research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 210,220-bis­­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 April 2019; accepted 23 May 2019; online 31 May 2019)

The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitro­gen atoms of a porphyrin mol­ecule within a square-planar coordination environment. Weak intra­molecular C—H⋯Cl and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding inter­actions. In addition, the two unique di­chloro­methane solvate mol­ecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chloro­phenyl groups of the porphyrin mol­ecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-ortho­rhom­bic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry.

1. Chemical context

The crystal structures of several strapped (Peters et al., 2019[Peters, M. K., Hamer, S., Jäkel, T., Röhricht, F., Sönnichsen, F. D., von Essen, C., Lahtinen, M., Naether, C., Rissanen, K. & Herges, R. (2019). Inorg. Chem. DOI: 10.1021/acs.inorgchem.9b00349.]), capped (Ganesh & Sanders, 1980[Ganesh, K. N. & Sanders, J. K. M. (1980). J. Chem. Soc. Chem. Commun. pp. 1129-1131.]), hindered (Momenteau et al., 1983[Momenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189-196.]) and bridged porphyrins (Battersby & Hamilton, 1980[Battersby, A. R. & Hamilton, A. D. (1980). J. Chem. Soc. Chem. Commun. pp. 117-119.]) have been determined. Strapped porphyrins are of extraordinary importance because they exhibit different structural features, which allow a wide range of applications (Goncalves & Sanders, 2007[Goncalves, D. P. N. & Sanders, J. K. M. (2007). Synlett, 4, 591-594.]) and have been used as chiral epoxidation catalysts (Collman et al., 1995[Collman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692-703.]), as models for enzymes such as cytochrome P450 (Andrioletti et al., 1999[Andrioletti, B., Ricard, D. & Boitrel, B. (1999). New J. Chem. 23, 1143-1150.]), as building blocks for the synthesis of catenanes (Gunter et al., 1994[Gunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810-4823.]), as building blocks for self-assembled photonic wires (Koepf et al., 2005[Koepf, M., Trabolsi, A., Elhabiri, M., Wytko, J. A., Paul, D., Albrecht-Gary, A. M. & Weiss, J. (2005). Org. Lett. 7, 1279-1282.]), or as models for a number of biomimetic porphyrins (Morgan & Dolphin, 1987[Morgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115-203.]).

In our ongoing investigations on this topic, we became inter­ested in the synthesis of the title compound, which was prepared by the following strategy, as detailed in the reaction scheme (Fig. 1[link]): salicyl­aldehyde (2) and 1,4-bis­(2-bromo­eth­oxy)-2-butyne (1) were reacted to give 2,2′-({[but-2-yne-1,4-diylbis(­oxy)]bis­(ethane-2,1-di­yl)}bis­(­oxy))dibenzaldehyde (3) (Shankar et al., 2018[Shankar, S., Peters, M. K., Steinborn, K., Krahwinkel, B., Sönnichsen, F., Grote, D., Sander, W., Lohmiller, T. & Herges, R. (2018). Nat. Commun. 9, 1-12.]). The bridge 3 was used in Lindsay-type cyclization reactions with meso-(di­chloro­phen­yl)dipyrro­methane (6) (Littler et al., 1999[Littler, B. J., Miller, M. A., Hung, C. A., Wagner, R. W., O'Shea, D. F., Boyle, P. D. & Lindsey, J. S. (1999). J. Org. Chem. 64, 1391-1396.]) to afford strapped porphyrins with yields of up to 14%. Upon heating a solution of the free-base porphyrin (7) with nickel(II) acetyl­acetonate in toluene to 383 K, the title NiII-porphyrin (8) was obtained in 80% yield. We inserted NiII into the porphyrin because nickel-hydro­porphyrins are powerful catalysts in reduction processes in nature, and in technologically important reactions (Peters & Herges, 2018[Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177-3182.]). Furthermore, NiII-porphyrins have been used as responsive contrast agents in functional magnetic resonance imaging (fMRI) (Venkataramani et al., 2011[Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445-448.]; Dommaschk et al., 2015a[Dommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496-8500.],b[Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552-7555.]; Peters et al., 2018[Peters, M. K., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1013-1016.]). The reaction product was crystallized from a di­chloro­methane solution and was unambiguously characterized by single crystal X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound.

2. Structural commentary

The crystal structure of the title compound consists of discrete Ni-porphyrin complexes, in which the NiII cations show a square-planar coordination (Fig. 2[link]). The asymmetric unit consists of two complexes in general positions that show a significantly different conformation in their bridging side chain (Fig. 3[link]). The Ni—N bond lengths are similar in both complexes and range from 1.937 (2) to 1.950 (3) Å (Table 1[link]), in accordance with literature values (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]). In both complexes, the NiII cations are situated in the porphyrin ring plane (Fig. 3[link]), with root-mean-square deviations of 0.0276 Å for mol­ecule 1 (Ni1) and of 0.0186 Å for mol­ecule 2 (Ni2). The 2,6-di­chloro­phenyl groups are nearly perpendicular to the corresponding porphyrin planes with dihedral angles of 89.82 (4) and 88.23 (4)° (mol­ecule 1) and 88.89 (5) and 85.82 (4)° (mol­ecule 2). This conformation is consolidated by intra­molecular C—H⋯Cl hydrogen bonding between the methyl­ene groups of the side chains and the Cl atoms of the 2,6-dichlorphenyl rings (Fig. 4[link], Table 2[link]). In addition, the conformation of each side chain is stabilized by intra­molecular C—H⋯O bonding (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 1.937 (2) Ni2—N63 1.937 (3)
Ni1—N2 1.942 (2) Ni2—N64 1.939 (3)
Ni1—N1 1.943 (3) Ni2—N62 1.948 (3)
Ni1—N3 1.946 (3) Ni2—N61 1.950 (3)
       
N4—Ni1—N2 177.92 (9) N63—Ni2—N64 90.11 (10)
N4—Ni1—N1 90.12 (10) N63—Ni2—N62 89.96 (11)
N2—Ni1—N1 89.82 (10) N64—Ni2—N62 179.09 (9)
N4—Ni1—N3 89.77 (10) N63—Ni2—N61 178.44 (9)
N2—Ni1—N3 90.35 (10) N64—Ni2—N61 89.59 (10)
N1—Ni1—N3 178.43 (9) N62—Ni2—N61 90.37 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl62i 0.95 2.86 3.566 (4) 132
C13—H13⋯Cl64 0.95 2.89 3.632 (3) 136
C31—H31⋯Cl63ii 0.95 2.95 3.878 (4) 165
C41—H41A⋯Cl1 0.99 2.94 3.918 (4) 169
C41—H41B⋯O1 0.99 2.39 3.037 (5) 122
C44—H44A⋯Cl3 0.99 2.91 3.867 (4) 163
C44—H44B⋯O4 0.99 2.37 3.029 (5) 123
C63—H63⋯Cl2iii 0.95 2.87 3.669 (3) 142
C73—H73⋯Cl4 0.95 2.83 3.639 (3) 143
C101—H10C⋯Cl61 0.99 2.75 3.734 (4) 172
C101—H10D⋯O61 0.99 2.30 2.962 (4) 123
C104—H10F⋯N64 0.99 2.67 3.410 (5) 132
C104—H10F⋯O64 0.99 2.40 3.028 (5) 121
C121—H20B⋯O62iv 0.99 2.65 3.304 (7) 124
C121—H20A⋯Cl2v 0.99 2.90 3.563 (6) 125
C122—H20F⋯Cl4iv 0.99 2.70 3.583 (6) 149
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular structures of the two crystallographically independent complexes and solvent mol­ecules with the atom labelling and displacement ellipsoids drawn at the 50% probability level. For clarity, the H atoms and the solvent molecules have been omitted.
[Figure 3]
Figure 3
Side view of the two crystallographically independent complexes, showing the conformational differences in the side chains.
[Figure 4]
Figure 4
Crystal structure of the title compound showing intra- and inter­molecular C—H⋯Cl hydrogen bonding as dashed lines. The disorder of one of the two crystallographically independent solvent mol­ecules is not shown for clarity.

The asymmetric unit additionally contains two di­chloro­methane mol­ecules in general positions, one of which is disordered (Fig. 2[link]).

3. Supra­molecular features

In the crystal structure, the porphyrine ring planes are aligned parallel to the ab plane and are shifted along the a axis, whereas the 2,6-di­chloro­phenyl substitutents are arranged in layers parallel to the ac plane (Fig. 5[link]). Within these planes, the dichlormethane solvate mol­ecules are embedded and are linked to the Cl atoms of the complexes by weak inter­molecular C—H⋯Cl hydrogen bonding (Fig. 4[link]), thus stabilizing the three-dimensional arrangement.

[Figure 5]
Figure 5
Crystal structure of the title compound in a view along the a axis. The solvent mol­ecules are omitted for clarity.

4. Database survey

According to a search in the Cambridge Structural Database (CSD, version 5.40, updated Feb. 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 790 structures with nickel porphyrins have been deposited. This includes six similar strapped nickel(II) porphyrins: (5,15-{2,2′-[pentane-1,5-diylbis(­oxy)]bis­(5-t-butyl­phen­yl)}-10,20-bis­(4-nitro­phen­yl)porphyrinato)nickel(II) (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]), (5,15-{2,2′-[pro­pane-1,3-diylbis(­oxy)]bis­(5-t-butyl­phen­yl)}10,20-bis­(4-nitro­phen­yl)porphyrinato)nickel(II) (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]), (5,15-{2,2′-[butane-1,4-diylbis(­oxy)]bis­(5-t-butyl­phen­yl)}10,20-bis­(4-nitro­phen­yl)porphyrinato)nickel(II) (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]), (5,15-{2,2′-[hexane-1,6-diylbis(­oxy)]bis­(5-t-butyl­phen­yl)}-10,20-bis(4-nitro­phen­yl)porphyrinato)nickel(II) (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]) (5,15-{2,2′-[heptane-1,7-diylbis(­oxy)]bis­(5-t-butyl­phen­yl)}-10,20-bis(4-nitro­phen­yl)porphyrinato)nickel(II) (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]) and (4,19-di-t-butyl-11,12,45,46-tetra­methyl-8,15-dioxa-41,42,43,44-tetra-aza­nona­cyclo­[20.9.9.210,13.123,26.128,31.132,35.137,40.02,7.016,21]hexa­tetra­conta-1(31),2,4,6,10,12,16,18,20,22,24,26,28(43),29,32,34,36,38,40,45-icosa­enato)nick­el(II) (Gehrold et al., 2015[Gehrold, A. C., Bruhn, T., Schneider, H., Radius, U. & Bringmann, G. (2015). Org. Lett. 17, 210-213.]). Furthermore, strapped iron (Sabat & Ibers, 1982[Sabat, M. & Ibers, J. A. (1982). J. Am. Chem. Soc. 104, 3715-3721.]), zinc (Gunter et al., 2004[Gunter, M. J., Jeynes, T. P. & Turner, P. (2004). Eur. J. Org. Chem. pp. 193-208.]) and copper porphyrins (Liu et al., 2016[Liu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222-5229.]) have also been reported.

5. Synthesis and crystallization

Synthesis

The general synthesis scheme is given in Fig. 1[link]. 1,4-Bis(2-bromo­eth­oxy)-2-butyne (1), meso-di­chloro­phenyl dipyrro­methane (6) and 2,2′-({[but-2-yne-1,4-diylbis(­oxy)]bis­(ethane-2,1-di­yl)}bis­(­oxy))dibenzaldehyde (3) were synthesized as reported (Shankar et al., 2018[Shankar, S., Peters, M. K., Steinborn, K., Krahwinkel, B., Sönnichsen, F., Grote, D., Sander, W., Lohmiller, T. & Herges, R. (2018). Nat. Commun. 9, 1-12.]; Littler et al., 1999[Littler, B. J., Miller, M. A., Hung, C. A., Wagner, R. W., O'Shea, D. F., Boyle, P. D. & Lindsey, J. S. (1999). J. Org. Chem. 64, 1391-1396.]).

Synthesis of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne (7)

2,2′-({[But-2-yne-1,4-diylbis(­oxy)]bis­(ethane-2,1-di­yl)}bis(­oxy))dibenzaldehyde (3) (375 mg, 983 µmol) and boron trifluoride etherate (13.9 mg, 98.3 µmol) were dissolved in di­chloro­methane (350 ml) under a nitro­gen atmosphere. To this solution meso-di­chloro­phenyl dipyrro­methane (436 mg, 1.96 mmol), dissolved in di­chloro­methane (50 ml), was added under stirring over a period of 1 h. After further stirring for 15 h, p-chloranil (504 mg, 2.05 mmol) was added and stirred for 5 h at 313 K. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography (di­chloro­methane, Rf = 0.07). A purple solid was obtained (129 mg, 140 µmol, 14%); m.p. 400 K; 1H NMR (500 MHz, CDCl3, 300 K): δ = 8.79 (d, 3J = 4.5 Hz, 4H), 8.61 (d, 3J = 4.5 Hz, 4H), 8.54 (d, 3J = 6.8 Hz, 2H), 7.82 (dd, 3J = 8.1 Hz, 4J = 1.2 Hz, 2H), 7.77–7.66 (m, 6H), 7.50 (t, 3J = 7.4 Hz, 2H), 7.07 (d, 3J = 8.0 Hz, 2H), 3.69 (s, br, 4H), 2.46 (s, br, 4H), 0.89 (m, 4H), −2.52 (s, br, 2H, NH) ppm; HRMS (EI): 920.14750 (calculated). 920.14750 (found) for C52H36Cl4N4O4.

Synthesis of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne (8)

5,15-Strapped porphyrin (7) (13.0 mg, 14.1 µmol) and nickel(II) acetyl­acetonate (182 mg, 707 µmol) were dissolved in toluene (100 ml) and stirred under reflux for 4 d. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (di­chloro­methane, Rf = 0.14). A purple solid was obtained (11.0 mg, 11.3 mmol, 80%); m.p. 612 K; 1H NMR (500 MHz, CD2Cl2, 300 K): δ = 8.79 (d, 3J = 4.9 Hz, 4H), 8.57 (d, 3J = 4.9 Hz, 4H), 8.46 (dd, 3J = 7.3 Hz, 4J = 1.7 Hz, 2H), 7.88 (dd, 3J = 8.2 Hz, 4J = 1.2 Hz, 2H), 7.71 (td, 3J = 8.1 Hz, 4J = 1.7 Hz, 2H), 7.67 (t, 3J = 8.2 Hz, 2H), 7.63 (dd, 3J = 8.2 Hz, 4J = 1.2 Hz, 2H), 7.50 (td, 3J = 7.6 Hz, 4J = 0.9 Hz, 2H), 7.08 (d, 3J = 8.3 Hz, 2H), 3.79 (t, 3J = 4.2 Hz, 4H), 2.80 (t, 3J = 4.2 Hz, 4H), 1.70 (s, 4H) ppm; HRMS (EI): 976.06620 (calculated). 976.06876 (found) for C52H34Cl4N4NiO4.

Crystallization

The layering technique was used for crystallization of the title compound. The lower layer consisted of (8) dissolved in di­chloro­methane, and for the upper layer n-heptane was used.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C52H34Cl4N4O4)]·CH2Cl2
Mr 1064.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 15.4185 (3), 24.9658 (4), 24.3053 (5)
β (°) 90.039 (2)
V3) 9356.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer STOE IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.761, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 40366, 17160, 14957
Rint 0.031
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.05
No. of reflections 17160
No. of parameters 1235
No. of restraints 11
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.47
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The crystal metrics points to ortho­rhom­bic symmetry with the inter­nal R-value only slightly higher in the ortho­rhom­bic system compared to the monoclinic system. Additionally, the ADDSYM option in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicates a higher (pseudo)-symmetry for the monoclinic solution with 85% fit and missing n and c-glide planes, with Pccn as the most probable space group. Structure solution in Pccn led to two crystallographically independent mol­ecules in the asymmetric unit that are each located on a twofold rotation axis. However, the acetyl­ene side chain of one of these mol­ecules is completely disordered around this axis, which indicates that the crystal symmetry is too high. Moreover, structure refinement in Pccn led to very poor reliability factors with wR2 values of about 50%, revealing that the true symmetry is in fact monoclinic. Therefore the structure was refined in the monoclinic space group P21/c under consideration of twinning by pseudo-merohedry (mirror plane parallel to ab as twin element), which resulted in two crystallographically independent and fully ordered mol­ecules, much better reliability factors and a BASF parameter of 0.5895 (8).

The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.99 Å) and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. One of the two crystallographically independent di­chloro­methane mol­ecules is equally disordered and was refined with a split model using restraints for the bond lengths and for components of the anisotropic displacement parameters.

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

210,220-Bis(2,6-dichlorophenyl)-4,7,12,15-tetraoxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cycloheptadecaphane-9-yne dichloromethane monosolvate top
Crystal data top
[Ni(C52H34Cl4N4O4)]·CH2Cl2F(000) = 4352
Mr = 1064.27Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.4185 (3) ÅCell parameters from 41412 reflections
b = 24.9658 (4) Åθ = 1.3–26.3°
c = 24.3053 (5) ŵ = 0.81 mm1
β = 90.039 (2)°T = 170 K
V = 9356.0 (3) Å3Block, colorless
Z = 80.2 × 0.1 × 0.1 mm
Data collection top
STOE IPDS-2
diffractometer
14957 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe, 2008)
θmax = 26.0°, θmin = 1.3°
Tmin = 0.761, Tmax = 0.956h = 1918
40366 measured reflectionsk = 2430
17160 independent reflectionsl = 2929
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0618P)2 + 2.2115P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
17160 reflectionsΔρmax = 0.33 e Å3
1235 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell ESDS are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.24928 (3)0.25134 (2)0.26878 (2)0.02680 (7)
N10.14001 (16)0.28997 (9)0.26571 (10)0.0302 (5)
N20.31155 (16)0.31894 (10)0.26754 (10)0.0302 (5)
N30.35862 (17)0.21240 (9)0.26968 (10)0.0308 (5)
N40.18696 (16)0.18408 (9)0.27290 (10)0.0285 (5)
C10.05825 (19)0.26855 (12)0.25630 (12)0.0308 (6)
C20.0048 (2)0.31073 (13)0.25185 (16)0.0411 (8)
H20.06490.30650.24430.049*
C30.0370 (2)0.35723 (13)0.26038 (16)0.0428 (8)
H30.01160.39190.26130.051*
C40.1273 (2)0.34470 (12)0.26785 (14)0.0354 (7)
C50.1908 (2)0.38252 (12)0.27332 (13)0.0332 (6)
C60.2782 (2)0.36993 (11)0.27325 (13)0.0311 (6)
C70.3457 (2)0.40930 (12)0.27256 (13)0.0367 (7)
H70.33920.44690.27670.044*
C80.4204 (2)0.38231 (12)0.26489 (13)0.0354 (7)
H80.47670.39760.26220.043*
C90.4003 (2)0.32695 (12)0.26163 (12)0.0296 (6)
C100.4611 (2)0.28666 (11)0.25454 (11)0.0293 (6)
C110.44087 (19)0.23311 (12)0.26037 (12)0.0300 (6)
C120.5036 (2)0.19079 (12)0.26001 (13)0.0347 (7)
H120.56410.19460.25390.042*
C130.4616 (2)0.14506 (12)0.26979 (14)0.0369 (7)
H130.48680.11040.27250.044*
C140.3714 (2)0.15796 (11)0.27553 (12)0.0315 (6)
C150.3073 (2)0.12056 (12)0.28372 (12)0.0320 (6)
C160.2203 (2)0.13335 (12)0.28290 (13)0.0319 (6)
C170.1521 (2)0.09519 (12)0.28682 (14)0.0388 (7)
H170.15840.05820.29530.047*
C180.0771 (2)0.12098 (13)0.27631 (14)0.0383 (7)
H180.02090.10540.27510.046*
C190.09797 (19)0.17605 (11)0.26736 (12)0.0289 (6)
C200.0380 (2)0.21514 (12)0.25569 (12)0.0301 (6)
C210.1653 (2)0.44041 (12)0.27483 (14)0.0377 (7)
C220.1512 (2)0.46951 (13)0.22672 (14)0.0422 (7)
C230.1272 (2)0.52349 (14)0.22740 (17)0.0491 (9)
H230.11700.54220.19400.059*
C240.1187 (2)0.54901 (13)0.27698 (17)0.0497 (9)
H240.10370.58590.27790.060*
C250.1317 (2)0.52170 (14)0.32562 (17)0.0484 (9)
H250.12590.53960.35990.058*
C260.1533 (2)0.46822 (13)0.32392 (14)0.0412 (7)
Cl10.16340 (8)0.43857 (4)0.16324 (4)0.0563 (2)
Cl20.16756 (6)0.43497 (4)0.38603 (4)0.0505 (2)
C270.3319 (2)0.06291 (12)0.28745 (13)0.0365 (7)
C280.3439 (2)0.03165 (13)0.24050 (14)0.0409 (7)
C290.3660 (2)0.02217 (14)0.24273 (17)0.0491 (9)
H290.37290.04230.20980.059*
C300.3777 (3)0.04601 (14)0.29318 (18)0.0526 (9)
H300.39170.08300.29510.063*
Cl30.32728 (7)0.06013 (4)0.17628 (4)0.0533 (2)
Cl40.33567 (7)0.07334 (4)0.39818 (4)0.0495 (2)
C310.3694 (3)0.01668 (15)0.34109 (17)0.0503 (9)
H310.37880.03300.37590.060*
C320.3469 (2)0.03720 (13)0.33737 (14)0.0411 (7)
C330.5523 (2)0.30039 (11)0.24001 (12)0.0298 (6)
C340.5750 (2)0.30439 (12)0.18438 (12)0.0330 (6)
C350.6602 (2)0.31347 (13)0.16862 (13)0.0389 (7)
H350.67510.31570.13080.047*
C360.7234 (2)0.31929 (14)0.20875 (15)0.0426 (8)
H360.78190.32550.19820.051*
C370.7024 (2)0.31612 (14)0.26365 (15)0.0404 (8)
H370.74610.32030.29090.048*
C380.6166 (2)0.30675 (13)0.27920 (13)0.0370 (7)
H380.60220.30470.31710.044*
O10.50746 (15)0.29602 (10)0.14863 (9)0.0425 (5)
C390.5211 (2)0.30663 (14)0.09100 (13)0.0425 (7)
H39A0.56790.28350.07630.051*
H39B0.53750.34460.08530.051*
C400.4359 (2)0.29438 (15)0.06273 (13)0.0437 (8)
H40A0.44550.29330.02250.052*
H40B0.41580.25850.07440.052*
O20.37005 (18)0.33245 (10)0.07449 (11)0.0511 (6)
C410.3192 (3)0.32122 (17)0.12233 (17)0.0572 (10)
H41A0.27660.35040.12740.069*
H41B0.35790.32110.15490.069*
C420.2724 (2)0.26985 (19)0.12020 (15)0.0516 (9)
C430.2349 (3)0.22824 (19)0.12060 (15)0.0537 (10)
C440.1872 (3)0.17769 (18)0.12289 (17)0.0567 (10)
H44A0.22930.14820.12820.068*
H44B0.14870.17840.15540.068*
O30.13625 (19)0.16618 (11)0.07557 (11)0.0546 (7)
C450.0686 (3)0.20342 (16)0.06519 (14)0.0501 (9)
H45A0.05900.20560.02500.060*
H45B0.08740.23920.07790.060*
C460.0155 (2)0.18981 (15)0.09243 (13)0.0434 (8)
H46A0.06170.21450.08000.052*
H46B0.03290.15270.08310.052*
O40.00242 (17)0.19490 (12)0.15017 (9)0.0495 (6)
C470.0711 (2)0.19042 (13)0.18528 (13)0.0345 (7)
C480.0520 (2)0.19920 (11)0.24058 (12)0.0304 (6)
C490.1191 (2)0.19650 (13)0.27843 (13)0.0369 (7)
H490.10710.20340.31610.044*
C500.2035 (2)0.18396 (14)0.26289 (16)0.0431 (8)
H500.24840.18170.28950.052*
C510.2204 (2)0.17487 (14)0.20814 (15)0.0420 (8)
H510.27790.16660.19690.050*
C520.1556 (2)0.17752 (14)0.16936 (14)0.0420 (8)
H520.16830.17060.13180.050*
Ni20.74995 (3)0.25519 (2)0.41082 (2)0.02937 (8)
N610.86334 (16)0.28973 (10)0.40890 (10)0.0322 (5)
N620.69334 (17)0.32495 (10)0.41138 (11)0.0321 (5)
N630.63757 (17)0.22047 (10)0.41061 (10)0.0328 (5)
N640.80643 (16)0.18579 (10)0.41152 (11)0.0319 (5)
C610.9442 (2)0.26678 (13)0.41747 (12)0.0338 (6)
C621.0102 (2)0.30699 (13)0.41504 (14)0.0402 (7)
H621.07050.30160.42080.048*
C630.9715 (2)0.35343 (13)0.40313 (15)0.0408 (7)
H630.99950.38680.39720.049*
C640.8795 (2)0.34357 (12)0.40094 (13)0.0375 (7)
C650.8191 (2)0.38379 (13)0.39767 (13)0.0376 (7)
C660.7308 (2)0.37489 (12)0.40373 (13)0.0365 (7)
C670.6674 (2)0.41587 (13)0.40759 (14)0.0407 (7)
H670.67720.45320.40290.049*
C680.5908 (2)0.39235 (13)0.41910 (14)0.0397 (7)
H680.53670.40970.42470.048*
C690.6074 (2)0.33578 (12)0.42124 (12)0.0314 (6)
C700.5422 (2)0.29788 (12)0.42735 (11)0.0312 (6)
C710.5567 (2)0.24356 (12)0.41900 (12)0.0311 (6)
C720.4895 (2)0.20382 (13)0.41669 (13)0.0365 (7)
H720.42910.20960.42150.044*
C730.5285 (2)0.15698 (13)0.40640 (14)0.0401 (7)
H730.50060.12340.40140.048*
C740.6200 (2)0.16659 (12)0.40428 (12)0.0327 (6)
C750.6808 (2)0.12639 (12)0.40166 (13)0.0360 (7)
C760.7691 (2)0.13553 (12)0.40637 (13)0.0339 (6)
C770.8325 (2)0.09441 (13)0.41019 (15)0.0442 (8)
H770.82260.05700.40670.053*
C780.9089 (2)0.11825 (13)0.41956 (14)0.0403 (7)
H780.96290.10060.42500.048*
C790.8949 (2)0.17514 (12)0.42001 (13)0.0334 (7)
C800.9587 (2)0.21276 (13)0.42617 (12)0.0338 (7)
C810.8505 (2)0.43988 (13)0.39072 (17)0.0479 (8)
C820.8732 (3)0.47116 (18)0.4364 (2)0.0709 (13)
C830.9044 (3)0.5245 (2)0.4290 (3)0.093 (2)
H830.91790.54590.46020.112*
C840.9149 (3)0.5447 (2)0.3776 (4)0.096 (2)
H840.93600.58020.37300.115*
C850.8955 (3)0.51460 (19)0.3328 (3)0.0830 (18)
H850.90380.52880.29690.100*
C860.8634 (2)0.46299 (15)0.33940 (19)0.0545 (10)
Cl610.86279 (11)0.44509 (7)0.50187 (6)0.1077 (6)
Cl620.83801 (7)0.42722 (5)0.28087 (4)0.0621 (3)
C870.6497 (2)0.06951 (13)0.40201 (14)0.0401 (7)
C880.6306 (3)0.04335 (15)0.45143 (16)0.0519 (9)
C890.6025 (3)0.00944 (16)0.4535 (2)0.0643 (11)
H890.59080.02610.48780.077*
C900.5920 (3)0.03670 (16)0.4059 (2)0.0674 (12)
H900.57350.07300.40710.081*
C910.6075 (3)0.01304 (16)0.35588 (19)0.0585 (10)
H910.59810.03240.32270.070*
C920.6371 (2)0.03964 (14)0.35427 (16)0.0463 (8)
Cl630.64172 (10)0.07876 (5)0.51284 (4)0.0785 (4)
Cl640.65929 (7)0.06863 (4)0.29109 (4)0.0528 (2)
C930.4529 (2)0.31578 (12)0.44239 (12)0.0335 (6)
C940.4346 (2)0.33259 (13)0.49596 (13)0.0382 (7)
C950.3510 (2)0.34853 (15)0.51069 (14)0.0480 (8)
H950.33960.36080.54700.058*
C960.2854 (2)0.34647 (17)0.47275 (16)0.0531 (9)
H960.22850.35740.48290.064*
C970.3011 (2)0.32867 (17)0.41970 (16)0.0503 (9)
H970.25500.32650.39390.060*
C980.3843 (2)0.31399 (15)0.40444 (14)0.0435 (8)
H980.39510.30250.36780.052*
O610.50317 (16)0.33018 (10)0.53182 (9)0.0435 (5)
C990.4936 (3)0.35286 (15)0.58540 (13)0.0472 (8)
H99A0.44280.33690.60420.057*
H99B0.48440.39200.58260.057*
C1000.5745 (3)0.34145 (17)0.61745 (14)0.0529 (9)
H10A0.56280.34900.65670.064*
H10B0.58760.30280.61420.064*
O620.64926 (18)0.37071 (11)0.60145 (10)0.0548 (6)
C1010.6892 (2)0.35283 (17)0.55170 (15)0.0539 (9)
H10C0.73730.37760.54260.065*
H10D0.64600.35510.52160.065*
C1020.7233 (3)0.29830 (18)0.55357 (14)0.0506 (9)
C1030.7572 (3)0.25520 (17)0.55301 (12)0.0481 (8)
C1040.8004 (3)0.20284 (18)0.55069 (16)0.0569 (10)
H10E0.75640.17420.54670.068*
H10F0.83930.20150.51830.068*
O630.84946 (18)0.19428 (11)0.59966 (10)0.0555 (6)
C1050.8953 (3)0.14528 (16)0.59992 (17)0.0605 (10)
H10G0.86570.11970.57510.073*
H10H0.89410.13010.63750.073*
C1060.9897 (3)0.15148 (16)0.58159 (14)0.0528 (9)
H10I1.02080.17670.60600.063*
H10J1.01980.11650.58250.063*
O640.98647 (17)0.17174 (11)0.52699 (10)0.0487 (6)
C1071.0597 (2)0.17434 (13)0.49578 (13)0.0378 (7)
C1081.0480 (2)0.19463 (12)0.44234 (12)0.0339 (6)
C1091.1185 (2)0.19931 (14)0.40815 (14)0.0413 (7)
H1091.11070.21310.37200.050*
C1101.2012 (2)0.18436 (16)0.42528 (17)0.0504 (9)
H1101.24920.18690.40100.061*
C1111.2117 (2)0.16596 (16)0.47788 (15)0.0495 (9)
H1111.26820.15690.49050.059*
C1121.1416 (2)0.16026 (15)0.51333 (14)0.0464 (8)
H1121.15010.14670.54950.056*
C1210.6253 (4)0.0022 (2)0.1057 (2)0.0868 (15)
H20A0.64950.03800.11410.104*
H20B0.67080.02470.11380.104*
Cl210.53812 (9)0.00932 (6)0.14749 (8)0.0973 (5)
Cl220.59952 (18)0.00087 (8)0.03701 (8)0.1307 (7)
C1220.1203 (4)0.4725 (3)0.0727 (3)0.136 (3)
H20C0.12130.43340.07930.163*0.5
H20D0.17880.48660.08130.163*0.5
H20E0.09230.44010.05740.163*0.5
H20F0.16950.45990.09550.163*0.5
Cl230.04703 (11)0.50107 (6)0.11682 (8)0.1000 (5)
Cl240.0995 (5)0.4835 (2)0.0065 (3)0.166 (2)0.5
Cl250.1621 (4)0.5047 (2)0.0210 (2)0.156 (2)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02661 (14)0.02566 (15)0.02813 (14)0.00067 (13)0.0002 (2)0.00006 (14)
N10.0305 (13)0.0282 (12)0.0321 (12)0.0028 (10)0.0010 (10)0.0006 (10)
N20.0315 (13)0.0299 (12)0.0291 (12)0.0012 (10)0.0012 (10)0.0010 (10)
N30.0344 (14)0.0287 (12)0.0294 (11)0.0041 (10)0.0002 (11)0.0019 (10)
N40.0278 (13)0.0297 (12)0.0279 (11)0.0011 (10)0.0012 (10)0.0003 (9)
C10.0278 (15)0.0293 (15)0.0354 (15)0.0002 (12)0.0030 (12)0.0020 (12)
C20.0302 (16)0.0356 (16)0.058 (2)0.0035 (14)0.0041 (15)0.0017 (14)
C30.0319 (16)0.0302 (15)0.066 (2)0.0035 (13)0.0055 (16)0.0006 (15)
C40.0314 (16)0.0296 (15)0.0453 (16)0.0030 (12)0.0007 (14)0.0005 (13)
C50.0325 (16)0.0279 (14)0.0393 (15)0.0008 (12)0.0012 (13)0.0010 (12)
C60.0340 (16)0.0234 (13)0.0359 (15)0.0006 (11)0.0004 (12)0.0023 (11)
C70.0357 (16)0.0286 (14)0.0460 (16)0.0025 (12)0.0010 (14)0.0012 (13)
C80.0309 (15)0.0325 (15)0.0430 (16)0.0046 (12)0.0009 (13)0.0014 (13)
C90.0301 (15)0.0299 (14)0.0287 (14)0.0028 (12)0.0002 (12)0.0002 (11)
C100.0309 (15)0.0313 (15)0.0258 (13)0.0003 (12)0.0020 (12)0.0003 (11)
C110.0279 (14)0.0314 (15)0.0308 (14)0.0003 (12)0.0019 (11)0.0014 (12)
C120.0259 (14)0.0381 (16)0.0399 (17)0.0007 (13)0.0005 (12)0.0021 (13)
C130.0359 (17)0.0301 (14)0.0446 (16)0.0041 (13)0.0005 (14)0.0016 (13)
C140.0333 (16)0.0276 (14)0.0335 (14)0.0024 (12)0.0019 (12)0.0021 (11)
C150.0328 (16)0.0285 (14)0.0347 (15)0.0024 (12)0.0005 (12)0.0009 (11)
C160.0315 (15)0.0252 (14)0.0390 (16)0.0028 (11)0.0001 (12)0.0019 (11)
C170.0366 (16)0.0280 (14)0.0518 (18)0.0033 (13)0.0004 (14)0.0050 (13)
C180.0328 (16)0.0334 (16)0.0488 (18)0.0043 (13)0.0018 (14)0.0000 (13)
C190.0284 (15)0.0294 (14)0.0288 (13)0.0019 (11)0.0017 (12)0.0013 (11)
C200.0297 (15)0.0329 (15)0.0278 (14)0.0021 (12)0.0040 (12)0.0013 (11)
C210.0276 (15)0.0288 (14)0.0567 (18)0.0006 (12)0.0040 (14)0.0033 (13)
C220.0386 (17)0.0334 (16)0.0546 (19)0.0008 (13)0.0011 (15)0.0027 (14)
C230.0431 (19)0.0325 (16)0.072 (2)0.0043 (14)0.0094 (17)0.0068 (16)
C240.0426 (19)0.0292 (16)0.077 (3)0.0029 (14)0.0109 (18)0.0012 (16)
C250.0401 (18)0.0380 (18)0.067 (2)0.0024 (15)0.0075 (17)0.0158 (16)
C260.0321 (16)0.0386 (17)0.0528 (18)0.0007 (13)0.0051 (14)0.0039 (14)
Cl10.0684 (6)0.0511 (5)0.0494 (5)0.0118 (5)0.0030 (4)0.0009 (4)
Cl20.0534 (5)0.0487 (5)0.0495 (4)0.0010 (4)0.0011 (4)0.0020 (4)
C270.0292 (16)0.0316 (15)0.0488 (16)0.0001 (12)0.0006 (13)0.0025 (13)
C280.0373 (16)0.0344 (16)0.0510 (18)0.0019 (13)0.0018 (15)0.0009 (14)
C290.0429 (19)0.0334 (16)0.071 (2)0.0035 (14)0.0082 (17)0.0045 (16)
C300.049 (2)0.0318 (17)0.077 (3)0.0069 (15)0.0106 (19)0.0086 (17)
Cl30.0653 (6)0.0467 (5)0.0480 (4)0.0107 (4)0.0017 (4)0.0028 (4)
Cl40.0551 (5)0.0475 (4)0.0461 (4)0.0000 (4)0.0016 (4)0.0037 (3)
C310.046 (2)0.0396 (19)0.066 (2)0.0040 (16)0.0001 (17)0.0157 (16)
C320.0329 (16)0.0379 (17)0.0525 (18)0.0024 (14)0.0012 (14)0.0082 (14)
C330.0298 (15)0.0282 (14)0.0314 (14)0.0009 (12)0.0037 (12)0.0004 (11)
C340.0333 (16)0.0344 (16)0.0313 (14)0.0022 (12)0.0000 (12)0.0014 (12)
C350.0338 (16)0.0464 (18)0.0365 (16)0.0012 (14)0.0070 (14)0.0005 (13)
C360.0286 (16)0.0511 (19)0.0480 (18)0.0036 (14)0.0036 (14)0.0012 (15)
C370.0317 (17)0.0500 (19)0.0393 (17)0.0047 (14)0.0020 (14)0.0003 (15)
C380.0360 (17)0.0445 (18)0.0306 (15)0.0040 (14)0.0000 (13)0.0013 (13)
O10.0329 (12)0.0675 (16)0.0270 (10)0.0054 (11)0.0021 (9)0.0016 (10)
C390.048 (2)0.0472 (18)0.0322 (15)0.0010 (15)0.0050 (15)0.0035 (14)
C400.056 (2)0.0483 (19)0.0273 (15)0.0021 (16)0.0045 (14)0.0037 (13)
O20.0540 (15)0.0487 (14)0.0504 (14)0.0042 (12)0.0146 (12)0.0012 (11)
C410.049 (2)0.069 (3)0.053 (2)0.0094 (19)0.0082 (19)0.0172 (19)
C420.041 (2)0.071 (3)0.0429 (19)0.0092 (18)0.0032 (16)0.0017 (19)
C430.050 (2)0.070 (3)0.0416 (18)0.013 (2)0.0034 (17)0.0070 (18)
C440.049 (2)0.068 (3)0.053 (2)0.0103 (19)0.0115 (18)0.0161 (19)
O30.0610 (17)0.0506 (15)0.0523 (15)0.0058 (13)0.0162 (13)0.0021 (11)
C450.065 (2)0.055 (2)0.0305 (16)0.0007 (18)0.0058 (16)0.0042 (15)
C460.051 (2)0.054 (2)0.0262 (15)0.0006 (16)0.0028 (15)0.0007 (14)
O40.0418 (14)0.0786 (18)0.0282 (11)0.0077 (13)0.0014 (10)0.0043 (11)
C470.0308 (16)0.0383 (17)0.0344 (15)0.0024 (13)0.0020 (13)0.0025 (12)
C480.0297 (15)0.0289 (14)0.0326 (15)0.0043 (12)0.0021 (12)0.0003 (12)
C490.0320 (17)0.0453 (18)0.0334 (16)0.0061 (14)0.0008 (13)0.0008 (13)
C500.0315 (17)0.052 (2)0.0461 (19)0.0043 (15)0.0019 (15)0.0006 (16)
C510.0347 (17)0.0436 (18)0.0477 (18)0.0043 (14)0.0104 (15)0.0031 (15)
C520.0443 (19)0.0436 (18)0.0381 (16)0.0058 (15)0.0129 (15)0.0028 (13)
Ni20.02890 (15)0.03134 (17)0.02786 (15)0.00095 (15)0.0001 (2)0.00108 (14)
N610.0312 (13)0.0327 (13)0.0326 (12)0.0005 (10)0.0000 (11)0.0009 (10)
N620.0325 (13)0.0349 (13)0.0289 (12)0.0015 (10)0.0002 (10)0.0012 (10)
N630.0357 (14)0.0342 (13)0.0284 (11)0.0024 (11)0.0010 (10)0.0017 (10)
N640.0288 (13)0.0368 (13)0.0302 (12)0.0035 (10)0.0022 (10)0.0033 (10)
C610.0360 (16)0.0350 (15)0.0304 (15)0.0020 (13)0.0007 (12)0.0015 (13)
C620.0319 (16)0.0480 (18)0.0408 (17)0.0061 (14)0.0013 (14)0.0006 (14)
C630.0314 (16)0.0407 (17)0.0502 (18)0.0052 (13)0.0003 (14)0.0030 (15)
C640.0389 (17)0.0338 (16)0.0397 (16)0.0069 (13)0.0003 (14)0.0011 (13)
C650.0329 (16)0.0385 (16)0.0415 (16)0.0069 (13)0.0011 (13)0.0006 (13)
C660.0408 (18)0.0320 (15)0.0368 (15)0.0020 (12)0.0002 (13)0.0003 (12)
C670.0411 (18)0.0344 (16)0.0465 (17)0.0024 (14)0.0002 (15)0.0011 (14)
C680.0412 (18)0.0346 (16)0.0435 (17)0.0047 (13)0.0005 (14)0.0016 (13)
C690.0310 (15)0.0358 (15)0.0274 (14)0.0033 (12)0.0005 (12)0.0025 (11)
C700.0347 (16)0.0356 (15)0.0233 (13)0.0030 (13)0.0007 (12)0.0021 (11)
C710.0293 (15)0.0366 (16)0.0275 (14)0.0024 (12)0.0008 (11)0.0004 (11)
C720.0335 (16)0.0405 (16)0.0356 (16)0.0030 (13)0.0008 (13)0.0001 (13)
C730.0381 (18)0.0402 (17)0.0421 (17)0.0102 (14)0.0026 (14)0.0046 (14)
C740.0340 (16)0.0323 (15)0.0317 (14)0.0025 (12)0.0027 (12)0.0034 (12)
C750.0418 (18)0.0320 (15)0.0343 (15)0.0072 (13)0.0016 (13)0.0031 (12)
C760.0347 (16)0.0313 (14)0.0357 (14)0.0011 (12)0.0006 (13)0.0046 (12)
C770.0468 (19)0.0352 (16)0.0505 (18)0.0013 (15)0.0010 (16)0.0064 (15)
C780.0359 (17)0.0380 (17)0.0468 (18)0.0072 (13)0.0027 (14)0.0063 (14)
C790.0335 (16)0.0338 (15)0.0329 (15)0.0060 (12)0.0029 (13)0.0024 (12)
C800.0284 (15)0.0452 (18)0.0278 (14)0.0036 (13)0.0007 (12)0.0042 (12)
C810.0377 (18)0.0328 (16)0.073 (2)0.0032 (14)0.0032 (17)0.0038 (16)
C820.062 (3)0.058 (3)0.094 (3)0.016 (2)0.011 (2)0.029 (2)
C830.063 (3)0.062 (3)0.155 (6)0.017 (2)0.010 (3)0.048 (4)
C840.062 (3)0.040 (2)0.185 (7)0.009 (2)0.004 (4)0.011 (4)
C850.049 (2)0.045 (2)0.155 (5)0.010 (2)0.009 (3)0.040 (3)
C860.0291 (17)0.0399 (19)0.095 (3)0.0001 (15)0.0008 (17)0.0198 (19)
Cl610.1178 (12)0.1310 (13)0.0743 (8)0.0583 (10)0.0131 (8)0.0466 (8)
Cl620.0474 (5)0.0732 (6)0.0657 (6)0.0015 (5)0.0021 (5)0.0268 (5)
C870.0345 (16)0.0360 (16)0.0499 (17)0.0016 (13)0.0028 (14)0.0038 (14)
C880.059 (2)0.0389 (18)0.058 (2)0.0084 (16)0.0038 (18)0.0048 (16)
C890.071 (3)0.038 (2)0.084 (3)0.0072 (19)0.008 (2)0.008 (2)
C900.058 (2)0.0344 (19)0.110 (4)0.0024 (17)0.011 (3)0.002 (2)
C910.054 (2)0.042 (2)0.079 (3)0.0036 (18)0.004 (2)0.021 (2)
C920.0424 (19)0.0413 (18)0.055 (2)0.0025 (15)0.0037 (16)0.0112 (15)
Cl630.1201 (10)0.0691 (7)0.0464 (5)0.0251 (7)0.0126 (6)0.0033 (5)
Cl640.0492 (5)0.0602 (5)0.0489 (4)0.0002 (4)0.0006 (4)0.0139 (4)
C930.0306 (15)0.0367 (16)0.0331 (15)0.0004 (12)0.0019 (13)0.0045 (12)
C940.0364 (17)0.0439 (17)0.0342 (15)0.0041 (14)0.0026 (13)0.0020 (13)
C950.0433 (19)0.060 (2)0.0409 (17)0.0122 (16)0.0105 (15)0.0013 (15)
C960.0353 (18)0.071 (3)0.053 (2)0.0118 (17)0.0043 (16)0.0078 (18)
C970.0353 (18)0.069 (2)0.047 (2)0.0100 (16)0.0017 (15)0.0061 (18)
C980.0418 (18)0.057 (2)0.0311 (15)0.0029 (16)0.0049 (14)0.0085 (14)
O610.0384 (12)0.0593 (14)0.0327 (11)0.0041 (11)0.0005 (10)0.0058 (10)
C990.054 (2)0.056 (2)0.0310 (16)0.0037 (17)0.0045 (15)0.0089 (15)
C1000.057 (2)0.066 (2)0.0358 (17)0.0009 (19)0.0016 (16)0.0014 (16)
O620.0592 (15)0.0583 (15)0.0471 (13)0.0015 (13)0.0071 (12)0.0010 (11)
C1010.0447 (18)0.069 (2)0.0479 (19)0.0006 (18)0.0045 (16)0.0073 (18)
C1020.046 (2)0.070 (3)0.0358 (17)0.0089 (18)0.0041 (15)0.0017 (17)
C1030.0443 (18)0.066 (2)0.0344 (14)0.0081 (18)0.0029 (17)0.0016 (16)
C1040.055 (2)0.074 (3)0.0412 (19)0.007 (2)0.0041 (17)0.0115 (18)
O630.0660 (16)0.0584 (15)0.0421 (12)0.0038 (13)0.0105 (12)0.0004 (11)
C1050.079 (3)0.053 (2)0.050 (2)0.010 (2)0.018 (2)0.0134 (17)
C1060.066 (2)0.059 (2)0.0336 (17)0.0074 (19)0.0075 (16)0.0084 (15)
O640.0436 (14)0.0672 (16)0.0354 (12)0.0093 (12)0.0052 (10)0.0085 (11)
C1070.0373 (17)0.0414 (17)0.0347 (16)0.0047 (14)0.0015 (13)0.0036 (13)
C1080.0306 (15)0.0394 (16)0.0316 (15)0.0042 (13)0.0020 (12)0.0037 (12)
C1090.0353 (17)0.054 (2)0.0349 (16)0.0054 (14)0.0027 (14)0.0060 (14)
C1100.0337 (18)0.066 (2)0.052 (2)0.0043 (16)0.0013 (15)0.0114 (17)
C1110.0388 (18)0.060 (2)0.050 (2)0.0091 (16)0.0118 (16)0.0092 (17)
C1120.045 (2)0.056 (2)0.0381 (16)0.0104 (16)0.0074 (15)0.0026 (15)
C1210.074 (3)0.090 (4)0.096 (4)0.009 (3)0.000 (3)0.020 (3)
Cl210.0762 (8)0.0775 (8)0.1383 (12)0.0179 (7)0.0173 (9)0.0356 (9)
Cl220.189 (2)0.1036 (12)0.0993 (11)0.0046 (13)0.0029 (13)0.0029 (10)
C1220.061 (3)0.141 (6)0.206 (7)0.017 (4)0.023 (4)0.079 (6)
Cl230.1019 (10)0.0642 (7)0.1339 (13)0.0049 (7)0.0046 (10)0.0104 (8)
Cl240.209 (6)0.115 (4)0.175 (4)0.014 (4)0.057 (5)0.055 (3)
Cl250.179 (5)0.119 (3)0.170 (4)0.005 (3)0.054 (4)0.063 (3)
Geometric parameters (Å, º) top
Ni1—N41.937 (2)N62—C691.373 (4)
Ni1—N21.942 (2)N62—C661.387 (4)
Ni1—N11.943 (3)N63—C741.381 (4)
Ni1—N31.946 (3)N63—C711.389 (4)
N1—C41.381 (4)N64—C761.386 (4)
N1—C11.388 (4)N64—C791.405 (4)
N2—C61.380 (4)C61—C801.383 (4)
N2—C91.390 (4)C61—C621.431 (5)
N3—C141.381 (4)C62—C631.336 (5)
N3—C111.388 (4)C62—H620.9500
N4—C161.388 (4)C63—C641.440 (5)
N4—C191.393 (4)C63—H630.9500
C1—C201.369 (4)C64—C651.371 (5)
C1—C21.437 (4)C65—C661.388 (5)
C2—C31.344 (5)C65—C811.491 (5)
C2—H20.9500C66—C671.417 (4)
C3—C41.439 (5)C67—C681.349 (5)
C3—H30.9500C67—H670.9500
C4—C51.367 (4)C68—C691.436 (4)
C5—C61.383 (4)C68—H680.9500
C5—C211.498 (4)C69—C701.388 (4)
C6—C71.432 (4)C70—C711.389 (4)
C7—C81.347 (5)C70—C931.494 (4)
C7—H70.9500C71—C721.435 (4)
C8—C91.419 (4)C72—C731.339 (5)
C8—H80.9500C72—H720.9500
C9—C101.386 (4)C73—C741.431 (5)
C10—C111.380 (4)C73—H730.9500
C10—C331.490 (4)C74—C751.375 (5)
C11—C121.432 (4)C75—C761.386 (5)
C12—C131.334 (5)C75—C871.499 (4)
C12—H120.9500C76—C771.421 (5)
C13—C141.434 (5)C77—C781.339 (5)
C13—H130.9500C77—H770.9500
C14—C151.375 (4)C78—C791.436 (4)
C15—C161.379 (4)C78—H780.9500
C15—C271.491 (4)C79—C801.368 (5)
C16—C171.422 (4)C80—C1081.501 (4)
C17—C181.349 (5)C81—C861.389 (6)
C17—H170.9500C81—C821.401 (6)
C18—C191.429 (4)C82—C831.427 (7)
C18—H180.9500C82—Cl611.727 (6)
C19—C201.374 (4)C83—C841.357 (9)
C20—C481.489 (4)C83—H830.9500
C21—C261.393 (5)C84—C851.358 (9)
C21—C221.394 (5)C84—H840.9500
C22—C231.397 (5)C85—C861.390 (6)
C22—Cl11.736 (4)C85—H850.9500
C23—C241.370 (6)C86—Cl621.724 (5)
C23—H230.9500C87—C921.393 (5)
C24—C251.379 (5)C87—C881.399 (5)
C24—H240.9500C88—C891.388 (5)
C25—C261.377 (5)C88—Cl631.743 (4)
C25—H250.9500C89—C901.352 (7)
C26—Cl21.737 (4)C89—H890.9500
C27—C321.392 (5)C90—C911.374 (7)
C27—C281.395 (5)C90—H900.9500
C28—C291.387 (5)C91—C921.393 (5)
C28—Cl31.734 (3)C91—H910.9500
C29—C301.375 (6)C92—Cl641.732 (4)
C29—H290.9500C93—C941.397 (4)
C30—C311.382 (6)C93—C981.404 (4)
C30—H300.9500C94—O611.372 (4)
Cl4—C321.740 (4)C94—C951.396 (5)
C31—C321.392 (5)C95—C961.369 (5)
C31—H310.9500C95—H950.9500
C33—C381.384 (4)C96—C971.386 (6)
C33—C341.400 (4)C96—H960.9500
C34—O11.371 (4)C97—C981.385 (5)
C34—C351.388 (5)C97—H970.9500
C35—C361.385 (5)C98—H980.9500
C35—H350.9500O61—C991.428 (4)
C36—C371.376 (5)C99—C1001.497 (5)
C36—H360.9500C99—H99A0.9900
C37—C381.395 (5)C99—H99B0.9900
C37—H370.9500C100—O621.420 (5)
C38—H380.9500C100—H10A0.9900
O1—C391.441 (4)C100—H10B0.9900
C39—C401.513 (5)O62—C1011.429 (5)
C39—H39A0.9900C101—C1021.460 (6)
C39—H39B0.9900C101—H10C0.9900
C40—O21.420 (4)C101—H10D0.9900
C40—H40A0.9900C102—C1031.197 (6)
C40—H40B0.9900C103—C1041.468 (6)
O2—C411.430 (5)C104—O631.426 (5)
C41—C421.473 (6)C104—H10E0.9900
C41—H41A0.9900C104—H10F0.9900
C41—H41B0.9900O63—C1051.413 (5)
C42—C431.189 (5)C105—C1061.529 (6)
C43—C441.461 (6)C105—H10G0.9900
C44—O31.422 (5)C105—H10H0.9900
C44—H44A0.9900C106—O641.421 (4)
C44—H44B0.9900C106—H10I0.9900
O3—C451.420 (5)C106—H10J0.9900
C45—C461.495 (5)O64—C1071.363 (4)
C45—H45A0.9900C107—C1121.378 (5)
C45—H45B0.9900C107—C1081.406 (4)
C46—O41.423 (4)C108—C1091.374 (5)
C46—H46A0.9900C109—C1101.391 (5)
C46—H46B0.9900C109—H1090.9500
O4—C471.365 (4)C110—C1111.368 (6)
C47—C481.393 (4)C110—H1100.9500
C47—C521.396 (5)C111—C1121.390 (5)
C48—C491.387 (4)C111—H1110.9500
C49—C501.390 (5)C112—H1120.9500
C49—H490.9500C121—Cl211.710 (6)
C50—C511.375 (5)C121—Cl221.718 (6)
C50—H500.9500C121—H20A0.9900
C51—C521.376 (5)C121—H20B0.9900
C51—H510.9500C122—Cl251.624 (7)
C52—H520.9500C122—Cl241.664 (9)
Ni2—N631.937 (3)C122—Cl231.712 (6)
Ni2—N641.939 (3)C122—H20C0.9900
Ni2—N621.948 (3)C122—H20D0.9900
Ni2—N611.950 (3)C122—H20E0.9900
N61—C641.381 (4)C122—H20F0.9900
N61—C611.388 (4)
N4—Ni1—N2177.92 (9)C69—N62—C66104.4 (3)
N4—Ni1—N190.12 (10)C69—N62—Ni2127.6 (2)
N2—Ni1—N189.82 (10)C66—N62—Ni2128.1 (2)
N4—Ni1—N389.77 (10)C74—N63—C71104.1 (3)
N2—Ni1—N390.35 (10)C74—N63—Ni2127.7 (2)
N1—Ni1—N3178.43 (9)C71—N63—Ni2128.1 (2)
C4—N1—C1105.0 (2)C76—N64—C79104.2 (2)
C4—N1—Ni1127.8 (2)C76—N64—Ni2128.5 (2)
C1—N1—Ni1127.05 (19)C79—N64—Ni2127.3 (2)
C6—N2—C9104.2 (2)C80—C61—N61124.8 (3)
C6—N2—Ni1128.0 (2)C80—C61—C62125.1 (3)
C9—N2—Ni1127.8 (2)N61—C61—C62110.1 (3)
C14—N3—C11104.6 (2)C63—C62—C61107.5 (3)
C14—N3—Ni1128.1 (2)C63—C62—H62126.3
C11—N3—Ni1127.12 (19)C61—C62—H62126.3
C16—N4—C19104.5 (2)C62—C63—C64107.4 (3)
C16—N4—Ni1128.0 (2)C62—C63—H63126.3
C19—N4—Ni1127.5 (2)C64—C63—H63126.3
C20—C1—N1125.7 (3)C65—C64—N61126.8 (3)
C20—C1—C2123.9 (3)C65—C64—C63123.0 (3)
N1—C1—C2110.1 (3)N61—C64—C63109.8 (3)
C3—C2—C1107.3 (3)C64—C65—C66122.9 (3)
C3—C2—H2126.4C64—C65—C81118.3 (3)
C1—C2—H2126.4C66—C65—C81118.8 (3)
C2—C3—C4107.2 (3)N62—C66—C65124.5 (3)
C2—C3—H3126.4N62—C66—C67110.7 (3)
C4—C3—H3126.4C65—C66—C67124.6 (3)
C5—C4—N1125.8 (3)C68—C67—C66107.6 (3)
C5—C4—C3123.8 (3)C68—C67—H67126.2
N1—C4—C3110.3 (3)C66—C67—H67126.2
C4—C5—C6122.7 (3)C67—C68—C69106.2 (3)
C4—C5—C21118.7 (3)C67—C68—H68126.9
C6—C5—C21118.3 (3)C69—C68—H68126.9
N2—C6—C5124.9 (3)N62—C69—C70125.7 (3)
N2—C6—C7111.2 (3)N62—C69—C68111.1 (3)
C5—C6—C7123.5 (3)C70—C69—C68123.0 (3)
C8—C7—C6106.2 (3)C69—C70—C71122.3 (3)
C8—C7—H7126.9C69—C70—C93119.3 (3)
C6—C7—H7126.9C71—C70—C93118.4 (3)
C7—C8—C9107.9 (3)N63—C71—C70124.8 (3)
C7—C8—H8126.0N63—C71—C72110.8 (3)
C9—C8—H8126.0C70—C71—C72124.4 (3)
C10—C9—N2125.1 (3)C73—C72—C71106.7 (3)
C10—C9—C8124.5 (3)C73—C72—H72126.7
N2—C9—C8110.5 (3)C71—C72—H72126.7
C11—C10—C9122.5 (3)C72—C73—C74107.6 (3)
C11—C10—C33117.4 (3)C72—C73—H73126.2
C9—C10—C33120.1 (3)C74—C73—H73126.2
C10—C11—N3125.7 (3)C75—C74—N63125.6 (3)
C10—C11—C12124.1 (3)C75—C74—C73123.5 (3)
N3—C11—C12110.1 (3)N63—C74—C73110.7 (3)
C13—C12—C11107.6 (3)C74—C75—C76123.1 (3)
C13—C12—H12126.2C74—C75—C87118.2 (3)
C11—C12—H12126.2C76—C75—C87118.0 (3)
C12—C13—C14107.2 (3)N64—C76—C75124.4 (3)
C12—C13—H13126.4N64—C76—C77111.3 (3)
C14—C13—H13126.4C75—C76—C77124.2 (3)
C15—C14—N3125.5 (3)C78—C77—C76107.2 (3)
C15—C14—C13124.0 (3)C78—C77—H77126.4
N3—C14—C13110.5 (3)C76—C77—H77126.4
C14—C15—C16122.7 (3)C77—C78—C79108.0 (3)
C14—C15—C27118.8 (3)C77—C78—H78126.0
C16—C15—C27118.1 (3)C79—C78—H78126.0
C15—C16—N4125.0 (3)C80—C79—N64125.7 (3)
C15—C16—C17124.3 (3)C80—C79—C78124.9 (3)
N4—C16—C17110.4 (3)N64—C79—C78109.4 (3)
C18—C17—C16107.6 (3)C79—C80—C61122.4 (3)
C18—C17—H17126.2C79—C80—C108118.7 (3)
C16—C17—H17126.2C61—C80—C108118.8 (3)
C17—C18—C19107.1 (3)C86—C81—C82116.4 (4)
C17—C18—H18126.4C86—C81—C65122.6 (3)
C19—C18—H18126.4C82—C81—C65121.0 (4)
C20—C19—N4125.5 (3)C81—C82—C83120.3 (5)
C20—C19—C18124.3 (3)C81—C82—Cl61119.8 (3)
N4—C19—C18110.2 (3)C83—C82—Cl61120.0 (4)
C1—C20—C19122.4 (3)C84—C83—C82120.3 (5)
C1—C20—C48118.4 (3)C84—C83—H83119.9
C19—C20—C48119.2 (3)C82—C83—H83119.9
C26—C21—C22116.0 (3)C83—C84—C85120.4 (5)
C26—C21—C5122.5 (3)C83—C84—H84119.8
C22—C21—C5121.6 (3)C85—C84—H84119.8
C21—C22—C23122.3 (3)C84—C85—C86119.9 (6)
C21—C22—Cl1119.8 (2)C84—C85—H85120.0
C23—C22—Cl1117.9 (3)C86—C85—H85120.0
C24—C23—C22119.0 (3)C81—C86—C85122.7 (5)
C24—C23—H23120.5C81—C86—Cl62119.6 (3)
C22—C23—H23120.5C85—C86—Cl62117.7 (4)
C23—C24—C25120.7 (3)C92—C87—C88115.9 (3)
C23—C24—H24119.7C92—C87—C75123.1 (3)
C25—C24—H24119.7C88—C87—C75121.0 (3)
C26—C25—C24119.3 (3)C89—C88—C87122.7 (4)
C26—C25—H25120.4C89—C88—Cl63118.7 (3)
C24—C25—H25120.4C87—C88—Cl63118.6 (3)
C25—C26—C21122.8 (3)C90—C89—C88118.9 (4)
C25—C26—Cl2117.9 (3)C90—C89—H89120.5
C21—C26—Cl2119.3 (3)C88—C89—H89120.5
C32—C27—C28115.7 (3)C89—C90—C91121.4 (4)
C32—C27—C15122.7 (3)C89—C90—H90119.3
C28—C27—C15121.6 (3)C91—C90—H90119.3
C29—C28—C27122.9 (3)C90—C91—C92119.2 (4)
C29—C28—Cl3117.9 (3)C90—C91—H91120.4
C27—C28—Cl3119.2 (2)C92—C91—H91120.4
C30—C29—C28119.1 (3)C91—C92—C87121.8 (4)
C30—C29—H29120.5C91—C92—Cl64119.0 (3)
C28—C29—H29120.5C87—C92—Cl64119.2 (3)
C29—C30—C31120.7 (3)C94—C93—C98118.0 (3)
C29—C30—H30119.7C94—C93—C70120.3 (3)
C31—C30—H30119.7C98—C93—C70121.6 (3)
C30—C31—C32118.7 (3)O61—C94—C95124.2 (3)
C30—C31—H31120.6O61—C94—C93115.0 (3)
C32—C31—H31120.6C95—C94—C93120.8 (3)
C27—C32—C31122.9 (3)C96—C95—C94119.9 (3)
C27—C32—Cl4119.0 (2)C96—C95—H95120.1
C31—C32—Cl4118.1 (3)C94—C95—H95120.1
C38—C33—C34118.5 (3)C95—C96—C97120.6 (3)
C38—C33—C10122.6 (3)C95—C96—H96119.7
C34—C33—C10118.8 (3)C97—C96—H96119.7
O1—C34—C35124.6 (3)C98—C97—C96119.8 (4)
O1—C34—C33114.3 (3)C98—C97—H97120.1
C35—C34—C33121.0 (3)C96—C97—H97120.1
C36—C35—C34119.2 (3)C97—C98—C93120.9 (3)
C36—C35—H35120.4C97—C98—H98119.6
C34—C35—H35120.4C93—C98—H98119.6
C37—C36—C35120.7 (3)C94—O61—C99118.8 (3)
C37—C36—H36119.6O61—C99—C100108.2 (3)
C35—C36—H36119.6O61—C99—H99A110.1
C36—C37—C38119.8 (3)C100—C99—H99A110.1
C36—C37—H37120.1O61—C99—H99B110.1
C38—C37—H37120.1C100—C99—H99B110.1
C33—C38—C37120.8 (3)H99A—C99—H99B108.4
C33—C38—H38119.6O62—C100—C99115.9 (3)
C37—C38—H38119.6O62—C100—H10A108.3
C34—O1—C39118.5 (3)C99—C100—H10A108.3
O1—C39—C40106.1 (3)O62—C100—H10B108.3
O1—C39—H39A110.5C99—C100—H10B108.3
C40—C39—H39A110.5H10A—C100—H10B107.4
O1—C39—H39B110.5C100—O62—C101114.9 (3)
C40—C39—H39B110.5O62—C101—C102114.9 (3)
H39A—C39—H39B108.7O62—C101—H10C108.6
O2—C40—C39113.2 (3)C102—C101—H10C108.6
O2—C40—H40A108.9O62—C101—H10D108.6
C39—C40—H40A108.9C102—C101—H10D108.6
O2—C40—H40B108.9H10C—C101—H10D107.5
C39—C40—H40B108.9C103—C102—C101174.6 (4)
H40A—C40—H40B107.7C102—C103—C104178.1 (4)
C40—O2—C41115.1 (3)O63—C104—C103110.0 (3)
O2—C41—C42114.3 (3)O63—C104—H10E109.7
O2—C41—H41A108.7C103—C104—H10E109.7
C42—C41—H41A108.7O63—C104—H10F109.7
O2—C41—H41B108.7C103—C104—H10F109.7
C42—C41—H41B108.7H10E—C104—H10F108.2
H41A—C41—H41B107.6C105—O63—C104113.5 (3)
C43—C42—C41177.5 (4)O63—C105—C106112.8 (3)
C42—C43—C44178.0 (5)O63—C105—H10G109.0
O3—C44—C43114.9 (3)C106—C105—H10G109.0
O3—C44—H44A108.5O63—C105—H10H109.0
C43—C44—H44A108.5C106—C105—H10H109.0
O3—C44—H44B108.5H10G—C105—H10H107.8
C43—C44—H44B108.5O64—C106—C105106.0 (3)
H44A—C44—H44B107.5O64—C106—H10I110.5
C45—O3—C44114.7 (3)C105—C106—H10I110.5
O3—C45—C46114.2 (3)O64—C106—H10J110.5
O3—C45—H45A108.7C105—C106—H10J110.5
C46—C45—H45A108.7H10I—C106—H10J108.7
O3—C45—H45B108.7C107—O64—C106120.6 (3)
C46—C45—H45B108.7O64—C107—C112125.1 (3)
H45A—C45—H45B107.6O64—C107—C108115.2 (3)
O4—C46—C45107.1 (3)C112—C107—C108119.7 (3)
O4—C46—H46A110.3C109—C108—C107119.2 (3)
C45—C46—H46A110.3C109—C108—C80122.8 (3)
O4—C46—H46B110.3C107—C108—C80117.9 (3)
C45—C46—H46B110.3C108—C109—C110121.4 (3)
H46A—C46—H46B108.5C108—C109—H109119.3
C47—O4—C46120.0 (3)C110—C109—H109119.3
O4—C47—C48115.3 (3)C111—C110—C109118.5 (4)
O4—C47—C52124.7 (3)C111—C110—H110120.7
C48—C47—C52120.0 (3)C109—C110—H110120.7
C49—C48—C47118.4 (3)C110—C111—C112121.4 (3)
C49—C48—C20123.0 (3)C110—C111—H111119.3
C47—C48—C20118.4 (3)C112—C111—H111119.3
C48—C49—C50121.9 (3)C107—C112—C111119.6 (3)
C48—C49—H49119.0C107—C112—H112120.2
C50—C49—H49119.0C111—C112—H112120.2
C51—C50—C49118.5 (3)Cl21—C121—Cl22112.8 (3)
C51—C50—H50120.7Cl21—C121—H20A109.0
C49—C50—H50120.7Cl22—C121—H20A109.0
C50—C51—C52121.1 (3)Cl21—C121—H20B109.0
C50—C51—H51119.4Cl22—C121—H20B109.0
C52—C51—H51119.4H20A—C121—H20B107.8
C51—C52—C47120.0 (3)Cl25—C122—Cl23122.6 (5)
C51—C52—H52120.0Cl24—C122—Cl23114.1 (4)
C47—C52—H52120.0Cl24—C122—H20C108.7
N63—Ni2—N6490.11 (10)Cl23—C122—H20C108.7
N63—Ni2—N6289.96 (11)Cl24—C122—H20D108.7
N64—Ni2—N62179.09 (9)Cl23—C122—H20D108.7
N63—Ni2—N61178.44 (9)H20C—C122—H20D107.6
N64—Ni2—N6189.59 (10)Cl25—C122—H20E106.7
N62—Ni2—N6190.37 (10)Cl23—C122—H20E106.7
C64—N61—C61105.1 (3)Cl25—C122—H20F106.7
C64—N61—Ni2126.6 (2)Cl23—C122—H20F106.7
C61—N61—Ni2128.3 (2)H20E—C122—H20F106.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl62i0.952.863.566 (4)132
C13—H13···Cl640.952.893.632 (3)136
C31—H31···Cl63ii0.952.953.878 (4)165
C41—H41A···Cl10.992.943.918 (4)169
C41—H41B···O10.992.393.037 (5)122
C44—H44A···Cl30.992.913.867 (4)163
C44—H44B···O40.992.373.029 (5)123
C63—H63···Cl2iii0.952.873.669 (3)142
C73—H73···Cl40.952.833.639 (3)143
C101—H10C···Cl610.992.753.734 (4)172
C101—H10D···O610.992.302.962 (4)123
C104—H10F···N640.992.673.410 (5)132
C104—H10F···O640.992.403.028 (5)121
C121—H20B···O62iv0.992.653.304 (7)124
C121—H20A···Cl2v0.992.903.563 (6)125
C122—H20F···Cl4iv0.992.703.583 (6)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

First citationAndrioletti, B., Ricard, D. & Boitrel, B. (1999). New J. Chem. 23, 1143–1150.  CrossRef CAS Google Scholar
First citationBattersby, A. R. & Hamilton, A. D. (1980). J. Chem. Soc. Chem. Commun. pp. 117–119.  CrossRef Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692–703.  CSD CrossRef CAS Web of Science Google Scholar
First citationDommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496–8500.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552–7555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGanesh, K. N. & Sanders, J. K. M. (1980). J. Chem. Soc. Chem. Commun. pp. 1129–1131.  CrossRef Google Scholar
First citationGehrold, A. C., Bruhn, T., Schneider, H., Radius, U. & Bringmann, G. (2015). Org. Lett. 17, 210–213.  CrossRef CAS PubMed Google Scholar
First citationGoncalves, D. P. N. & Sanders, J. K. M. (2007). Synlett, 4, 591–594.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810–4823.  CSD CrossRef CAS Web of Science Google Scholar
First citationGunter, M. J., Jeynes, T. P. & Turner, P. (2004). Eur. J. Org. Chem. pp. 193–208.  CrossRef Google Scholar
First citationKoepf, M., Trabolsi, A., Elhabiri, M., Wytko, J. A., Paul, D., Albrecht-Gary, A. M. & Weiss, J. (2005). Org. Lett. 7, 1279–1282.  CrossRef PubMed CAS Google Scholar
First citationLittler, B. J., Miller, M. A., Hung, C. A., Wagner, R. W., O'Shea, D. F., Boyle, P. D. & Lindsey, J. S. (1999). J. Org. Chem. 64, 1391–1396.  CrossRef CAS Google Scholar
First citationLiu, Q., Tang, M., Zeng, W., Zhang, X., Wang, J. & Zhou, Z. (2016). Eur. J. Inorg. Chem. pp. 5222–5229.  CrossRef Google Scholar
First citationMomenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189–196.  CrossRef Web of Science Google Scholar
First citationMorgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115–203.  CrossRef CAS Google Scholar
First citationPeters, M. K., Hamer, S., Jäkel, T., Röhricht, F., Sönnichsen, F. D., von Essen, C., Lahtinen, M., Naether, C., Rissanen, K. & Herges, R. (2019). Inorg. Chem. DOI: 10.1021/acs.inorgchem.9b00349.  Google Scholar
First citationPeters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177–3182.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPeters, M. K., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1013–1016.  CrossRef IUCr Journals Google Scholar
First citationSabat, M. & Ibers, J. A. (1982). J. Am. Chem. Soc. 104, 3715–3721.  CrossRef CAS Google Scholar
First citationShankar, S., Peters, M. K., Steinborn, K., Krahwinkel, B., Sönnichsen, F., Grote, D., Sander, W., Lohmiller, T. & Herges, R. (2018). Nat. Commun. 9, 1–12.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVenkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds