | 1.397 (3) |
O1—C6 | 1.265 (2) | C8—C13 | 1.504 (3) |
O2—C6 | 1.241 (2) | C9—C10 | 1.368 (4) |
O3—C7 | 1.237 (2) | C9—H9 | 0.9400 |
O4—C7 | 1.279 (2) | C10—C11 | 1.388 (3) |
O4—H4O | 0.856 (17) | C10—H10 | 0.9400 |
O5—C13 | 1.281 (3) | C11—C12 | 1.383 (3) |
O6—C13 | 1.228 (3) | C11—H11 | 0.9400 |
O7—C14 | 1.232 (2) | C12—C14 | 1.500 (3) |
O8—C14 | 1.286 (2) | O9—H9O | 0.8400 |
O8—H8O | 0.862 (17) | O9—H9P | 0.8401 |
N1—C5 | 1.332 (2) | O10—H10O | 0.8400 |
N1—C1 | 1.333 (2) | O10—H10P | 0.8400 |
N2—C12 | 1.328 (3) | O11A—H11O | 0.8482 |
N2—C8 | 1.334 (2) | O11A—H11P | 0.8477 |
C1—C2 | 1.387 (3) | O11B—H11Q | 0.8485 |
C1—C6 | 1.518 (3) | O11B—H11R | 0.8473 |
C2—C3 | 1.390 (3) | O11C—H11S | 0.8482 |
C2—H2 | 0.9400 | O11C—H11T | 0.8472 |
N2—Zn1—N1 | 167.53 (6) | C5—C4—H4 | 120.9 |
N2—Zn1—O1 | 113.04 (6) | C3—C4—H4 | 120.9 |
N1—Zn1—O1 | 79.13 (6) | N1—C5—C4 | 121.48 (17) |
N2—Zn1—O5 | 78.25 (6) | N1—C5—C7 | 112.87 (16) |
N1—Zn1—O5 | 103.77 (6) | C4—C5—C7 | 125.65 (17) |
O1—Zn1—O5 | 96.75 (6) | O2—C6—O1 | 125.48 (18) |
N2—Zn1—O7 | 74.17 (6) | O2—C6—C1 | 118.34 (17) |
N1—Zn1—O7 | 103.12 (5) | O1—C6—C1 | 116.18 (16) |
O1—Zn1—O7 | 94.21 (6) | O3—C7—O4 | 126.24 (19) |
O5—Zn1—O7 | 152.42 (6) | O3—C7—C5 | 118.40 (16) |
N2—Zn1—O3 | 94.15 (6) | O4—C7—C5 | 115.35 (17) |
N1—Zn1—O3 | 73.57 (5) | N2—C8—C9 | 120.5 (2) |
O1—Zn1—O3 | 152.62 (5) | N2—C8—C13 | 114.68 (17) |
O5—Zn1—O3 | 91.74 (6) | C9—C8—C13 | 124.81 (19) |
O7—Zn1—O3 | 90.01 (5) | C10—C9—C8 | 118.9 (2) |
C6—O1—Zn1 | 114.93 (12) | C10—C9—H9 | 120.5 |
C7—O3—Zn1 | 112.20 (12) | C8—C9—H9 | 120.5 |
C7—O4—H4O | 115 (2) | C9—C10—C11 | 120.0 (2) |
C13—O5—Zn1 | 114.70 (14) | C9—C10—H10 | 120.0 |
C14—O7—Zn1 | 111.66 (13) | C11—C10—H10 | 120.0 |
C14—O8—H8O | 111 (2) | C12—C11—C10 | 118.0 (2) |
C5—N1—C1 | 121.07 (16) | C12—C11—H11 | 121.0 |
C5—N1—Zn1 | 122.67 (12) | C10—C11—H11 | 121.0 |
C1—N1—Zn1 | 116.06 (12) | N2—C12—C11 | 121.75 (19) |
C12—N2—C8 | 120.74 (17) | N2—C12—C14 | 112.43 (16) |
C12—N2—Zn1 | 122.32 (12) | C11—C12—C14 | 125.8 (2) |
C8—N2—Zn1 | 116.94 (14) | O6—C13—O5 | 126.8 (2) |
N1—C1—C2 | 121.08 (17) | O6—C13—C8 | 117.8 (2) |
N1—C1—C6 | 113.51 (15) | O5—C13—C8 | 115.38 (17) |
C2—C1—C6 | 125.41 (17) | O7—C14—O8 | 125.88 (18) |
C1—C2—C3 | 118.11 (18) | O7—C14—C12 | 119.36 (18) |
C1—C2—H2 | 120.9 | O8—C14—C12 | 114.76 (17) |
C3—C2—H2 | 120.9 | H9O—O9—H9P | 102.6 |
C4—C3—C2 | 120.13 (18) | H10O—O10—H10P | 98.2 |
C4—C3—H3 | 119.9 | H11O—O11A—H11P | 111.4 |
C2—C3—H3 | 119.9 | H11Q—O11B—H11R | 126.6 |
C5—C4—C3 | 118.13 (18) | H11S—O11C—H11T | 130.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O10i | 0.86 (2) | 1.60 (2) | 2.451 (2) | 173 (3) |
O8—H8O···O9ii | 0.86 (2) | 1.62 (2) | 2.478 (2) | 170 (3) |
C2—H2···O7iii | 0.94 | 2.62 | 3.512 (2) | 158 |
C4—H4···O7iv | 0.94 | 2.52 | 3.207 (2) | 130 |
C9—H9···O1v | 0.94 | 2.56 | 3.310 (3) | 137 |
O9—H9O···O2iii | 0.84 | 1.94 | 2.752 (2) | 164 |
O9—H9P···O2i | 0.84 | 1.88 | 2.709 (2) | 170 |
O10—H10O···O11Avi | 0.84 | 1.97 | 2.531 (8) | 124 |
O10—H10O···O11Bvi | 0.84 | 1.92 | 2.717 (6) | 158 |
O10—H10O···O11Cvi | 0.84 | 1.96 | 2.607 (7) | 134 |
O10—H10P···O5 | 0.84 | 1.86 | 2.676 (2) | 164 |
O11A—H11P···O3 | 0.85 | 2.11 | 2.875 (8) | 149 |
O11C—H11T···O3 | 0.85 | 2.15 | 2.820 (8) | 136 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y+1, z; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+2, −z; (v) −x+1, −y+2, −z+1; (vi) x, −y+3/2, z+1/2. |
[Ni(C7H4NO4)2]·3H2O | F(000) = 912 |
Mr = 444.98 | Dx = 1.731 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6651 (15) Å | Cell parameters from 3808 reflections |
b = 10.0207 (11) Å | θ = 2.6–24.0° |
c = 13.7696 (15) Å | µ = 1.20 mm−1 |
β = 115.109 (2)° | T = 250 K |
V = 1707.3 (3) Å3 | Rod, green |
Z = 4 | 0.40 × 0.12 × 0.12 mm |
Bruker APEX CCD diffractometer | 5107 independent reflections |
Radiation source: microsource | 3629 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.043 |
ω scans | θmax = 30.7°, θmin = 1.7° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −19→19 |
Tmin = 0.821, Tmax = 1.000 | k = −14→14 |
25725 measured reflections | l = −18→18 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5107 reflections | Δρmax = 0.56 e Å−3 |
263 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.24979 (2) | 0.99449 (2) | 0.24731 (2) | 0.02691 (10) | |
O1 | 0.19331 (12) | 1.01090 (13) | 0.36653 (12) | 0.0338 (3) | |
O2 | 0.04726 (12) | 0.97036 (16) | 0.39563 (12) | 0.0383 (3) | |
O3 | 0.24067 (11) | 0.94554 (15) | 0.09043 (11) | 0.0348 (3) | |
O4 | 0.12899 (14) | 0.84593 (16) | −0.06334 (12) | 0.0428 (4) | |
H4O | 0.1726 (19) | 0.858 (3) | −0.091 (2) | 0.064* | |
O5 | 0.34228 (12) | 0.82400 (14) | 0.31849 (12) | 0.0390 (3) | |
O6 | 0.51339 (15) | 0.7616 (2) | 0.41861 (16) | 0.0651 (5) | |
O7 | 0.22425 (11) | 1.20706 (14) | 0.20609 (12) | 0.0345 (3) | |
O8 | 0.31904 (12) | 1.39512 (15) | 0.22348 (13) | 0.0426 (4) | |
H8O | 0.2599 (12) | 1.429 (3) | 0.1812 (18) | 0.064* | |
O9 | 0.15328 (14) | 0.51674 (16) | 0.10952 (13) | 0.0431 (4) | |
H9O | 0.099413 | 0.503432 | 0.122688 | 0.052* | |
H9P | 0.125443 | 0.519432 | 0.042198 | 0.052* | |
O10 | 0.25374 (15) | 0.61017 (16) | 0.35421 (13) | 0.0513 (4) | |
H10O | 0.310150 | 0.564961 | 0.386267 | 0.062* | |
H10P | 0.276030 | 0.676781 | 0.332447 | 0.062* | |
O11A | 0.3367 (4) | 1.0882 (5) | −0.0253 (4) | 0.0577 (11)* | 0.400 (5) |
H11O | 0.287358 | 1.145334 | −0.055164 | 0.069* | 0.400 (5) |
H11P | 0.332319 | 1.050065 | 0.027686 | 0.069* | 0.400 (5) |
O11B | 0.4335 (7) | 1.0224 (7) | −0.0113 (7) | 0.0577 (11)* | 0.251 (5) |
H11Q | 0.452844 | 0.998035 | 0.053904 | 0.069* | 0.251 (5) |
H11R | 0.471134 | 1.020965 | −0.045566 | 0.069* | 0.251 (5) |
O11C | 0.3853 (7) | 1.0352 (7) | 0.0095 (6) | 0.0577 (11)* | 0.316 (5) |
H11S | 0.447772 | 1.002625 | 0.035351 | 0.069* | 0.316 (5) |
H11T | 0.345162 | 1.049934 | 0.039691 | 0.069* | 0.316 (5) |
N1 | 0.10530 (12) | 0.91467 (15) | 0.17465 (12) | 0.0259 (3) | |
N2 | 0.39703 (12) | 1.06957 (17) | 0.31357 (12) | 0.0282 (3) | |
C1 | 0.04515 (15) | 0.90427 (18) | 0.22897 (15) | 0.0273 (4) | |
C2 | −0.05419 (16) | 0.8408 (2) | 0.18435 (17) | 0.0349 (4) | |
H2 | −0.096504 | 0.832386 | 0.222898 | 0.042* | |
C3 | −0.08993 (17) | 0.7894 (2) | 0.08062 (17) | 0.0363 (5) | |
H3 | −0.157642 | 0.747267 | 0.048053 | 0.044* | |
C4 | −0.02563 (16) | 0.80065 (19) | 0.02566 (16) | 0.0330 (4) | |
H4 | −0.048272 | 0.765639 | −0.043847 | 0.040* | |
C5 | 0.07249 (15) | 0.86464 (18) | 0.07594 (15) | 0.0274 (4) | |
C6 | 0.09866 (16) | 0.96665 (19) | 0.33975 (15) | 0.0284 (4) | |
C7 | 0.15467 (16) | 0.88739 (18) | 0.03159 (15) | 0.0300 (4) | |
C8 | 0.47876 (17) | 0.9870 (2) | 0.36699 (16) | 0.0327 (5) | |
C9 | 0.58453 (17) | 1.0347 (3) | 0.41499 (17) | 0.0422 (5) | |
H9 | 0.642284 | 0.976971 | 0.453447 | 0.051* | |
C10 | 0.60270 (18) | 1.1673 (3) | 0.40509 (19) | 0.0464 (6) | |
H10 | 0.673571 | 1.201014 | 0.436732 | 0.056* | |
C11 | 0.51676 (17) | 1.2525 (2) | 0.34838 (17) | 0.0404 (5) | |
H11 | 0.528277 | 1.343723 | 0.340975 | 0.049* | |
C12 | 0.41416 (15) | 1.1987 (2) | 0.30345 (15) | 0.0300 (4) | |
C13 | 0.44463 (18) | 0.8449 (2) | 0.36941 (18) | 0.0396 (5) | |
C14 | 0.31013 (16) | 1.2704 (2) | 0.23926 (15) | 0.0308 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02258 (16) | 0.03142 (16) | 0.02550 (17) | −0.00112 (9) | 0.00903 (12) | −0.00065 (9) |
O1 | 0.0284 (8) | 0.0450 (9) | 0.0271 (8) | −0.0037 (6) | 0.0110 (6) | −0.0068 (6) |
O2 | 0.0352 (8) | 0.0542 (9) | 0.0306 (8) | −0.0047 (7) | 0.0188 (7) | −0.0057 (7) |
O3 | 0.0339 (8) | 0.0414 (8) | 0.0331 (8) | −0.0030 (6) | 0.0181 (6) | −0.0025 (6) |
O4 | 0.0553 (10) | 0.0485 (9) | 0.0315 (8) | −0.0078 (8) | 0.0251 (7) | −0.0083 (7) |
O5 | 0.0433 (9) | 0.0357 (8) | 0.0400 (9) | 0.0053 (6) | 0.0197 (7) | 0.0072 (6) |
O6 | 0.0620 (12) | 0.0644 (12) | 0.0712 (13) | 0.0334 (10) | 0.0304 (10) | 0.0295 (10) |
O7 | 0.0250 (7) | 0.0367 (7) | 0.0355 (8) | 0.0000 (6) | 0.0068 (6) | 0.0008 (6) |
O8 | 0.0405 (9) | 0.0359 (8) | 0.0488 (10) | −0.0020 (7) | 0.0162 (8) | 0.0055 (7) |
O9 | 0.0393 (9) | 0.0565 (10) | 0.0320 (8) | 0.0068 (7) | 0.0137 (7) | 0.0100 (7) |
O10 | 0.0692 (12) | 0.0425 (9) | 0.0553 (11) | 0.0030 (8) | 0.0391 (9) | 0.0025 (8) |
N1 | 0.0258 (8) | 0.0270 (7) | 0.0243 (8) | −0.0006 (6) | 0.0101 (6) | −0.0004 (6) |
N2 | 0.0217 (8) | 0.0404 (9) | 0.0219 (8) | 0.0020 (7) | 0.0085 (6) | 0.0006 (7) |
C1 | 0.0280 (9) | 0.0277 (9) | 0.0263 (9) | −0.0004 (7) | 0.0115 (8) | 0.0011 (7) |
C2 | 0.0318 (10) | 0.0367 (10) | 0.0383 (12) | −0.0059 (8) | 0.0169 (9) | −0.0017 (8) |
C3 | 0.0303 (11) | 0.0357 (10) | 0.0368 (11) | −0.0096 (8) | 0.0084 (9) | −0.0049 (9) |
C4 | 0.0337 (10) | 0.0307 (10) | 0.0268 (10) | −0.0029 (8) | 0.0053 (8) | −0.0036 (8) |
C5 | 0.0313 (10) | 0.0247 (8) | 0.0233 (9) | 0.0019 (7) | 0.0088 (8) | 0.0016 (7) |
C6 | 0.0285 (10) | 0.0311 (9) | 0.0247 (9) | 0.0009 (8) | 0.0104 (8) | 0.0003 (7) |
C7 | 0.0363 (11) | 0.0279 (9) | 0.0257 (10) | 0.0024 (8) | 0.0130 (8) | 0.0000 (7) |
C8 | 0.0276 (10) | 0.0494 (12) | 0.0220 (10) | 0.0069 (8) | 0.0114 (8) | 0.0034 (8) |
C9 | 0.0253 (11) | 0.0720 (15) | 0.0267 (11) | 0.0106 (10) | 0.0085 (9) | 0.0009 (10) |
C10 | 0.0241 (10) | 0.0720 (16) | 0.0396 (13) | −0.0077 (10) | 0.0101 (9) | −0.0048 (11) |
C11 | 0.0334 (11) | 0.0515 (12) | 0.0357 (11) | −0.0116 (9) | 0.0139 (9) | −0.0046 (10) |
C12 | 0.0262 (9) | 0.0408 (10) | 0.0234 (9) | −0.0046 (8) | 0.0109 (8) | −0.0020 (8) |
C13 | 0.0424 (12) | 0.0461 (12) | 0.0352 (12) | 0.0162 (10) | 0.0211 (10) | 0.0094 (9) |
C14 | 0.0326 (10) | 0.0354 (10) | 0.0247 (9) | −0.0008 (8) | 0.0123 (8) | −0.0007 (8) |
Ni1—N1 | 1.9654 (15) | O11C—H11S | 0.8386 |
Ni1—N2 | 1.9720 (16) | O11C—H11T | 0.8308 |
Ni1—O1 | 2.0959 (14) | N1—C1 | 1.330 (2) |
Ni1—O5 | 2.1036 (14) | N1—C5 | 1.335 (2) |
Ni1—O3 | 2.1666 (14) | N2—C12 | 1.333 (3) |
Ni1—O7 | 2.1940 (14) | N2—C8 | 1.333 (3) |
O1—C6 | 1.265 (2) | C1—C2 | 1.385 (3) |
O2—C6 | 1.243 (2) | C1—C6 | 1.518 (3) |
O3—C7 | 1.253 (2) | C2—C3 | 1.397 (3) |
O4—C7 | 1.271 (2) | C2—H2 | 0.9400 |
O4—H4O | 0.844 (5) | C3—C4 | 1.386 (3) |
O5—C13 | 1.288 (3) | C3—H3 | 0.9400 |
O6—C13 | 1.224 (3) | C4—C5 | 1.379 (3) |
O7—C14 | 1.238 (2) | C4—H4 | 0.9400 |
O8—C14 | 1.284 (2) | C5—C7 | 1.506 (3) |
O8—H8O | 0.842 (5) | C8—C9 | 1.394 (3) |
O9—H9O | 0.8401 | C8—C13 | 1.503 (3) |
O9—H9P | 0.8400 | C9—C10 | 1.369 (4) |
O10—H10O | 0.8400 | C9—H9 | 0.9400 |
O10—H10P | 0.8400 | C10—C11 | 1.393 (3) |
O11A—H11O | 0.8460 | C10—H10 | 0.9400 |
O11A—H11P | 0.8480 | C11—C12 | 1.380 (3) |
O11B—O11Bi | 1.765 (19) | C11—H11 | 0.9400 |
O11B—H11Q | 0.8576 | C12—C14 | 1.500 (3) |
O11B—H11R | 0.8316 | ||
N1—Ni1—N2 | 176.53 (6) | C1—C2—H2 | 120.8 |
N1—Ni1—O1 | 78.84 (6) | C3—C2—H2 | 120.8 |
N2—Ni1—O1 | 104.49 (6) | C4—C3—C2 | 120.05 (18) |
N1—Ni1—O5 | 100.48 (6) | C4—C3—H3 | 120.0 |
N2—Ni1—O5 | 78.52 (6) | C2—C3—H3 | 120.0 |
O1—Ni1—O5 | 92.69 (6) | C5—C4—C3 | 118.05 (18) |
N1—Ni1—O3 | 77.29 (6) | C5—C4—H4 | 121.0 |
N2—Ni1—O3 | 99.40 (6) | C3—C4—H4 | 121.0 |
O1—Ni1—O3 | 156.09 (6) | N1—C5—C4 | 121.39 (17) |
O5—Ni1—O3 | 92.85 (6) | N1—C5—C7 | 111.71 (16) |
N1—Ni1—O7 | 104.37 (6) | C4—C5—C7 | 126.91 (17) |
N2—Ni1—O7 | 76.60 (6) | O2—C6—O1 | 125.83 (18) |
O1—Ni1—O7 | 93.18 (6) | O2—C6—C1 | 118.45 (17) |
O5—Ni1—O7 | 155.12 (6) | O1—C6—C1 | 115.72 (16) |
O3—Ni1—O7 | 91.51 (6) | O3—C7—O4 | 126.24 (19) |
C6—O1—Ni1 | 114.51 (12) | O3—C7—C5 | 117.68 (16) |
C7—O3—Ni1 | 113.04 (12) | O4—C7—C5 | 116.08 (17) |
C7—O4—H4O | 119 (2) | N2—C8—C9 | 120.4 (2) |
C13—O5—Ni1 | 114.88 (13) | N2—C8—C13 | 113.91 (18) |
C14—O7—Ni1 | 112.34 (12) | C9—C8—C13 | 125.7 (2) |
C14—O8—H8O | 112 (2) | C10—C9—C8 | 118.8 (2) |
H9O—O9—H9P | 102.4 | C10—C9—H9 | 120.6 |
H10O—O10—H10P | 103.0 | C8—C9—H9 | 120.6 |
H11O—O11A—H11P | 113.0 | C9—C10—C11 | 120.4 (2) |
O11Bi—O11B—H11Q | 84.6 | C9—C10—H10 | 119.8 |
O11Bi—O11B—H11R | 42.2 | C11—C10—H10 | 119.8 |
H11Q—O11B—H11R | 126.8 | C12—C11—C10 | 117.8 (2) |
H11S—O11C—H11T | 128.7 | C12—C11—H11 | 121.1 |
C1—N1—C5 | 121.50 (16) | C10—C11—H11 | 121.1 |
C1—N1—Ni1 | 118.22 (13) | N2—C12—C11 | 121.53 (19) |
C5—N1—Ni1 | 120.13 (12) | N2—C12—C14 | 111.21 (16) |
C12—N2—C8 | 121.16 (17) | C11—C12—C14 | 127.26 (19) |
C12—N2—Ni1 | 120.80 (13) | O6—C13—O5 | 126.3 (2) |
C8—N2—Ni1 | 118.03 (14) | O6—C13—C8 | 119.0 (2) |
N1—C1—C2 | 120.67 (17) | O5—C13—C8 | 114.65 (18) |
N1—C1—C6 | 112.57 (16) | O7—C14—O8 | 125.42 (18) |
C2—C1—C6 | 126.76 (17) | O7—C14—C12 | 119.01 (17) |
C1—C2—C3 | 118.33 (18) | O8—C14—C12 | 115.57 (17) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O10ii | 0.84 (1) | 1.61 (1) | 2.456 (2) | 177 (3) |
O8—H8O···O9iii | 0.84 (1) | 1.63 (1) | 2.462 (2) | 171 (3) |
O9—H9O···O2iv | 0.84 | 1.94 | 2.751 (2) | 162 |
O9—H9P···O2ii | 0.84 | 1.84 | 2.678 (2) | 172 |
O10—H10O···O11Av | 0.84 | 1.90 | 2.529 (5) | 131 |
O10—H10O···O11Bv | 0.84 | 1.89 | 2.715 (8) | 166 |
O10—H10O···O11Cv | 0.84 | 1.86 | 2.581 (7) | 143 |
O10—H10P···O5 | 0.84 | 1.78 | 2.608 (2) | 167 |
O11A—H11P···O3 | 0.85 | 2.08 | 2.842 (5) | 149 |
O11C—H11T···O3 | 0.83 | 2.11 | 2.798 (8) | 140 |
C2—H2···O7iv | 0.94 | 2.65 | 3.528 (2) | 155 |
C4—H4···O7vi | 0.94 | 2.51 | 3.195 (2) | 130 |
C9—H9···O1vii | 0.94 | 2.55 | 3.275 (3) | 135 |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) x, y+1, z; (iv) −x, y−1/2, −z+1/2; (v) x, −y+3/2, z+1/2; (vi) −x, −y+2, −z; (vii) −x+1, −y+2, −z+1. |
[Zn(C7H2ClNO4)] | Dx = 2.071 Mg m−3 |
Mr = 264.94 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 2678 reflections |
a = 10.0293 (5) Å | θ = 2.4–26.4° |
c = 16.8924 (9) Å | µ = 3.19 mm−1 |
V = 1699.15 (19) Å3 | T = 100 K |
Z = 8 | Block, colourless |
F(000) = 1040 | 0.25 × 0.10 × 0.10 mm |
Bruker APEX CCD diffractometer | 2592 independent reflections |
Radiation source: microsource | 2266 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.059 |
ω scans | θmax = 30.7°, θmin = 2.4° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −13→14 |
Tmin = 0.590, Tmax = 0.746 | k = −14→14 |
25321 measured reflections | l = −24→24 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0248P)2 + 0.4106P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.42 e Å−3 |
2592 reflections | Δρmin = −0.31 e Å−3 |
128 parameters | Absolute structure: Refined as an inversion twin |
0 restraints | Absolute structure parameter: 0.41 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.73303 (4) | 0.76705 (4) | 0.46958 (2) | 0.01131 (10) | |
Cl1 | 0.73595 (8) | 0.52181 (7) | 0.82114 (4) | 0.01753 (16) | |
O1 | 0.9441 (2) | 0.7594 (2) | 0.49968 (12) | 0.0137 (4) | |
O2 | 1.0803 (2) | 0.7124 (2) | 0.60091 (13) | 0.0148 (5) | |
O3 | 0.5199 (2) | 0.7649 (2) | 0.50370 (12) | 0.0169 (5) | |
O4 | 0.3846 (2) | 0.7135 (2) | 0.60504 (13) | 0.0154 (5) | |
N1 | 0.7328 (3) | 0.7259 (2) | 0.58750 (13) | 0.0109 (4) | |
C1 | 0.8485 (3) | 0.6968 (3) | 0.62164 (18) | 0.0104 (6) | |
C2 | 0.8556 (3) | 0.6374 (3) | 0.69606 (18) | 0.0127 (6) | |
H2 | 0.9387 | 0.6182 | 0.7206 | 0.015* | |
C3 | 0.7347 (3) | 0.6073 (3) | 0.73287 (16) | 0.0130 (6) | |
C4 | 0.6137 (3) | 0.6418 (3) | 0.69826 (18) | 0.0132 (6) | |
H4 | 0.5314 | 0.6260 | 0.7245 | 0.016* | |
C5 | 0.6181 (3) | 0.7001 (3) | 0.62380 (19) | 0.0123 (6) | |
C6 | 0.9667 (3) | 0.7258 (4) | 0.56939 (16) | 0.0115 (6) | |
C7 | 0.4968 (3) | 0.7298 (4) | 0.57322 (16) | 0.0128 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01409 (17) | 0.01086 (16) | 0.00897 (16) | −0.00018 (11) | −0.00130 (12) | 0.00069 (12) |
Cl1 | 0.0218 (4) | 0.0193 (3) | 0.0115 (3) | −0.0007 (3) | 0.0004 (3) | 0.0054 (3) |
O1 | 0.0140 (10) | 0.0172 (12) | 0.0098 (9) | 0.0002 (9) | 0.0008 (8) | 0.0012 (9) |
O2 | 0.0097 (10) | 0.0218 (12) | 0.0129 (10) | 0.0015 (9) | 0.0004 (8) | 0.0013 (10) |
O3 | 0.0125 (10) | 0.0251 (13) | 0.0131 (9) | 0.0007 (10) | −0.0010 (8) | 0.0042 (10) |
O4 | 0.0108 (10) | 0.0193 (12) | 0.0162 (11) | 0.0014 (9) | 0.0004 (8) | 0.0027 (10) |
N1 | 0.0109 (10) | 0.0113 (10) | 0.0104 (10) | −0.0015 (11) | 0.0006 (9) | −0.0025 (9) |
C1 | 0.0102 (13) | 0.0110 (15) | 0.0100 (14) | −0.0015 (10) | 0.0007 (11) | −0.0012 (11) |
C2 | 0.0117 (14) | 0.0145 (15) | 0.0120 (16) | 0.0005 (11) | −0.0021 (11) | 0.0016 (12) |
C3 | 0.0182 (15) | 0.0128 (13) | 0.0079 (12) | 0.0010 (12) | −0.0010 (12) | 0.0005 (10) |
C4 | 0.0139 (15) | 0.0139 (15) | 0.0118 (15) | −0.0026 (11) | 0.0022 (11) | −0.0016 (12) |
C5 | 0.0121 (14) | 0.0111 (16) | 0.0138 (15) | −0.0009 (11) | −0.0013 (11) | −0.0020 (12) |
C6 | 0.0100 (13) | 0.0123 (14) | 0.0120 (14) | −0.0005 (13) | 0.0012 (10) | −0.0033 (11) |
C7 | 0.0121 (14) | 0.0121 (14) | 0.0141 (13) | 0.0008 (13) | −0.0020 (10) | −0.0013 (12) |
Zn1—O2i | 1.950 (2) | O4—Zn1iv | 1.985 (2) |
Zn1—O4ii | 1.985 (2) | N1—C1 | 1.329 (4) |
Zn1—N1 | 2.034 (2) | N1—C5 | 1.329 (4) |
Zn1—O1 | 2.178 (2) | C1—C2 | 1.393 (4) |
Zn1—O3 | 2.214 (2) | C1—C6 | 1.506 (4) |
Cl1—C3 | 1.720 (3) | C2—C3 | 1.395 (4) |
O1—C6 | 1.246 (3) | C2—H2 | 0.9500 |
O2—C6 | 1.265 (4) | C3—C4 | 1.391 (5) |
O2—Zn1iii | 1.950 (2) | C4—C5 | 1.388 (4) |
O3—C7 | 1.247 (3) | C4—H4 | 0.9500 |
O4—C7 | 1.259 (4) | C5—C7 | 1.516 (4) |
O2i—Zn1—O4ii | 101.71 (8) | C2—C1—C6 | 124.8 (3) |
O2i—Zn1—N1 | 139.20 (10) | C1—C2—C3 | 116.8 (3) |
O4ii—Zn1—N1 | 117.79 (9) | C1—C2—H2 | 121.6 |
O2i—Zn1—O1 | 105.86 (9) | C3—C2—H2 | 121.6 |
O4ii—Zn1—O1 | 102.54 (9) | C4—C3—C2 | 121.1 (3) |
N1—Zn1—O1 | 76.44 (9) | C4—C3—Cl1 | 119.6 (2) |
O2i—Zn1—O3 | 93.68 (9) | C2—C3—Cl1 | 119.2 (2) |
O4ii—Zn1—O3 | 93.58 (9) | C5—C4—C3 | 117.2 (3) |
N1—Zn1—O3 | 75.04 (9) | C5—C4—H4 | 121.4 |
O1—Zn1—O3 | 151.30 (7) | C3—C4—H4 | 121.4 |
C6—O1—Zn1 | 114.03 (18) | N1—C5—C4 | 121.9 (3) |
C6—O2—Zn1iii | 116.01 (18) | N1—C5—C7 | 113.3 (3) |
C7—O3—Zn1 | 115.3 (2) | C4—C5—C7 | 124.6 (3) |
C7—O4—Zn1iv | 113.67 (19) | O1—C6—O2 | 126.2 (3) |
C1—N1—C5 | 120.9 (2) | O1—C6—C1 | 117.6 (3) |
C1—N1—Zn1 | 117.93 (19) | O2—C6—C1 | 116.2 (3) |
C5—N1—Zn1 | 119.5 (2) | O3—C7—O4 | 127.2 (3) |
N1—C1—C2 | 122.0 (3) | O3—C7—C5 | 115.9 (3) |
N1—C1—C6 | 113.0 (3) | O4—C7—C5 | 116.8 (3) |
C5—N1—C1—C2 | 0.6 (4) | Zn1—O1—C6—O2 | 179.1 (3) |
Zn1—N1—C1—C2 | −164.5 (2) | Zn1—O1—C6—C1 | −0.3 (4) |
C5—N1—C1—C6 | 176.6 (3) | Zn1iii—O2—C6—O1 | −5.2 (5) |
Zn1—N1—C1—C6 | 11.4 (4) | Zn1iii—O2—C6—C1 | 174.2 (2) |
N1—C1—C2—C3 | 1.1 (5) | N1—C1—C6—O1 | −7.0 (5) |
C6—C1—C2—C3 | −174.4 (3) | C2—C1—C6—O1 | 168.8 (3) |
C1—C2—C3—C4 | −3.2 (4) | N1—C1—C6—O2 | 173.5 (3) |
C1—C2—C3—Cl1 | 174.8 (2) | C2—C1—C6—O2 | −10.7 (5) |
C2—C3—C4—C5 | 3.6 (4) | Zn1—O3—C7—O4 | −175.7 (3) |
Cl1—C3—C4—C5 | −174.4 (2) | Zn1—O3—C7—C5 | 2.4 (4) |
C1—N1—C5—C4 | −0.2 (4) | Zn1iv—O4—C7—O3 | 5.3 (5) |
Zn1—N1—C5—C4 | 164.7 (2) | Zn1iv—O4—C7—C5 | −172.8 (2) |
C1—N1—C5—C7 | −175.4 (3) | N1—C5—C7—O3 | 4.8 (4) |
Zn1—N1—C5—C7 | −10.5 (3) | C4—C5—C7—O3 | −170.2 (3) |
C3—C4—C5—N1 | −1.9 (5) | N1—C5—C7—O4 | −176.9 (3) |
C3—C4—C5—C7 | 172.8 (3) | C4—C5—C7—O4 | 8.1 (5) |
Symmetry codes: (i) y, −x+2, −z+1; (ii) y, −x+1, −z+1; (iii) −y+2, x, −z+1; (iv) −y+1, x, −z+1. |
[Zn(C7H3NO5)]·H2O | Dx = 2.108 Mg m−3 |
Mr = 529.02 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 5895 reflections |
a = 10.050 (1) Å | θ = 2.4–27.0° |
c = 16.5060 (16) Å | µ = 2.96 mm−1 |
V = 1667.1 (4) Å3 | T = 100 K |
Z = 4 | Block, brown |
F(000) = 1056 | 0.16 × 0.10 × 0.09 mm |
Bruker APEX CCD diffractometer | 2567 independent reflections |
Radiation source: microsource | 2371 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.047 |
ω scans | θmax = 30.9°, θmin = 2.4° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −14→14 |
Tmin = 0.497, Tmax = 0.746 | k = −14→13 |
24393 measured reflections | l = −22→23 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0285P)2 + 3.4402P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.70 e Å−3 |
2567 reflections | Δρmin = −0.46 e Å−3 |
141 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.47 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.72241 (4) | 0.76135 (4) | 0.46967 (3) | 0.01217 (11) | |
O1 | 0.9408 (3) | 0.7580 (3) | 0.49661 (16) | 0.0159 (6) | |
O2 | 1.0797 (3) | 0.7043 (3) | 0.59777 (18) | 0.0152 (6) | |
O3 | 0.5160 (3) | 0.7585 (3) | 0.50699 (16) | 0.0174 (6) | |
O4 | 0.3840 (3) | 0.7027 (3) | 0.61104 (18) | 0.0155 (6) | |
O5 | 0.7472 (3) | 0.5500 (3) | 0.81395 (18) | 0.0212 (6) | |
H5O | 0.671 (3) | 0.536 (6) | 0.830 (4) | 0.032* | |
O6 | 1.0000 | 0.5000 | 0.8756 (3) | 0.0222 (10) | |
H6P | 1.0783 | 0.4849 | 0.8604 | 0.027* | |
O7 | 0.5000 | 0.5000 | 0.8808 (3) | 0.0368 (14) | |
H7A | 0.5132 | 0.4348 | 0.9116 | 0.044* | 0.5 |
H7B | 0.4868 | 0.5652 | 0.9116 | 0.044* | 0.5 |
N1 | 0.7320 (3) | 0.7229 (3) | 0.58928 (19) | 0.0134 (6) | |
C1 | 0.8490 (4) | 0.6960 (4) | 0.6229 (3) | 0.0136 (7) | |
C2 | 0.8598 (4) | 0.6405 (4) | 0.6996 (3) | 0.0156 (8) | |
H2 | 0.9444 | 0.6236 | 0.7231 | 0.019* | |
C3 | 0.7419 (4) | 0.6101 (4) | 0.7413 (2) | 0.0151 (7) | |
C4 | 0.6192 (4) | 0.6406 (4) | 0.7060 (3) | 0.0148 (8) | |
H4 | 0.5382 | 0.6241 | 0.7338 | 0.018* | |
C5 | 0.6198 (4) | 0.6958 (4) | 0.6292 (3) | 0.0142 (7) | |
C6 | 0.9661 (4) | 0.7214 (4) | 0.5678 (2) | 0.0131 (7) | |
C7 | 0.4964 (4) | 0.7222 (4) | 0.5787 (2) | 0.0133 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0140 (2) | 0.00984 (19) | 0.01268 (18) | −0.00055 (14) | −0.00052 (16) | 0.00011 (16) |
O1 | 0.0134 (12) | 0.0201 (16) | 0.0143 (12) | −0.0001 (11) | −0.0004 (9) | 0.0031 (12) |
O2 | 0.0103 (12) | 0.0185 (15) | 0.0168 (13) | 0.0002 (10) | 0.0004 (10) | 0.0012 (12) |
O3 | 0.0148 (12) | 0.0223 (16) | 0.0152 (12) | 0.0005 (11) | −0.0014 (9) | 0.0027 (12) |
O4 | 0.0110 (12) | 0.0183 (15) | 0.0171 (14) | −0.0003 (10) | 0.0008 (10) | 0.0002 (11) |
O5 | 0.0140 (14) | 0.0294 (15) | 0.0203 (14) | −0.0017 (12) | −0.0021 (12) | 0.0113 (11) |
O6 | 0.021 (2) | 0.023 (3) | 0.023 (2) | 0.0016 (17) | 0.000 | 0.000 |
O7 | 0.071 (5) | 0.020 (3) | 0.019 (2) | −0.014 (3) | 0.000 | 0.000 |
N1 | 0.0120 (13) | 0.0099 (13) | 0.0183 (14) | −0.0008 (13) | −0.0015 (11) | −0.0003 (11) |
C1 | 0.0099 (16) | 0.0137 (19) | 0.0174 (19) | −0.0005 (13) | −0.0020 (14) | −0.0011 (15) |
C2 | 0.0098 (18) | 0.019 (2) | 0.018 (2) | 0.0002 (13) | −0.0018 (15) | −0.0006 (16) |
C3 | 0.0139 (18) | 0.0159 (17) | 0.0156 (16) | 0.0005 (14) | 0.0011 (15) | 0.0009 (13) |
C4 | 0.0127 (18) | 0.0146 (19) | 0.0172 (19) | 0.0010 (13) | 0.0008 (14) | 0.0011 (15) |
C5 | 0.0123 (17) | 0.0140 (18) | 0.0165 (19) | 0.0011 (13) | −0.0022 (14) | −0.0012 (15) |
C6 | 0.0114 (16) | 0.0106 (18) | 0.0174 (17) | 0.0020 (14) | −0.0006 (13) | −0.0019 (15) |
C7 | 0.0140 (16) | 0.0112 (18) | 0.0147 (17) | 0.0007 (14) | 0.0013 (13) | −0.0009 (15) |
Zn1—O2i | 1.956 (3) | O6—H6P | 0.8400 |
Zn1—O4ii | 1.987 (3) | O7—H7A | 0.8400 |
Zn1—N1 | 2.014 (3) | O7—H7B | 0.8400 |
Zn1—O3 | 2.164 (3) | N1—C1 | 1.328 (5) |
Zn1—O1 | 2.240 (3) | N1—C5 | 1.334 (5) |
O1—C6 | 1.258 (5) | C1—C2 | 1.388 (6) |
O2—C6 | 1.256 (5) | C1—C6 | 1.509 (5) |
O2—Zn1iii | 1.956 (3) | C2—C3 | 1.403 (6) |
O3—C7 | 1.255 (5) | C2—H2 | 0.9500 |
O4—C7 | 1.265 (5) | C3—C4 | 1.398 (6) |
O4—Zn1iv | 1.987 (3) | C4—C5 | 1.383 (6) |
O5—C3 | 1.344 (4) | C4—H4 | 0.9500 |
O5—H5O | 0.82 (3) | C5—C7 | 1.518 (5) |
O2i—Zn1—O4ii | 102.10 (12) | N1—C1—C6 | 113.9 (3) |
O2i—Zn1—N1 | 135.97 (12) | C2—C1—C6 | 123.8 (3) |
O4ii—Zn1—N1 | 121.41 (12) | C1—C2—C3 | 118.0 (4) |
O2i—Zn1—O3 | 94.78 (12) | C1—C2—H2 | 121.0 |
O4ii—Zn1—O3 | 94.93 (12) | C3—C2—H2 | 121.0 |
N1—Zn1—O3 | 76.38 (11) | O5—C3—C4 | 120.4 (4) |
O2i—Zn1—O1 | 102.52 (12) | O5—C3—C2 | 120.1 (4) |
O4ii—Zn1—O1 | 102.68 (12) | C4—C3—C2 | 119.5 (3) |
N1—Zn1—O1 | 75.85 (11) | C5—C4—C3 | 117.8 (4) |
O3—Zn1—O1 | 151.96 (9) | C5—C4—H4 | 121.1 |
C6—O1—Zn1 | 112.8 (2) | C3—C4—H4 | 121.1 |
C6—O2—Zn1iii | 120.4 (3) | N1—C5—C4 | 122.5 (4) |
C7—O3—Zn1 | 115.0 (2) | N1—C5—C7 | 112.6 (3) |
C7—O4—Zn1iv | 111.0 (3) | C4—C5—C7 | 124.7 (4) |
C3—O5—H5O | 109 (4) | O2—C6—O1 | 126.3 (4) |
H7A—O7—H7B | 105.5 | O2—C6—C1 | 116.7 (3) |
C1—N1—C5 | 120.0 (3) | O1—C6—C1 | 117.0 (3) |
C1—N1—Zn1 | 119.4 (3) | O3—C7—O4 | 125.7 (4) |
C5—N1—Zn1 | 118.9 (3) | O3—C7—C5 | 116.1 (3) |
N1—C1—C2 | 122.1 (4) | O4—C7—C5 | 118.1 (3) |
Symmetry codes: (i) y, −x+2, −z+1; (ii) y, −x+1, −z+1; (iii) −y+2, x, −z+1; (iv) −y+1, x, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O7 | 0.82 (3) | 1.94 (3) | 2.765 (4) | 172 (6) |
O6—H6P···O5v | 0.84 | 1.95 | 2.782 (4) | 174 |
O7—H7A···O1vi | 0.84 | 2.38 | 3.220 (4) | 177 |
O7—H7A···O2vi | 0.84 | 2.50 | 3.098 (3) | 129 |
O7—H7B···O1vii | 0.84 | 2.38 | 3.220 (4) | 177 |
O7—H7B···O2vii | 0.84 | 2.50 | 3.098 (3) | 129 |
Symmetry codes: (v) −x+2, −y+1, z; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, −y+3/2, −z+3/2. |
[Ni(C7H2ClNO4)(H2O)3] | Dx = 1.950 Mg m−3 |
Mr = 312.30 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 2927 reflections |
a = 9.544 (2) Å | θ = 2.3–26.2° |
c = 23.361 (5) Å | µ = 2.10 mm−1 |
V = 2127.9 (11) Å3 | T = 250 K |
Z = 8 | Rod, green |
F(000) = 1264 | 0.40 × 0.25 × 0.18 mm |
Bruker APEX CCD diffractometer | 1127 independent reflections |
Radiation source: microsource | 935 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.092 |
ω scans | θmax = 26.8°, θmin = 2.3° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −12→11 |
Tmin = 0.468, Tmax = 0.745 | k = −12→12 |
12540 measured reflections | l = −29→29 |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0337P)2 + 17.5732P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
1127 reflections | Δρmax = 0.50 e Å−3 |
99 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.5000 | 0.2500 | 0.53529 (3) | 0.0225 (3) | |
Cl1 | 0.5000 | 0.2500 | 0.80909 (7) | 0.0661 (8) | |
O1 | 0.6275 (4) | 0.4270 (4) | 0.55472 (12) | 0.0294 (8) | |
O2B | 0.667 (4) | 0.574 (2) | 0.6293 (4) | 0.035 (6) | 0.55 (8) |
O2A | 0.733 (6) | 0.538 (4) | 0.6258 (9) | 0.054 (7) | 0.45 (8) |
O3 | 0.6692 (4) | 0.1210 (4) | 0.52847 (14) | 0.0309 (8) | |
H3O | 0.740 (3) | 0.163 (5) | 0.523 (2) | 0.037* | |
H3P | 0.668 (5) | 0.068 (5) | 0.5556 (17) | 0.037* | |
O4 | 0.5000 | 0.2500 | 0.4487 (2) | 0.0361 (12) | |
H4O | 0.434 (3) | 0.229 (7) | 0.4299 (15) | 0.043* | |
N1 | 0.5000 | 0.2500 | 0.6198 (2) | 0.0239 (11) | |
C1 | 0.5686 (6) | 0.3496 (5) | 0.64751 (19) | 0.0296 (11) | |
C2 | 0.5715 (6) | 0.3546 (5) | 0.70670 (19) | 0.0363 (12) | |
H2 | 0.6198 | 0.4257 | 0.7264 | 0.044* | |
C3 | 0.5000 | 0.2500 | 0.7356 (3) | 0.0351 (16) | |
C4 | 0.6370 (7) | 0.4548 (6) | 0.6076 (2) | 0.0386 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0320 (5) | 0.0250 (5) | 0.0104 (4) | 0.0007 (4) | 0.000 | 0.000 |
Cl1 | 0.136 (2) | 0.0509 (13) | 0.0115 (8) | −0.0140 (14) | 0.000 | 0.000 |
O1 | 0.043 (2) | 0.0322 (18) | 0.0135 (14) | −0.0082 (15) | −0.0012 (13) | 0.0011 (13) |
O2B | 0.059 (12) | 0.023 (6) | 0.021 (4) | −0.021 (6) | 0.000 (4) | −0.005 (3) |
O2A | 0.075 (19) | 0.051 (9) | 0.036 (6) | −0.011 (13) | −0.013 (8) | −0.002 (6) |
O3 | 0.036 (2) | 0.034 (2) | 0.0229 (16) | 0.0024 (15) | −0.0037 (15) | −0.0010 (14) |
O4 | 0.048 (3) | 0.044 (3) | 0.016 (2) | 0.006 (3) | 0.000 | 0.000 |
N1 | 0.031 (3) | 0.020 (3) | 0.021 (3) | 0.000 (2) | 0.000 | 0.000 |
C1 | 0.045 (3) | 0.028 (2) | 0.015 (2) | 0.000 (2) | −0.0011 (19) | 0.0004 (18) |
C2 | 0.060 (4) | 0.033 (3) | 0.016 (2) | −0.008 (3) | −0.005 (2) | 0.0001 (19) |
C3 | 0.061 (5) | 0.030 (4) | 0.014 (3) | −0.001 (3) | 0.000 | 0.000 |
C4 | 0.062 (4) | 0.034 (3) | 0.020 (2) | −0.016 (3) | −0.007 (2) | 0.003 (2) |
Ni1—N1 | 1.975 (5) | O3—H3O | 0.794 (19) |
Ni1—O4 | 2.023 (5) | O3—H3P | 0.809 (19) |
Ni1—O3i | 2.036 (4) | O4—H4O | 0.794 (18) |
Ni1—O3 | 2.036 (4) | N1—C1 | 1.323 (5) |
Ni1—O1 | 2.131 (3) | N1—C1i | 1.323 (5) |
Ni1—O1i | 2.131 (3) | C1—C2 | 1.384 (6) |
Cl1—C3 | 1.717 (7) | C1—C4 | 1.518 (7) |
O1—C4 | 1.267 (6) | C2—C3 | 1.385 (6) |
O2B—C4 | 1.280 (13) | C2—H2 | 0.9400 |
O2A—C4 | 1.28 (2) | C3—C2i | 1.385 (6) |
N1—Ni1—O4 | 180.0 | Ni1—O4—H4O | 124 (3) |
N1—Ni1—O3i | 94.48 (9) | C1—N1—C1i | 121.5 (6) |
O4—Ni1—O3i | 85.52 (9) | C1—N1—Ni1 | 119.3 (3) |
N1—Ni1—O3 | 94.48 (9) | C1i—N1—Ni1 | 119.3 (3) |
O4—Ni1—O3 | 85.52 (9) | N1—C1—C2 | 121.5 (5) |
O3i—Ni1—O3 | 171.03 (19) | N1—C1—C4 | 112.8 (4) |
N1—Ni1—O1 | 77.70 (8) | C2—C1—C4 | 125.6 (5) |
O4—Ni1—O1 | 102.30 (8) | C1—C2—C3 | 116.9 (5) |
O3i—Ni1—O1 | 89.43 (14) | C1—C2—H2 | 121.6 |
O3—Ni1—O1 | 92.48 (14) | C3—C2—H2 | 121.6 |
N1—Ni1—O1i | 77.70 (8) | C2i—C3—C2 | 121.7 (6) |
O4—Ni1—O1i | 102.30 (8) | C2i—C3—Cl1 | 119.2 (3) |
O3i—Ni1—O1i | 92.48 (14) | C2—C3—Cl1 | 119.2 (3) |
O3—Ni1—O1i | 89.43 (14) | O1—C4—O2B | 126.1 (7) |
O1—Ni1—O1i | 155.40 (16) | O1—C4—O2A | 120.3 (15) |
C4—O1—Ni1 | 114.5 (3) | O1—C4—C1 | 115.4 (4) |
Ni1—O3—H3O | 113 (4) | O2B—C4—C1 | 116.3 (7) |
Ni1—O3—H3P | 108 (4) | O2A—C4—C1 | 120.7 (8) |
H3O—O3—H3P | 117 (4) |
Symmetry code: (i) −x+1, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3P···O2Bii | 0.81 (2) | 2.10 (3) | 2.90 (3) | 174 (5) |
O3—H3P···O2Aii | 0.81 (2) | 1.85 (3) | 2.628 (18) | 162 (6) |
O3—H3O···Cl1iii | 0.79 (2) | 2.75 (3) | 3.464 (4) | 150 (5) |
O4—H4O···O2Biv | 0.79 (2) | 2.53 (6) | 2.95 (3) | 115 (5) |
O4—H4O···O2Bv | 0.79 (2) | 2.11 (5) | 2.83 (3) | 151 (6) |
Symmetry codes: (ii) −y+5/4, x−3/4, −z+5/4; (iii) −y+5/4, x−1/4, z−1/4; (iv) −x+1, −y+1, −z+1; (v) y−1/4, −x+3/4, z−1/4. |
[Ni(C7H3NO5)(H2O)3]·1.7H2O | F(000) = 1336 |
Mr = 324.49 | Dx = 1.911 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.7249 (11) Å | Cell parameters from 5539 reflections |
b = 6.8538 (5) Å | θ = 2.8–30.1° |
c = 22.3510 (16) Å | µ = 1.77 mm−1 |
β = 90.355 (1)° | T = 100 K |
V = 2255.7 (3) Å3 | Block, brown |
Z = 8 | 0.33 × 0.32 × 0.12 mm |
Bruker APEX CCD diffractometer | 3368 independent reflections |
Radiation source: microsource | 2963 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.027 |
ω scans | θmax = 31.0°, θmin = 2.8° |
Absorption correction: multi-scan SADABS (Bruker, 2008) | h = −21→21 |
Tmin = 0.569, Tmax = 0.746 | k = −9→9 |
16693 measured reflections | l = −31→30 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0471P)2 + 5.9483P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
3368 reflections | Δρmax = 0.79 e Å−3 |
214 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.48005 (2) | 0.75027 (4) | 0.63778 (2) | 0.01414 (10) | |
O1 | 0.52712 (10) | 0.7082 (2) | 0.54625 (7) | 0.0134 (3) | |
O2 | 0.48457 (11) | 0.7612 (2) | 0.45125 (7) | 0.0143 (3) | |
O3 | 0.38945 (11) | 0.8469 (2) | 0.70495 (7) | 0.0181 (3) | |
O4A | 0.27374 (15) | 1.0577 (4) | 0.71517 (8) | 0.0234 (7) | 0.904 (9) |
O4B | 0.2459 (12) | 0.959 (3) | 0.7121 (7) | 0.014 (5)* | 0.096 (9) |
O5 | 0.17015 (10) | 1.0753 (2) | 0.48993 (7) | 0.0137 (3) | |
H5O | 0.1287 | 1.1189 | 0.5118 | 0.021* | |
O6 | 0.42492 (12) | 0.4707 (2) | 0.63491 (7) | 0.0172 (3) | |
H6O | 0.441 (3) | 0.418 (5) | 0.6044 (12) | 0.042 (10)* | |
H6P | 0.3683 (13) | 0.475 (7) | 0.639 (2) | 0.057 (13)* | |
O7 | 0.57597 (12) | 0.6389 (3) | 0.69216 (7) | 0.0204 (3) | |
H7P | 0.593 (3) | 0.707 (5) | 0.7192 (13) | 0.039 (10)* | |
H7O | 0.573 (3) | 0.527 (3) | 0.7046 (19) | 0.055 (13)* | |
O8 | 0.55505 (12) | 1.0078 (3) | 0.64271 (8) | 0.0232 (4) | |
H8P | 0.6094 (13) | 0.990 (6) | 0.6466 (18) | 0.043 (11)* | |
H8O | 0.548 (2) | 1.071 (4) | 0.6119 (11) | 0.029 (9)* | |
O9 | 0.25952 (14) | 0.9505 (3) | 0.83233 (8) | 0.0324 (5) | |
H9O | 0.2616 | 0.8316 | 0.8228 | 0.039* | |
H9P | 0.2564 | 1.0091 | 0.7994 | 0.039* | |
O10 | 0.5000 | 0.2818 (8) | 0.7500 | 0.0378 (14) | 0.602 (7) |
O11 | 0.5818 (4) | 0.2770 (7) | 0.7227 (2) | 0.0269 (15) | 0.398 (7) |
H11O | 0.624 (5) | 0.268 (12) | 0.747 (3) | 0.032* | 0.398 (7) |
H10O | 0.536 (4) | 0.210 (6) | 0.731 (4) | 0.20 (5)* | |
N1 | 0.38314 (12) | 0.8706 (3) | 0.58926 (8) | 0.0117 (3) | |
C1 | 0.38576 (13) | 0.8646 (3) | 0.52962 (9) | 0.0097 (3) | |
C2 | 0.31536 (13) | 0.9363 (3) | 0.49499 (9) | 0.0103 (3) | |
H2 | 0.3184 | 0.9330 | 0.4526 | 0.012* | |
C3 | 0.23924 (13) | 1.0142 (3) | 0.52399 (9) | 0.0112 (4) | |
C4 | 0.23817 (14) | 1.0234 (3) | 0.58684 (9) | 0.0130 (4) | |
H4 | 0.1882 | 1.0784 | 0.6075 | 0.016* | |
C5 | 0.31234 (14) | 0.9496 (3) | 0.61747 (9) | 0.0129 (4) | |
C6 | 0.47189 (14) | 0.7704 (3) | 0.50617 (9) | 0.0109 (4) | |
C7 | 0.32457 (16) | 0.9490 (4) | 0.68510 (10) | 0.0194 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01316 (15) | 0.01744 (16) | 0.01178 (15) | 0.00301 (10) | −0.00192 (10) | −0.00028 (10) |
O1 | 0.0100 (7) | 0.0168 (7) | 0.0133 (7) | 0.0032 (5) | −0.0016 (5) | 0.0005 (5) |
O2 | 0.0129 (7) | 0.0168 (7) | 0.0133 (7) | 0.0034 (5) | 0.0022 (5) | 0.0000 (5) |
O3 | 0.0188 (8) | 0.0238 (8) | 0.0115 (7) | 0.0072 (6) | −0.0021 (6) | −0.0004 (6) |
O4A | 0.0238 (11) | 0.0332 (15) | 0.0132 (9) | 0.0120 (10) | 0.0010 (7) | −0.0036 (8) |
O5 | 0.0087 (6) | 0.0180 (7) | 0.0143 (7) | 0.0050 (5) | −0.0015 (5) | −0.0006 (6) |
O6 | 0.0181 (8) | 0.0205 (8) | 0.0130 (7) | 0.0016 (6) | 0.0017 (6) | −0.0019 (6) |
O7 | 0.0173 (8) | 0.0301 (9) | 0.0139 (7) | 0.0098 (7) | −0.0032 (6) | −0.0038 (7) |
O8 | 0.0193 (9) | 0.0253 (9) | 0.0248 (9) | −0.0030 (7) | −0.0096 (7) | 0.0069 (7) |
O9 | 0.0327 (10) | 0.0447 (12) | 0.0198 (8) | −0.0085 (9) | −0.0005 (7) | 0.0067 (8) |
O10 | 0.056 (4) | 0.031 (3) | 0.026 (2) | 0.000 | −0.007 (2) | 0.000 |
O11 | 0.034 (3) | 0.019 (2) | 0.028 (3) | 0.0041 (19) | −0.006 (2) | 0.0017 (17) |
N1 | 0.0108 (8) | 0.0135 (8) | 0.0108 (7) | 0.0011 (6) | −0.0002 (6) | 0.0007 (6) |
C1 | 0.0068 (8) | 0.0108 (8) | 0.0115 (8) | −0.0001 (6) | 0.0001 (6) | −0.0006 (7) |
C2 | 0.0094 (8) | 0.0109 (8) | 0.0106 (8) | 0.0005 (7) | −0.0008 (6) | −0.0001 (7) |
C3 | 0.0083 (8) | 0.0109 (8) | 0.0142 (9) | −0.0003 (7) | −0.0013 (7) | 0.0004 (7) |
C4 | 0.0097 (9) | 0.0151 (9) | 0.0142 (9) | 0.0030 (7) | 0.0017 (7) | 0.0006 (7) |
C5 | 0.0120 (9) | 0.0155 (9) | 0.0113 (8) | 0.0027 (7) | 0.0020 (7) | −0.0007 (7) |
C6 | 0.0097 (8) | 0.0098 (8) | 0.0131 (9) | 0.0000 (7) | 0.0008 (7) | −0.0006 (7) |
C7 | 0.0201 (11) | 0.0259 (11) | 0.0121 (9) | 0.0068 (9) | 0.0011 (8) | 0.0001 (8) |
Ni1—N1 | 1.9681 (17) | O8—H8P | 0.814 (19) |
Ni1—O7 | 2.0082 (17) | O8—H8O | 0.820 (18) |
Ni1—O6 | 2.0816 (18) | O9—H9O | 0.8433 |
Ni1—O8 | 2.0848 (19) | O9—H9P | 0.8400 |
Ni1—O3 | 2.1205 (16) | O10—H10O | 0.84 (2) |
Ni1—O1 | 2.1833 (15) | O11—H11O | 0.83 (2) |
O1—C6 | 1.279 (3) | O11—H10O | 0.84 (2) |
O2—C6 | 1.244 (3) | N1—C1 | 1.335 (2) |
O3—C7 | 1.262 (3) | N1—C5 | 1.336 (3) |
O4A—C7 | 1.254 (3) | C1—C2 | 1.380 (3) |
O4B—C7 | 1.311 (17) | C1—C6 | 1.519 (3) |
O5—C3 | 1.334 (2) | C2—C3 | 1.404 (3) |
O5—H5O | 0.8400 | C2—H2 | 0.9500 |
O6—H6O | 0.808 (18) | C3—C4 | 1.406 (3) |
O6—H6P | 0.841 (19) | C4—C5 | 1.381 (3) |
O7—H7P | 0.805 (19) | C4—H4 | 0.9500 |
O7—H7O | 0.816 (19) | C5—C7 | 1.521 (3) |
N1—Ni1—O7 | 175.97 (7) | H11O—O11—H10O | 115 (10) |
N1—Ni1—O6 | 95.02 (7) | C1—N1—C5 | 120.76 (17) |
O7—Ni1—O6 | 86.66 (7) | C1—N1—Ni1 | 120.80 (13) |
N1—Ni1—O8 | 93.23 (7) | C5—N1—Ni1 | 118.35 (14) |
O7—Ni1—O8 | 85.38 (8) | N1—C1—C2 | 121.52 (18) |
O6—Ni1—O8 | 170.86 (7) | N1—C1—C6 | 112.78 (17) |
N1—Ni1—O3 | 78.58 (7) | C2—C1—C6 | 125.70 (18) |
O7—Ni1—O3 | 97.67 (6) | C1—C2—C3 | 118.41 (18) |
O6—Ni1—O3 | 93.58 (7) | C1—C2—H2 | 120.8 |
O8—Ni1—O3 | 91.91 (7) | C3—C2—H2 | 120.8 |
N1—Ni1—O1 | 76.84 (6) | O5—C3—C2 | 117.66 (18) |
O7—Ni1—O1 | 106.90 (6) | O5—C3—C4 | 122.86 (18) |
O6—Ni1—O1 | 88.60 (6) | C2—C3—C4 | 119.47 (18) |
O8—Ni1—O1 | 89.44 (7) | C5—C4—C3 | 117.72 (18) |
O3—Ni1—O1 | 155.42 (6) | C5—C4—H4 | 121.1 |
C6—O1—Ni1 | 114.09 (13) | C3—C4—H4 | 121.1 |
C7—O3—Ni1 | 113.73 (14) | N1—C5—C4 | 122.08 (18) |
C3—O5—H5O | 109.5 | N1—C5—C7 | 112.32 (18) |
Ni1—O6—H6O | 109 (3) | C4—C5—C7 | 125.59 (18) |
Ni1—O6—H6P | 111 (3) | O2—C6—O1 | 125.13 (19) |
H6O—O6—H6P | 114 (4) | O2—C6—C1 | 119.50 (18) |
Ni1—O7—H7P | 117 (3) | O1—C6—C1 | 115.36 (17) |
Ni1—O7—H7O | 122 (3) | O4A—C7—O3 | 126.4 (2) |
H7P—O7—H7O | 108 (4) | O3—C7—O4B | 122.4 (8) |
Ni1—O8—H8P | 113 (3) | O4A—C7—C5 | 117.6 (2) |
Ni1—O8—H8O | 110 (2) | O3—C7—C5 | 115.80 (19) |
H8P—O8—H8O | 107 (4) | O4B—C7—C5 | 111.0 (8) |
H9O—O9—H9P | 104.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O1i | 0.84 | 1.79 | 2.624 (2) | 169 |
O6—H6O···O2ii | 0.81 (2) | 2.07 (2) | 2.836 (2) | 158 (4) |
O6—H6O···O5iii | 0.81 (2) | 2.66 (4) | 3.130 (2) | 119 (3) |
O6—H6P···O9iv | 0.84 (2) | 2.00 (2) | 2.821 (3) | 167 (4) |
O7—H7P···O3v | 0.81 (2) | 1.96 (2) | 2.751 (2) | 166 (4) |
O7—H7O···O10 | 0.82 (2) | 2.24 (3) | 2.989 (5) | 152 (4) |
O7—H7O···O11 | 0.82 (2) | 1.77 (2) | 2.574 (5) | 170 (5) |
O8—H8P···O9v | 0.81 (2) | 2.00 (2) | 2.811 (3) | 173 (4) |
O8—H8O···O2vi | 0.82 (2) | 1.88 (2) | 2.691 (2) | 170 (3) |
O9—H9O···O4Aiv | 0.84 | 2.12 | 2.934 (3) | 161 |
O9—H9O···O4Biv | 0.84 | 2.67 | 3.51 (2) | 175 |
O9—H9P···O4A | 0.84 | 1.93 | 2.729 (3) | 159 |
O9—H9P···O4B | 0.84 | 1.98 | 2.693 (17) | 142 |
C4—H4···O7i | 0.95 | 2.55 | 3.456 (3) | 159 |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, −y+3/2, −z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, y, −z+3/2; (vi) −x+1, −y+2, −z+1. |
Acknowledgements
We thank Ina Stickeler for preliminary work with 1, Niklas Polter for the synthesis and analytical characterization, and Stefanie Noelke for the new synthesis route to 5.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Aghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007). Acta Cryst. E63, m1917–m1918. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baruah, J. B. (2016). Private communication (refcode PYDCNI08). CCDC, Cambridge, England. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). SAINT+. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, J.-Z., Zhang, H., Shi, Y.-Q., Chen, B. & Gao, H.-L. (2006). Acta Cryst. E62, m2057–m2058. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fronczek, F. R. (2015). Private communication (refcode MENWEI02). CCDC, Cambridge, England. Google Scholar
Gao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5980–5988. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gaw, H., Robinson, W. R. & Walton, R. A. (1971). Inorg. Nucl. Chem. Lett. 7, 695–699. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455. Google Scholar
Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235. CrossRef CAS Web of Science Google Scholar
Kondraçka, M. & Englert, U. (2008). Inorg. Chem. 47, 10246–10257. PubMed Google Scholar
Kremer, M. & Englert, U. (2018). Z. Kristallogr. 233, 437–452. CrossRef CAS Google Scholar
Li, J.-X. & Du, Z.-X. (2015). Z. Naturforsch. Teil B, 70, 505–511. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Merkens, C., Becker, N., Lamberts, K. & Englert, U. (2012). Dalton Trans. 41, 8594–8599. Web of Science CSD CrossRef CAS PubMed Google Scholar
Merkens, C. & Englert, U. (2012). Dalton Trans. 41, 4664–4673. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mirzaei, M. (2016). Private communication (refcode PYDCNI07). CCDC, Cambridge, England. Google Scholar
Mirzaei, M., Eshtiagh-Hosseini, H., Karrabi, Z., Molčanov, K., Eydizadeh, E., Mague, J. T., Bauzá, A. & Frontera, A. (2014). CrystEngComm, 16, 5352–5363. Web of Science CSD CrossRef CAS Google Scholar
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadah, R. K. (2002). J. Chem. Res. pp. 477–479. CrossRef Google Scholar
Müller, U. (2013). Symmetry Relationships between Crystal Structures. Oxford University Press. Google Scholar
Nathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509–518. Web of Science CSD CrossRef CAS Google Scholar
Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305–307. CSD CrossRef CAS IUCr Journals Google Scholar
Quaglieri, P., Loiseleur, H. & Thomas, G. (1972). Acta Cryst. B28, 2583–2590. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sanotra, S., Gupta, R., Sheikh, H. N., Kalsotra, B. L., Gupta, V. K. & Rajnikant (2012). Acta Cryst. B68, 619–624. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Villa, A. C., Guastini, C., Musatti, A. & Nardelli, M. (1972). Gazz. Chim. Ital. 102, 226–233. Google Scholar
Wang, L., Li, J. & Wang, E. (2004). Chem. Res. Chin. Univ. 20, 127–130. CAS Google Scholar
Zhong, X., Wang, X., Jiang, Y. & Lu, D. (2004). Guangxi Shifan Daxue Xuebao Ziran Kexueban (J. Guangxi Normal Univ.), 22, 49–52. CAS Google Scholar
Zhou, G.-W., Lan, Y.-Z., Zheng, F.-K., Zhang, X., Lin, M.-H., Guo, G.-C. & Huang, J.-S. (2006). Chem. Phys. Lett. 426, 341–344. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.