research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­dr­oxy-4-methyl­anilino)­methyl­­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 April 2019; accepted 8 May 2019; online 14 May 2019)

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak ππ inter­actions, forming layers parallel to ([\overline{2}]01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.

1. Chemical context

Schiff bases contain the azomethine moiety (–RCH=N–R′) and are prepared by condensation reactions between amines and active carbonyl compounds (Schiff, 1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]). In the majority of cases, the synthesis involves an aromatic amine and an aldehyde (Schiff et al., 1881[Schiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114-123.]). Schiff bases are very important for production of chemical specialties such as pharmaceuticals including anti­biotics, and of anti­allergic, anti­tumor, anti­fungal, anti­bacterial, anti­malarial or anti­viral drugs. Schiff bases are also employed as catalyst carriers (Grigoras et al., 2001[Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927-939.]), thermo-stable materials (Vančo et al., 2004[Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.]), metal–cation complexing agents or in biological systems (Taggi et al., 2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). Schiff bases containing phenol indicate two possible tautomeric forms, viz. phenol–imine and keto–enamine.

[Scheme 1]

In the current study, a new Schiff base, (Z)-6-{[(2-hy­droxy-4-methyl­phen­yl)amino]­methyl­idene}-4-methyl­cyclo­hexa-2,4-dien-1-one, was obtained in crystalline form from the reaction of 2-amino-5-methyl­phenol with 2-hy­droxy-5-methyl­benz­aldehyde. We report here its synthesis conditions and the mol­ecular and crystal structures, supplemented by Hirshfeld surface analysis.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit comprises one mol­ecule that adopts the keto–enamine tautomeric form, i.e. the H atom is located at the amine functionality (N1). The mol­ecule is almost planar, with an r.m.s. deviation of 0.1061 Å for the complete mol­ecule except the H atoms [largest deviation 0.176 (3) Å for C8]. The two phenyl rings (C1–C6 and C9–C14) are inclined by 9.60 (18)°. The C1—O1 bond length [1.356 (3) Å] to the hy­droxy group is in the normal range, while the C14=O2 bond length is comparatively elongated [1.302 (4) Å] due to the involvement of the carbonyl O atom in an intra­molecular N—H⋯O hydrogen bond, forming an S(6) ring motif. The C6—N1 and C8=N1 bond lengths are 1.404 (4) and 1.310 (4) Å, respectively. Overall, the bond lengths in the title structure compare well with those of other keto–enamine tautomers known from the literature (see: Database Survey).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. Dashed lines denote the intra­molecular N—H⋯O hydrogen bond (Table 1[link]) forming an S(6) ring motif.

3. Supra­molecular features

The mol­ecules are linked by mutual O—H⋯O hydrogen bonds forming pairs of inversion dimers with an [R_{2}^{2}](18) ring motif (Table 1[link], Figs. 2[link] and 3[link]). The dimers are linked by very weak π-stacking inter­actions [Cg1⋯Cg2 = 4.721 (2) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively], forming layers parallel to ([\overline{2}]01).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.627 (3) 168
N1—H1A⋯O2 0.87 (4) 1.83 (4) 2.585 (4) 144 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote the inter­molecular O—H⋯O hydrogen bonds (Table 1[link]) forming an inversion dimer with an [R_{2}^{2}](18) ring motif.
[Figure 3]
Figure 3
The crystal packing of the title compound.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-2-[(2-hy­droxy­phenyl­iminio)meth­yl]phenolate fragment revealed 25 hits where this fragment adopts the keto–enamine tautomeric form. Nearly all bond lengths in the title structure are the same within standard uncertainties as the corresponding bond lengths in the structures of 2,4-di­chloro-6-{[(2-meth­oxy­phen­yl)iminio]meth­yl}phenolate hydrate (VUYFEC; Tsuchimoto et al., 2016[Tsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152-158.]), 2-{(E)-[(2-hy­droxy­phen­yl)iminio]meth­yl}-4-methyl­phenolate (XULSOO; Shalini et al., 2015[Shalini, S., Girija, C. R., Jotani, M. M., Sathish, C. D. & Venkatesha, T. V. (2015). Acta Cryst. E71, o288.]), (E)-4-hy­droxy-2-[(2-hy­droxy­phen­yl)iminiometh­yl]phenolate (QUYGOH; Eltayeb et al., 2010[Eltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010). Acta Cryst. E66, o1536-o1537.]) or 2-{(E)-[(2-hy­droxy-5-methyl­phen­yl)iminio]meth­yl}-4-(tri­fluoro­meth­oxy)phenolate (QAJYUX; Karadağ et al., 2011[Karadağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.]). For example, in the structures of these typical keto–enamine tautomers, the corresponding C14=O2 and C8—C9 bond lengths are in the ranges 1.279–1.316 Å and 1.410–1.427 Å, respectively. It is likely that the inter­molecular O—H⋯O hydrogen bond, where the keto O atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the keto–enamine form. In fact, in all 25 structures of the keto–enamine tautomers, hydrogen bonds of this type are observed.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer Ver. 17.5. University of Western Australia. http://hirshfeldsurface.net.]) for specifying the inter­molecular inter­actions in the title compound. Fig. 4[link]a illustrates the Hirshfeld surface mapped over dnorm. The red spots highlight the inter­atomic contacts included in O—H⋯O hydrogen bonding. The three-dimensional dnorm surfaces were plotted with a colour scale of −0.7370 to 1.3366 Å with a standard (high) surface resolution. Fig. 4[link]b shows the mol­ecular electrostatic potential plotted over the three-dimensional Hirshfeld surface using the STO-3G basis set in the range −0.0975 to 0.2197 a.u. within the Hartree–Fock level of theory. The O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 4]
Figure 4
(a) The Hirshfeld surface mapped over dnorm, and (b) the mol­ecular electrostatic potential surface showing the O—H⋯O inter­actions.

Fig. 5[link]a shows the two-dimensional fingerprint of the sum of all contacts contributing to the Hirshfeld surface indicated in normal mode. Fig. 5[link]b illustrates the two-dimensional fingerprint of (di, de) points related to H⋯H contacts that represent a 55.2% contribution in the title structure. In Fig. 5[link]c, two symmetrical wings on the left and right sides indicate C⋯H/H⋯C inter­actions with a contribution of 22.3%. Furthermore, there are O⋯H/H⋯O (13.6%; Fig. 5[link]d), C⋯C (4.9%) and C⋯N/N⋯C (2.6%) contacts.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound giving the relative contribution of atom pairs to the Hirshfeld surface.

Fig. 6[link] shows the mol­ecular electrostatic potential surface generated using the STO-3G basis set in the range −0.050 to 0.050 a.u. within the Hartree–Fock level of theory. The blue and red regions are associated with positive and negative mol­ecular electrostatic potentials and represent the donor and acceptor groups, respectively, in hydrogen bonding.

[Figure 6]
Figure 6
A view of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. calculated using the STO-3 G basis set in the range −0.050 to 0.050 a.u. within the Hartree–Fock level of theory.

6. Synthesis and crystallization

The title compound was prepared by refluxing a mixture of 2-hy­droxy-5-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-amino-5-methyl­phenol (30.8 mg, 0.25 mmol) in ethanol (15 ml) for 5 h. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 446–448 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O- and N-bound H atoms were located in a difference-Fourier map and refined with O—H = 0.82 Å and N—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(N,O). The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO2
Mr 241.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.3954 (19), 11.746 (2), 10.3067 (17)
β (°) 115.940 (12)
V3) 1240.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.57 × 0.50 × 0.44
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.962, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 6997, 2417, 1261
Rint 0.061
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.156, 0.99
No. of reflections 2417
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.14
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-6-[(2-Hydroxy-4-methylanilino)methylidene]-4-methylcyclohexa-2,4-dien-1-one top
Crystal data top
C15H15NO2F(000) = 512
Mr = 241.28Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3954 (19) ÅCell parameters from 15101 reflections
b = 11.746 (2) Åθ = 2.8–30.9°
c = 10.3067 (17) ŵ = 0.09 mm1
β = 115.940 (12)°T = 296 K
V = 1240.6 (4) Å3Prism, red
Z = 40.57 × 0.50 × 0.44 mm
Data collection top
Stoe IPDS 2
diffractometer
2417 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1261 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.061
rotation method scansθmax = 26.0°, θmin = 2.8°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1413
Tmin = 0.962, Tmax = 0.975k = 1411
6997 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.16 e Å3
2417 reflectionsΔρmin = 0.14 e Å3
171 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.007 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3892 (2)0.58075 (18)0.4721 (3)0.0775 (7)
H10.3792710.5393570.5306050.116*
O20.6238 (2)0.57505 (18)0.3518 (2)0.0735 (7)
N10.4922 (3)0.7437 (3)0.3822 (3)0.0581 (7)
C90.6549 (3)0.7665 (2)0.2975 (3)0.0544 (7)
C10.3454 (3)0.6868 (3)0.4791 (3)0.0563 (7)
C80.5565 (3)0.8082 (3)0.3317 (3)0.0599 (8)
H80.5360180.8852930.3179830.072*
C60.3978 (3)0.7746 (2)0.4288 (3)0.0546 (7)
C20.2544 (3)0.7113 (3)0.5301 (3)0.0613 (8)
H2A0.2195870.6521200.5622610.074*
C30.2140 (3)0.8211 (3)0.5343 (3)0.0592 (8)
C110.8287 (3)0.8104 (3)0.2270 (3)0.0603 (8)
C140.6898 (3)0.6484 (3)0.3155 (3)0.0599 (8)
C100.7254 (3)0.8436 (3)0.2515 (3)0.0628 (8)
H100.7000670.9195770.2376830.075*
C50.3571 (3)0.8851 (3)0.4324 (3)0.0642 (8)
H50.3909520.9445140.3995590.077*
C40.2668 (3)0.9080 (3)0.4843 (3)0.0670 (8)
H40.2406440.9827370.4859670.080*
C120.8638 (3)0.6949 (3)0.2488 (3)0.0681 (9)
H120.9347190.6702490.2342910.082*
C130.7972 (3)0.6170 (3)0.2906 (3)0.0688 (9)
H130.8239710.5413680.3029350.083*
C70.1151 (3)0.8461 (3)0.5909 (3)0.0762 (10)
H7A0.0315630.8168660.5248000.114*
H7B0.1090490.9269220.6005980.114*
H7C0.1418120.8105090.6833220.114*
C150.9064 (3)0.8936 (3)0.1829 (4)0.0769 (10)
H15A0.8613040.9651840.1574740.115*
H15B0.9160470.8638100.1013330.115*
H15C0.9909620.9044930.2618130.115*
H1A0.516 (4)0.673 (4)0.387 (4)0.088 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1026 (18)0.0475 (13)0.1056 (17)0.0073 (13)0.0671 (15)0.0093 (11)
O20.0894 (16)0.0526 (13)0.0949 (14)0.0002 (12)0.0555 (13)0.0079 (11)
N10.0611 (17)0.0488 (17)0.0674 (15)0.0035 (14)0.0308 (13)0.0064 (12)
C90.0583 (18)0.0501 (18)0.0558 (16)0.0016 (15)0.0259 (15)0.0034 (13)
C10.0612 (19)0.0484 (18)0.0586 (16)0.0013 (16)0.0254 (15)0.0019 (13)
C80.0620 (19)0.0505 (18)0.0669 (17)0.0019 (16)0.0281 (15)0.0050 (14)
C60.0550 (18)0.0498 (18)0.0602 (16)0.0033 (15)0.0262 (14)0.0031 (13)
C20.068 (2)0.056 (2)0.0655 (17)0.0049 (16)0.0342 (16)0.0039 (14)
C30.0591 (19)0.063 (2)0.0557 (16)0.0044 (17)0.0251 (14)0.0027 (14)
C110.063 (2)0.063 (2)0.0601 (16)0.0045 (17)0.0318 (15)0.0012 (14)
C140.065 (2)0.0535 (19)0.0620 (16)0.0024 (16)0.0288 (15)0.0002 (14)
C100.067 (2)0.0563 (19)0.0648 (17)0.0033 (17)0.0283 (16)0.0005 (14)
C50.0658 (19)0.0512 (19)0.0800 (19)0.0004 (17)0.0359 (17)0.0060 (15)
C40.072 (2)0.0526 (19)0.084 (2)0.0078 (17)0.0406 (18)0.0011 (16)
C120.071 (2)0.069 (2)0.0735 (19)0.0016 (18)0.0400 (17)0.0055 (16)
C130.082 (2)0.0532 (19)0.081 (2)0.0030 (18)0.0450 (19)0.0030 (16)
C70.073 (2)0.085 (3)0.078 (2)0.0082 (19)0.0403 (18)0.0022 (17)
C150.078 (2)0.081 (3)0.084 (2)0.011 (2)0.0477 (19)0.0013 (18)
Geometric parameters (Å, º) top
O1—C11.356 (3)C11—C101.365 (4)
O1—H10.8200C11—C121.405 (4)
O2—C141.302 (4)C11—C151.516 (4)
N1—C81.310 (4)C14—C131.404 (4)
N1—C61.404 (4)C10—H100.9300
N1—H1A0.87 (4)C5—C41.377 (4)
C9—C81.403 (4)C5—H50.9300
C9—C101.422 (4)C4—H40.9300
C9—C141.433 (4)C12—C131.373 (4)
C1—C21.383 (4)C12—H120.9300
C1—C61.400 (4)C13—H130.9300
C8—H80.9300C7—H7A0.9600
C6—C51.385 (4)C7—H7B0.9600
C2—C31.377 (4)C7—H7C0.9600
C2—H2A0.9300C15—H15A0.9600
C3—C41.393 (4)C15—H15B0.9600
C3—C71.506 (4)C15—H15C0.9600
C1—O1—H1109.5C11—C10—C9122.6 (3)
C8—N1—C6129.1 (3)C11—C10—H10118.7
C8—N1—H1A111 (2)C9—C10—H10118.7
C6—N1—H1A120 (2)C4—C5—C6120.6 (3)
C8—C9—C10119.4 (3)C4—C5—H5119.7
C8—C9—C14120.9 (2)C6—C5—H5119.7
C10—C9—C14119.6 (3)C5—C4—C3121.2 (3)
O1—C1—C2124.5 (3)C5—C4—H4119.4
O1—C1—C6115.5 (2)C3—C4—H4119.4
C2—C1—C6120.0 (3)C13—C12—C11122.4 (3)
N1—C8—C9123.0 (3)C13—C12—H12118.8
N1—C8—H8118.5C11—C12—H12118.8
C9—C8—H8118.5C12—C13—C14121.9 (3)
C5—C6—C1118.5 (3)C12—C13—H13119.1
C5—C6—N1124.6 (3)C14—C13—H13119.1
C1—C6—N1116.8 (3)C3—C7—H7A109.5
C3—C2—C1121.6 (3)C3—C7—H7B109.5
C3—C2—H2A119.2H7A—C7—H7B109.5
C1—C2—H2A119.2C3—C7—H7C109.5
C2—C3—C4118.0 (3)H7A—C7—H7C109.5
C2—C3—C7120.8 (3)H7B—C7—H7C109.5
C4—C3—C7121.2 (3)C11—C15—H15A109.5
C10—C11—C12117.0 (3)C11—C15—H15B109.5
C10—C11—C15122.4 (3)H15A—C15—H15B109.5
C12—C11—C15120.5 (3)C11—C15—H15C109.5
O2—C14—C13122.6 (3)H15A—C15—H15C109.5
O2—C14—C9121.0 (3)H15B—C15—H15C109.5
C13—C14—C9116.4 (3)
C6—N1—C8—C9175.8 (3)C10—C9—C14—C132.3 (4)
C10—C9—C8—N1176.2 (3)C12—C11—C10—C90.1 (4)
C14—C9—C8—N10.5 (4)C15—C11—C10—C9177.9 (3)
O1—C1—C6—C5179.8 (3)C8—C9—C10—C11174.9 (3)
C2—C1—C6—C50.4 (4)C14—C9—C10—C111.8 (4)
O1—C1—C6—N12.2 (4)C1—C6—C5—C40.1 (4)
C2—C1—C6—N1178.4 (3)N1—C6—C5—C4177.9 (3)
C8—N1—C6—C51.7 (5)C6—C5—C4—C30.0 (5)
C8—N1—C6—C1179.5 (3)C2—C3—C4—C50.2 (4)
O1—C1—C2—C3180.0 (3)C7—C3—C4—C5179.9 (3)
C6—C1—C2—C30.7 (4)C10—C11—C12—C131.0 (5)
C1—C2—C3—C40.6 (4)C15—C11—C12—C13179.1 (3)
C1—C2—C3—C7179.7 (3)C11—C12—C13—C140.5 (5)
C8—C9—C14—O26.1 (4)O2—C14—C13—C12178.3 (3)
C10—C9—C14—O2177.2 (3)C9—C14—C13—C121.2 (4)
C8—C9—C14—C13174.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.627 (3)168
N1—H1A···O20.87 (4)1.83 (4)2.585 (4)144 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

This study was supported by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010). Acta Cryst. E66, o1536–o1537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationSchiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114–123.  CrossRef Google Scholar
First citationShalini, S., Girija, C. R., Jotani, M. M., Sathish, C. D. & Venkatesha, T. V. (2015). Acta Cryst. E71, o288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer Ver. 17.5. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationVančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds