research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (N,N′-ethyl­enebis{3-[2-(3-nitro­phen­yl)hydrazin-1-yl­­idene]-4-oxo­pentan-2-iminato})copper(II)–3-[2-(3-nitro­phen­yl)hydrazin-1-yl­­idene]pentane-2,4-dione (1/1)

aTU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 22 March 2019; accepted 28 April 2019; online 21 May 2019)

In the title 1:1 co-crystal, [Cu(C24H24N8O6)]·C11H11N3O4, each of the crystal components forms undulating layers which stack alternately along the b-axis direction. Mol­ecules of the CuII complex are connected via C—H⋯O hydrogen bonds involving the nitro and keto oxygen atoms, thus forming supra­molecular networks. Mol­ecules of the aryl­hydrazone component are linked by C—H⋯O inter­actions into zigzag strands showing no inter­strand association.

1. Chemical context

Hydrazone imines derived from β-diketones and aryl­diazo­nium salts using a Japp–Klingemann route (Phillips, 1959[Phillips, R. R. (1959). Org. React. 10, 143-178.]) have attracted considerable inter­est as precursors of potential anti­diabetic drugs (Garg & Prakash, 1971[Garg, H. G. & Prakash, C. (1971). J. Pharm. Sci. 60, 323-325.]; Küçükgüzel et al., 1999[Küçükgüzel, G., Rollas, S., Küçükgüzel, I. & Kiraz, M. (1999). Eur. J. Med. Chem. 34, 1093-1100.]) as well as regarding their particular property of hydrogen bonding (Marten et al., 2007[Marten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716-731.]; Sethukumar & Arul Prakasam, 2010[Sethukumar, A. & Arul Prakasam, B. (2010). J. Mol. Struct. 963, 250-257.]) and their remarkable behavior in the formation of metal complexes. Transition-metal chelates of the respective hydrazine imines have been described in great numbers (Albert et al., 1997[Albert, J., González, A., Granell, J., Moragas, R., Puerta, C. & Valerga, P. (1997). Organometallics, 16, 3775-3778.]; Mishra et al., 2000[Mishra, L., Yadaw, A. K., Srivastava, S. & Bahadur Patel, A. (2000). New J. Chem. 24, 505-510.]; Marten et al., 2005[Marten, J., Seichter, W. & Weber, E. (2005). Z. Anorg. Allg. Chem. 631, 869-877.]). Preferentially, the chelates with CuII, CoII and NiII show a tetra­hedrally distorted square N2O2 coordination environment. In the presence of a di­amine and NiII, related bis(hydrazono­imine) complexes are formed displaying an unusual behavior of the effective magnetic moment at low temperature (Khudina et al., 2007[Khudina, O. G., Shchegol'kov, E. V., Burgart, V., Saloutin, V. I., Bukhvalov, D. V., Starichenko, D. V., Shvachko, Yu. N., Korolev, A. V., Ustinov, V. V., Aleksandrov, G. G., Eremenko, I. L., Kazheva, O. N., Shilov, G. V., D'yachenko, O. A. & Chupakhin, O. N. (2007). Russ. Chem. Bull. 56, 108-114.]). A corresponding chelate complex, formed of 3-[2-(3-nitro­phen­yl)hydrazin-1-yl­idene]pen­tane-2,4-dione (Marten et al., 2018[Marten, J., Seichter, W. & Weber, E. (2018). IUCrData, 3, x181344.]) and bis­(ethyl­enedi­amine)­copper(II) chloride yielded a co-crystal consisting of N,N′-ethyl­enebis{3-[2-(3-nitro­phen­yl)hydrazine-1-yl­idene]-4-oxo­pentane-2-iminato}copper(II) and 3-[2-(3-nitro­phen­yl)hydrazine-1-yl­idene]pentane-2,4-dione in a 1:1 stoichiometric composition (the title compound), whose crystal structure is reported on herein.

[Scheme 1]

2. Structural commentary

The title co-crystal possesses ortho­rhom­bic symmetry (space group Pbca) with one mol­ecule of the CuII complex and one mol­ecule of the aryl­hydrazone in the asymmetric unit. A perspective view is shown in Fig. 1[link]. The metal center of the complex adopts a tetra­hedrally distorted square coordination environment formed by four nitro­gen atoms (N2, N4, N7, N8) of the ligand. As a result of the tetra­dentate coordination mode and the steric inter­action between the terminal aromatic rings of the ligand, the complex mol­ecule adopts a helical geometry with a distance of 3.384 (4) Å between the benzene ring centroids and a dihedral angle of 10.43 (4)° between the benzene ring planes. The Cu—N distances are 1.940 (2), 1.943 (2), 1.953 (2) and 1.957 (2) Å, the bond angles N7—Cu—N8, N7—Cu—N2, N8—Cu—N5 and N2—Cu—N5 are 86.3 (1), 88.4 (1), 89.1 (1) and 100.4 (1)°, respectively. The nitro groups deviate slightly from the planes of the respective benzene rings, with plane N3/O2/O3 being inclined to benzene ring C6–C11 of 3.8 (1)° and plane N6/O5/O6 being inclined to benzene ring C17–C22 by 5.1 (2)° between the nitro groups and the respective benzene rings. The conformation of the aryl­hydrazone component is nearly identical with that found in the reported structure of this compound (Marten et al., 2018[Marten, J., Seichter, W. & Weber, E. (2018). IUCrData, 3, x181344.]). The mol­ecule features an intra­molecular N—H⋯O=C inter­action that yields a six-membered hydrogen-bonded ring. The dihedral angle between the mean plane of this ring and the aromatic ring is 7.8 (2)°. The nitro group is tilted at an angle of 5.8 (2)° with respect to the benzene ring.

[Figure 1]
Figure 1
Perspective view of an asymmetric unit of the title co-crystal with atom labeling. Displacement ellipsoids of non-H atoms are shown at the 40% probability level.

3. Supra­molecular features

In the crystal, the CuII complexes as well as the aryl­hydrazone mol­ecules form undulating layers extending parallel to the ac plane and arranged in an alternating order along the b-axis direction (Fig. 2[link]). Within a layer of complexes, one carbonyl oxygen and one nitro group per mol­ecule inter­act via Carene—H⋯O hydrogen bonding (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]), thus generating a supra­molecular network (Table 1[link], Fig. 3[link]). The aryl­hydrazone mol­ecules are connected by means of Car­yl—H⋯Onitro inter­actions to form zigzag-like strands that run along the a-axis direction (Table 1[link], Fig. 4[link]). No directed non-covalent bonds are observed between the supra­molecular strands. In the stacking direction, the mol­ecules are linked by C—H⋯O inter­actions involving a nitro oxygen atom of the aryl­hydrazone mol­ecule and a methyl hydrogen of the coordinated ligand.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11A⋯O4Ai 0.95 2.43 3.320 (3) 156
N2A—H2A⋯O1A 0.90 (1) 1.81 (2) 2.531 (3) 135 (3)
C22—H22⋯O1ii 0.95 2.27 3.207 (3) 169
C16—H16A⋯O5iii 0.98 2.63 3.532 (3) 154
C12—H12B⋯O3Aiv 0.98 2.53 3.413 (3) 151
C11—H11⋯O3v 0.95 2.50 3.350 (3) 150
C5—H5C⋯O3v 0.98 2.65 3.426 (3) 137
C1—H1B⋯O3Avi 0.98 2.58 3.490 (3) 154
C1—H1B⋯O1 0.98 2.34 2.842 (3) 111
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) -x, -y, -z+1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing structure of the of the title co-crystal viewed down the crystallographic c axis. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
Structure of the CuII complex layer viewed along the b axis. The C—H⋯O inter­actions (Table 1[link]) are shown as dashed lines.
[Figure 4]
Figure 4
Layer structure of the aryl­hydrazone viewed along the b axis. Dashed lines represent the C—H⋯O inter­actions (Table 1[link]).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed one hit for a crystal structure of a transition-metal complex containing a structurally related ligand species. The complex N,N′-ethyl­ene-bis­[3-(4-methyl­phen­yl)hydrazono-4-oxo-5,5,6,6,7,7,8,8-octa­fluoro­octane-2-iminato]nickel(II) (JIXQAJ; Khudina et al., 2007[Khudina, O. G., Shchegol'kov, E. V., Burgart, V., Saloutin, V. I., Bukhvalov, D. V., Starichenko, D. V., Shvachko, Yu. N., Korolev, A. V., Ustinov, V. V., Aleksandrov, G. G., Eremenko, I. L., Kazheva, O. N., Shilov, G. V., D'yachenko, O. A. & Chupakhin, O. N. (2007). Russ. Chem. Bull. 56, 108-114.]) adopts a helical geometry that resembles that of the title complex. As a result of the presence of two extended fluoro­alkyl moieties, the pattern of inter­molecular non-covalent bonding is dominated by C—H⋯F and F⋯F inter­actions (Reichenbächer et al., 2005[Reichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22-30.]), creating a three-dimensional supra­molecular architecture. Unlike the title structure, in the reported crystal structure of 3-[2-(3-nitro­phen­yl)hydrazine-1-yl­idene]pentane-2,4-dione (Marten et al., 2018[Marten, J., Seichter, W. & Weber, E. (2018). IUCrData, 3, x181344.]) the mol­ecules are connected via Carene—H⋯Onitro and Carene—H⋯Oketo inter­actions giving rise to supra­molecular sheets.

5. Synthesis and crystallization

A solution containing 3-[2-(3-nitro­phen­yl)hydrazine-1-yl­idene]pentane-2,4-dione and bis­(ethyl­enedi­amine)­copper(II) chloride in n-butanol was heated for several hours. After cooling and storing the reaction solution, blue-colored crystals could be isolated which turned out to consist of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom of 3-[2-(3-nitrophenyl)-hydrazine-1-ylidene]pentane-2,4-dione was located in a difference-Fourier map and freely refined. The C-bound and N-bound H atoms were included in the model in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C24H24N8O6)]·C11H11N3O4
Mr 833.28
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 153
a, b, c (Å) 15.5820 (5), 20.0517 (7), 23.3082 (8)
V3) 7282.5 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.54 × 0.44 × 0.07
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.712, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 86372, 9862, 6112
Rint 0.106
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 0.96
No. of reflections 9862
No. of parameters 524
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.01, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(N,N'-Ethylenebis{3-[2-(3-nitrophenyl)hydrazin-1-ylidene]-4-oxopentan-2-iminato})copper(II)–3-[2-(3-nitrophenyl)hydrazine-1-ylidene]pentane-2,4-dione (1/1) top
Crystal data top
[Cu(C24H24N8O6)]·C11H11N3O4Dx = 1.520 Mg m3
Mr = 833.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8051 reflections
a = 15.5820 (5) Åθ = 2.2–28.2°
b = 20.0517 (7) ŵ = 0.68 mm1
c = 23.3082 (8) ÅT = 153 K
V = 7282.5 (4) Å3Plate, blue
Z = 80.54 × 0.44 × 0.07 mm
F(000) = 3448
Data collection top
Bruker SMART APEXII
diffractometer
6112 reflections with I > 2σ(I)
φ and ω scansRint = 0.106
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.3°, θmin = 2.2°
Tmin = 0.712, Tmax = 0.954h = 2021
86372 measured reflectionsk = 2725
9862 independent reflectionsl = 3128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2354P]
where P = (Fo2 + 2Fc2)/3
9862 reflections(Δ/σ)max = 0.001
524 parametersΔρmax = 1.00 e Å3
1 restraintΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23540 (2)0.01555 (2)0.46535 (2)0.01874 (9)
O10.07371 (10)0.09037 (9)0.50519 (7)0.0288 (4)
O20.46419 (12)0.03799 (13)0.31472 (9)0.0542 (6)
O30.43989 (13)0.02538 (13)0.22515 (9)0.0543 (6)
O40.56630 (10)0.08866 (10)0.47203 (8)0.0357 (4)
O50.23463 (12)0.16123 (9)0.16939 (7)0.0348 (4)
O60.35277 (12)0.13307 (11)0.21053 (8)0.0419 (5)
N10.10026 (11)0.06399 (9)0.41500 (7)0.0171 (4)
N20.17823 (11)0.04081 (9)0.40872 (7)0.0181 (4)
N30.41581 (13)0.03341 (11)0.27448 (9)0.0293 (5)
N40.36211 (11)0.10044 (9)0.41302 (8)0.0197 (4)
N50.27979 (11)0.08627 (9)0.41566 (7)0.0180 (4)
N60.27544 (13)0.14372 (10)0.21161 (8)0.0244 (4)
N70.18147 (11)0.03715 (10)0.52509 (7)0.0200 (4)
N80.31978 (12)0.04022 (10)0.52296 (8)0.0208 (4)
C10.07728 (15)0.11055 (13)0.57134 (10)0.0282 (5)
H1A0.12540.13390.58950.042*
H1B0.03520.14320.55760.042*
H1C0.05000.08090.59940.042*
C20.10993 (14)0.06983 (11)0.52124 (9)0.0188 (4)
C30.06458 (13)0.07253 (11)0.46652 (9)0.0176 (4)
C40.02728 (13)0.09027 (11)0.46301 (10)0.0203 (5)
C50.06491 (15)0.10480 (14)0.40497 (10)0.0315 (6)
H5A0.12140.12560.40960.047*
H5B0.02690.13520.38400.047*
H5C0.07100.06310.38340.047*
C60.20627 (13)0.04200 (11)0.35057 (9)0.0175 (4)
C70.29434 (13)0.04252 (11)0.34078 (9)0.0191 (4)
H70.33380.04630.37170.023*
C80.32268 (14)0.03731 (12)0.28491 (10)0.0214 (5)
C90.26778 (15)0.03286 (11)0.23830 (10)0.0224 (5)
H90.28950.02830.20040.027*
C100.18059 (15)0.03522 (11)0.24867 (10)0.0227 (5)
H100.14150.03390.21740.027*
C110.14957 (14)0.03950 (11)0.30421 (9)0.0204 (5)
H110.08940.04070.31080.025*
C120.44975 (16)0.08755 (14)0.56354 (11)0.0351 (6)
H12A0.41460.10300.59580.053*
H12B0.48910.12320.55180.053*
H12C0.48290.04830.57530.053*
C130.39251 (14)0.06942 (11)0.51413 (10)0.0213 (5)
C140.41621 (13)0.08968 (11)0.45596 (9)0.0204 (5)
C150.50662 (15)0.10235 (12)0.43992 (11)0.0257 (5)
C160.52487 (15)0.12956 (15)0.38115 (11)0.0377 (7)
H16A0.58420.14570.37950.057*
H16B0.48560.16650.37300.057*
H16C0.51680.09430.35260.057*
C170.23544 (13)0.10738 (10)0.36559 (9)0.0172 (4)
C180.27775 (13)0.11919 (11)0.31372 (9)0.0191 (4)
H180.33850.11640.31140.023*
C190.22975 (14)0.13491 (11)0.26627 (9)0.0200 (5)
C200.14114 (14)0.14071 (11)0.26706 (10)0.0228 (5)
H200.10980.15160.23340.027*
C210.10001 (14)0.12994 (11)0.31900 (10)0.0238 (5)
H210.03930.13390.32120.029*
C220.14640 (13)0.11353 (11)0.36762 (9)0.0204 (5)
H220.11720.10640.40290.025*
C230.23529 (15)0.04049 (13)0.57677 (10)0.0249 (5)
H23A0.27200.08080.57520.030*
H23B0.19840.04370.61120.030*
C240.29118 (15)0.02124 (13)0.58082 (10)0.0260 (5)
H24A0.25820.05830.59820.031*
H24B0.34160.01200.60550.031*
O1A0.46165 (13)0.22072 (15)0.78627 (10)0.0664 (7)
O2A0.28475 (13)0.17207 (10)0.66034 (9)0.0457 (5)
O3A0.04080 (11)0.24229 (10)0.94118 (10)0.0469 (5)
O4A0.06525 (13)0.25224 (11)1.03186 (10)0.0499 (6)
N1A0.28478 (13)0.20901 (10)0.80646 (10)0.0296 (5)
N2A0.33228 (13)0.21815 (11)0.85192 (10)0.0332 (5)
H2A0.3888 (7)0.2245 (15)0.8469 (13)0.051 (9)*
N3A0.08951 (14)0.24565 (11)0.98228 (12)0.0370 (6)
C1A0.45036 (19)0.21587 (17)0.68630 (13)0.0501 (8)
H1A10.50840.23460.68800.075*
H1A20.41420.24410.66190.075*
H1A30.45270.17070.67030.075*
C2A0.41369 (17)0.21322 (14)0.74488 (13)0.0386 (7)
C3A0.32060 (16)0.20372 (12)0.75493 (11)0.0295 (6)
C4A0.25922 (17)0.18854 (13)0.70795 (13)0.0341 (6)
C5A0.16462 (17)0.19307 (15)0.71948 (13)0.0423 (7)
H5A10.14130.23280.70060.063*
H5A20.15480.19620.76090.063*
H5A30.13600.15320.70450.063*
C6A0.29704 (16)0.22805 (12)0.90680 (11)0.0277 (5)
C7A0.20906 (16)0.22976 (12)0.91655 (12)0.0291 (6)
H7A0.16910.22270.88640.035*
C8A0.18222 (15)0.24215 (12)0.97171 (12)0.0310 (6)
C9A0.23753 (18)0.25281 (14)1.01735 (14)0.0367 (6)
H9A0.21640.26131.05490.044*
C10A0.32440 (17)0.25058 (13)1.00628 (13)0.0369 (6)
H10A0.36420.25771.03660.044*
C11A0.35401 (16)0.23805 (13)0.95142 (12)0.0330 (6)
H11A0.41400.23630.94430.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01805 (14)0.02554 (15)0.01264 (15)0.00435 (10)0.00054 (11)0.00152 (11)
O10.0193 (8)0.0433 (10)0.0237 (10)0.0008 (7)0.0055 (7)0.0031 (8)
O20.0194 (10)0.1091 (19)0.0342 (12)0.0037 (10)0.0026 (9)0.0060 (12)
O30.0299 (11)0.1047 (19)0.0285 (12)0.0084 (11)0.0138 (9)0.0071 (11)
O40.0180 (8)0.0470 (11)0.0420 (12)0.0009 (7)0.0038 (8)0.0096 (9)
O50.0451 (11)0.0437 (11)0.0155 (9)0.0029 (8)0.0008 (8)0.0026 (8)
O60.0291 (10)0.0713 (14)0.0254 (11)0.0017 (9)0.0110 (8)0.0074 (9)
N10.0152 (9)0.0209 (9)0.0152 (10)0.0009 (7)0.0019 (7)0.0002 (7)
N20.0149 (9)0.0263 (10)0.0132 (10)0.0015 (7)0.0019 (7)0.0010 (7)
N30.0193 (10)0.0425 (13)0.0261 (12)0.0009 (8)0.0057 (9)0.0055 (9)
N40.0166 (9)0.0229 (10)0.0197 (10)0.0026 (7)0.0023 (7)0.0014 (7)
N50.0160 (9)0.0259 (10)0.0122 (9)0.0009 (7)0.0000 (7)0.0001 (7)
N60.0328 (12)0.0263 (10)0.0140 (11)0.0034 (8)0.0029 (9)0.0022 (8)
N70.0187 (9)0.0287 (10)0.0125 (10)0.0021 (7)0.0001 (7)0.0017 (7)
N80.0201 (9)0.0283 (10)0.0139 (10)0.0030 (8)0.0017 (7)0.0000 (8)
C10.0287 (13)0.0370 (14)0.0189 (13)0.0090 (10)0.0002 (10)0.0064 (10)
C20.0189 (11)0.0234 (11)0.0142 (11)0.0018 (8)0.0021 (8)0.0008 (8)
C30.0165 (10)0.0212 (11)0.0151 (11)0.0001 (8)0.0018 (9)0.0005 (9)
C40.0176 (11)0.0249 (12)0.0184 (12)0.0002 (8)0.0006 (9)0.0036 (9)
C50.0186 (12)0.0507 (16)0.0251 (14)0.0082 (11)0.0044 (10)0.0038 (11)
C60.0196 (10)0.0191 (10)0.0138 (11)0.0022 (8)0.0021 (9)0.0005 (8)
C70.0177 (10)0.0251 (11)0.0144 (11)0.0009 (9)0.0019 (9)0.0019 (9)
C80.0162 (10)0.0283 (12)0.0196 (12)0.0002 (9)0.0032 (9)0.0038 (9)
C90.0269 (12)0.0280 (12)0.0124 (11)0.0011 (9)0.0047 (9)0.0022 (9)
C100.0253 (12)0.0276 (12)0.0150 (12)0.0004 (9)0.0023 (9)0.0012 (9)
C110.0170 (11)0.0245 (11)0.0197 (12)0.0009 (8)0.0009 (9)0.0009 (9)
C120.0307 (14)0.0470 (16)0.0275 (15)0.0145 (12)0.0082 (11)0.0006 (12)
C130.0202 (11)0.0237 (12)0.0200 (12)0.0013 (8)0.0007 (9)0.0009 (9)
C140.0166 (10)0.0246 (12)0.0201 (13)0.0016 (8)0.0011 (9)0.0011 (9)
C150.0211 (12)0.0276 (13)0.0284 (14)0.0041 (9)0.0002 (10)0.0010 (10)
C160.0212 (12)0.0599 (19)0.0320 (16)0.0085 (12)0.0048 (11)0.0052 (13)
C170.0181 (10)0.0183 (10)0.0152 (11)0.0027 (8)0.0004 (9)0.0016 (8)
C180.0179 (11)0.0203 (11)0.0191 (12)0.0031 (8)0.0020 (9)0.0006 (9)
C190.0273 (12)0.0196 (11)0.0132 (11)0.0037 (9)0.0043 (9)0.0001 (8)
C200.0242 (12)0.0240 (11)0.0202 (13)0.0011 (9)0.0042 (9)0.0025 (9)
C210.0189 (11)0.0285 (13)0.0240 (13)0.0024 (9)0.0014 (9)0.0015 (10)
C220.0200 (11)0.0245 (11)0.0168 (12)0.0001 (8)0.0051 (9)0.0020 (9)
C230.0241 (11)0.0348 (13)0.0157 (12)0.0046 (10)0.0034 (10)0.0058 (10)
C240.0232 (11)0.0399 (14)0.0148 (12)0.0082 (10)0.0012 (10)0.0009 (10)
O1A0.0253 (11)0.125 (2)0.0487 (15)0.0036 (13)0.0007 (10)0.0065 (14)
O2A0.0480 (12)0.0499 (13)0.0391 (13)0.0020 (9)0.0019 (10)0.0082 (10)
O3A0.0217 (10)0.0523 (13)0.0666 (16)0.0003 (8)0.0052 (10)0.0050 (11)
O4A0.0394 (12)0.0507 (13)0.0598 (16)0.0008 (9)0.0198 (11)0.0019 (10)
N1A0.0268 (11)0.0212 (10)0.0408 (14)0.0010 (8)0.0017 (10)0.0022 (9)
N2A0.0194 (11)0.0390 (13)0.0413 (15)0.0025 (9)0.0025 (10)0.0045 (10)
N3A0.0273 (12)0.0277 (12)0.0561 (17)0.0010 (9)0.0066 (12)0.0004 (11)
C1A0.0426 (17)0.058 (2)0.050 (2)0.0103 (14)0.0105 (15)0.0140 (15)
C2A0.0309 (15)0.0421 (16)0.0430 (18)0.0001 (12)0.0060 (13)0.0037 (13)
C3A0.0293 (13)0.0230 (12)0.0363 (16)0.0030 (9)0.0015 (11)0.0006 (10)
C4A0.0338 (15)0.0234 (13)0.0451 (18)0.0008 (10)0.0033 (13)0.0007 (11)
C5A0.0324 (15)0.0404 (16)0.054 (2)0.0016 (11)0.0050 (13)0.0117 (14)
C6A0.0250 (12)0.0260 (13)0.0321 (15)0.0032 (9)0.0007 (11)0.0049 (10)
C7A0.0235 (12)0.0246 (12)0.0392 (16)0.0001 (9)0.0047 (11)0.0025 (10)
C8A0.0193 (12)0.0253 (13)0.0483 (18)0.0015 (9)0.0018 (12)0.0050 (11)
C9A0.0367 (15)0.0365 (15)0.0369 (16)0.0031 (11)0.0011 (12)0.0034 (12)
C10A0.0309 (14)0.0410 (15)0.0388 (17)0.0013 (11)0.0111 (13)0.0055 (12)
C11A0.0218 (12)0.0347 (14)0.0426 (18)0.0023 (10)0.0012 (11)0.0072 (11)
Geometric parameters (Å, º) top
Cu1—N71.9395 (18)C15—C161.502 (3)
Cu1—N81.9434 (18)C16—H16A0.9800
Cu1—N21.9527 (18)C16—H16B0.9800
Cu1—N51.9573 (18)C16—H16C0.9800
O1—C41.221 (3)C17—C221.394 (3)
O2—N31.207 (3)C17—C181.397 (3)
O3—N31.220 (3)C18—C191.372 (3)
O4—C151.225 (3)C18—H180.9500
O5—N61.223 (2)C19—C201.386 (3)
O6—N61.224 (3)C20—C211.387 (3)
N1—N21.309 (2)C20—H200.9500
N1—C31.334 (3)C21—C221.384 (3)
N2—C61.424 (3)C21—H210.9500
N3—C81.473 (3)C22—H220.9500
N4—N51.315 (2)C23—C241.516 (3)
N4—C141.326 (3)C23—H23A0.9900
N5—C171.421 (3)C23—H23B0.9900
N6—C191.470 (3)C24—H24A0.9900
N7—C21.296 (3)C24—H24B0.9900
N7—C231.469 (3)O1A—C2A1.230 (3)
N8—C131.292 (3)O2A—C4A1.224 (3)
N8—C241.471 (3)O3A—N3A1.224 (3)
C1—C21.513 (3)O4A—N3A1.223 (3)
C1—H1A0.9800N1A—N2A1.305 (3)
C1—H1B0.9800N1A—C3A1.329 (3)
C1—H1C0.9800N2A—C6A1.406 (3)
C2—C31.459 (3)N2A—H2A0.898 (10)
C3—C41.477 (3)N3A—C8A1.467 (3)
C4—C51.503 (3)C1A—C2A1.481 (4)
C5—H5A0.9800C1A—H1A10.9800
C5—H5B0.9800C1A—H1A20.9800
C5—H5C0.9800C1A—H1A30.9800
C6—C71.391 (3)C2A—C3A1.482 (4)
C6—C111.397 (3)C3A—C4A1.485 (4)
C7—C81.379 (3)C4A—C5A1.501 (4)
C7—H70.9500C5A—H5A10.9800
C8—C91.386 (3)C5A—H5A20.9800
C9—C101.381 (3)C5A—H5A30.9800
C9—H90.9500C6A—C11A1.382 (4)
C10—C111.385 (3)C6A—C7A1.390 (4)
C10—H100.9500C7A—C8A1.375 (4)
C11—H110.9500C7A—H7A0.9500
C12—C131.501 (3)C8A—C9A1.386 (4)
C12—H12A0.9800C9A—C10A1.379 (4)
C12—H12B0.9800C9A—H9A0.9500
C12—H12C0.9800C10A—C11A1.382 (4)
C13—C141.463 (3)C10A—H10A0.9500
C14—C151.479 (3)C11A—H11A0.9500
N7—Cu1—N886.32 (8)C15—C16—H16B109.5
N7—Cu1—N288.42 (8)H16A—C16—H16B109.5
N8—Cu1—N2157.38 (8)C15—C16—H16C109.5
N7—Cu1—N5166.59 (8)H16A—C16—H16C109.5
N8—Cu1—N589.16 (7)H16B—C16—H16C109.5
N2—Cu1—N5100.40 (7)C22—C17—C18119.0 (2)
N2—N1—C3122.21 (18)C22—C17—N5118.85 (18)
N1—N2—C6112.66 (17)C18—C17—N5122.12 (18)
N1—N2—Cu1123.59 (14)C19—C18—C17118.63 (19)
C6—N2—Cu1120.87 (13)C19—C18—H18120.7
O2—N3—O3123.4 (2)C17—C18—H18120.7
O2—N3—C8118.9 (2)C18—C19—C20123.5 (2)
O3—N3—C8117.7 (2)C18—C19—N6117.53 (19)
N5—N4—C14123.34 (18)C20—C19—N6118.9 (2)
N4—N5—C17111.82 (17)C19—C20—C21117.3 (2)
N4—N5—Cu1121.92 (14)C19—C20—H20121.3
C17—N5—Cu1122.01 (13)C21—C20—H20121.3
O5—N6—O6123.0 (2)C22—C21—C20120.7 (2)
O5—N6—C19118.68 (19)C22—C21—H21119.6
O6—N6—C19118.27 (19)C20—C21—H21119.6
C2—N7—C23121.64 (18)C21—C22—C17120.9 (2)
C2—N7—Cu1126.75 (15)C21—C22—H22119.6
C23—N7—Cu1111.48 (13)C17—C22—H22119.6
C13—N8—C24121.95 (19)N7—C23—C24109.98 (19)
C13—N8—Cu1126.78 (16)N7—C23—H23A109.7
C24—N8—Cu1111.27 (13)C24—C23—H23A109.7
C2—C1—H1A109.5N7—C23—H23B109.7
C2—C1—H1B109.5C24—C23—H23B109.7
H1A—C1—H1B109.5H23A—C23—H23B108.2
C2—C1—H1C109.5N8—C24—C23109.15 (18)
H1A—C1—H1C109.5N8—C24—H24A109.8
H1B—C1—H1C109.5C23—C24—H24A109.8
N7—C2—C3119.72 (19)N8—C24—H24B109.8
N7—C2—C1120.57 (19)C23—C24—H24B109.8
C3—C2—C1119.46 (19)H24A—C24—H24B108.3
N1—C3—C2125.46 (19)N2A—N1A—C3A120.5 (2)
N1—C3—C4112.64 (18)N1A—N2A—C6A122.5 (2)
C2—C3—C4121.77 (19)N1A—N2A—H2A118 (2)
O1—C4—C3122.0 (2)C6A—N2A—H2A119 (2)
O1—C4—C5119.6 (2)O4A—N3A—O3A123.6 (2)
C3—C4—C5118.32 (19)O4A—N3A—C8A117.9 (2)
C4—C5—H5A109.5O3A—N3A—C8A118.5 (2)
C4—C5—H5B109.5C2A—C1A—H1A1109.5
H5A—C5—H5B109.5C2A—C1A—H1A2109.5
C4—C5—H5C109.5H1A1—C1A—H1A2109.5
H5A—C5—H5C109.5C2A—C1A—H1A3109.5
H5B—C5—H5C109.5H1A1—C1A—H1A3109.5
C7—C6—C11119.83 (19)H1A2—C1A—H1A3109.5
C7—C6—N2117.31 (18)O1A—C2A—C1A119.0 (3)
C11—C6—N2122.79 (19)O1A—C2A—C3A119.1 (3)
C8—C7—C6118.0 (2)C1A—C2A—C3A121.9 (3)
C8—C7—H7121.0N1A—C3A—C2A122.9 (2)
C6—C7—H7121.0N1A—C3A—C4A114.4 (2)
C7—C8—C9123.2 (2)C2A—C3A—C4A122.7 (2)
C7—C8—N3118.4 (2)O2A—C4A—C3A121.0 (2)
C9—C8—N3118.4 (2)O2A—C4A—C5A119.8 (2)
C10—C9—C8117.9 (2)C3A—C4A—C5A119.2 (2)
C10—C9—H9121.0C4A—C5A—H5A1109.5
C8—C9—H9121.0C4A—C5A—H5A2109.5
C9—C10—C11120.6 (2)H5A1—C5A—H5A2109.5
C9—C10—H10119.7C4A—C5A—H5A3109.5
C11—C10—H10119.7H5A1—C5A—H5A3109.5
C10—C11—C6120.3 (2)H5A2—C5A—H5A3109.5
C10—C11—H11119.8C11A—C6A—C7A120.5 (2)
C6—C11—H11119.8C11A—C6A—N2A117.0 (2)
C13—C12—H12A109.5C7A—C6A—N2A122.5 (2)
C13—C12—H12B109.5C8A—C7A—C6A117.2 (2)
H12A—C12—H12B109.5C8A—C7A—H7A121.4
C13—C12—H12C109.5C6A—C7A—H7A121.4
H12A—C12—H12C109.5C7A—C8A—C9A123.8 (2)
H12B—C12—H12C109.5C7A—C8A—N3A117.7 (2)
N8—C13—C14119.7 (2)C9A—C8A—N3A118.4 (2)
N8—C13—C12120.6 (2)C10A—C9A—C8A117.5 (3)
C14—C13—C12119.6 (2)C10A—C9A—H9A121.2
N4—C14—C13125.75 (19)C8A—C9A—H9A121.2
N4—C14—C15112.74 (19)C9A—C10A—C11A120.4 (3)
C13—C14—C15121.5 (2)C9A—C10A—H10A119.8
O4—C15—C14122.0 (2)C11A—C10A—H10A119.8
O4—C15—C16119.7 (2)C6A—C11A—C10A120.5 (2)
C14—C15—C16118.2 (2)C6A—C11A—H11A119.7
C15—C16—H16A109.5C10A—C11A—H11A119.7
C3—N1—N2—C6174.16 (18)N4—N5—C17—C22162.16 (19)
C3—N1—N2—Cu125.0 (3)Cu1—N5—C17—C2240.6 (3)
C14—N4—N5—C17175.52 (19)N4—N5—C17—C1820.8 (3)
C14—N4—N5—Cu127.2 (3)Cu1—N5—C17—C18136.36 (17)
C23—N7—C2—C3171.5 (2)C22—C17—C18—C191.5 (3)
Cu1—N7—C2—C34.0 (3)N5—C17—C18—C19175.48 (19)
C23—N7—C2—C12.7 (3)C17—C18—C19—C201.0 (3)
Cu1—N7—C2—C1178.17 (17)C17—C18—C19—N6176.94 (18)
N2—N1—C3—C212.0 (3)O5—N6—C19—C18176.2 (2)
N2—N1—C3—C4172.09 (19)O6—N6—C19—C183.9 (3)
N7—C2—C3—N123.5 (3)O5—N6—C19—C205.9 (3)
C1—C2—C3—N1150.7 (2)O6—N6—C19—C20174.1 (2)
N7—C2—C3—C4161.0 (2)C18—C19—C20—C210.1 (3)
C1—C2—C3—C424.8 (3)N6—C19—C20—C21177.9 (2)
N1—C3—C4—O1168.9 (2)C19—C20—C21—C220.5 (3)
C2—C3—C4—O115.1 (3)C20—C21—C22—C170.0 (3)
N1—C3—C4—C57.6 (3)C18—C17—C22—C211.1 (3)
C2—C3—C4—C5168.4 (2)N5—C17—C22—C21176.0 (2)
N1—N2—C6—C7156.94 (19)C2—N7—C23—C24156.1 (2)
Cu1—N2—C6—C741.6 (2)Cu1—N7—C23—C2427.8 (2)
N1—N2—C6—C1126.1 (3)C13—N8—C24—C23149.4 (2)
Cu1—N2—C6—C11135.30 (18)Cu1—N8—C24—C2330.5 (2)
C11—C6—C7—C83.0 (3)N7—C23—C24—N837.7 (3)
N2—C6—C7—C8173.99 (19)C3A—N1A—N2A—C6A176.1 (2)
C6—C7—C8—C91.2 (3)N2A—N1A—C3A—C2A5.2 (4)
C6—C7—C8—N3176.08 (19)N2A—N1A—C3A—C4A175.8 (2)
O2—N3—C8—C73.4 (3)O1A—C2A—C3A—N1A6.4 (4)
O3—N3—C8—C7176.3 (2)C1A—C2A—C3A—N1A171.8 (2)
O2—N3—C8—C9179.2 (2)O1A—C2A—C3A—C4A174.6 (3)
O3—N3—C8—C91.1 (3)C1A—C2A—C3A—C4A7.2 (4)
C7—C8—C9—C101.4 (3)N1A—C3A—C4A—O2A168.4 (2)
N3—C8—C9—C10178.7 (2)C2A—C3A—C4A—O2A12.5 (4)
C8—C9—C10—C112.3 (3)N1A—C3A—C4A—C5A11.1 (3)
C9—C10—C11—C60.5 (3)C2A—C3A—C4A—C5A167.9 (2)
C7—C6—C11—C102.2 (3)N1A—N2A—C6A—C11A179.2 (2)
N2—C6—C11—C10174.6 (2)N1A—N2A—C6A—C7A0.9 (4)
C24—N8—C13—C14177.5 (2)C11A—C6A—C7A—C8A0.5 (3)
Cu1—N8—C13—C142.6 (3)N2A—C6A—C7A—C8A177.7 (2)
C24—N8—C13—C122.3 (3)C6A—C7A—C8A—C9A0.0 (4)
Cu1—N8—C13—C12177.78 (18)C6A—C7A—C8A—N3A178.6 (2)
N5—N4—C14—C138.6 (3)O4A—N3A—C8A—C7A175.2 (2)
N5—N4—C14—C15173.19 (19)O3A—N3A—C8A—C7A5.2 (3)
N8—C13—C14—N422.3 (4)O4A—N3A—C8A—C9A6.1 (3)
C12—C13—C14—N4153.0 (2)O3A—N3A—C8A—C9A173.5 (2)
N8—C13—C14—C15159.6 (2)C7A—C8A—C9A—C10A0.2 (4)
C12—C13—C14—C1525.1 (3)N3A—C8A—C9A—C10A178.8 (2)
N4—C14—C15—O4172.4 (2)C8A—C9A—C10A—C11A0.1 (4)
C13—C14—C15—O49.2 (4)C7A—C6A—C11A—C10A0.7 (4)
N4—C14—C15—C164.4 (3)N2A—C6A—C11A—C10A177.6 (2)
C13—C14—C15—C16174.0 (2)C9A—C10A—C11A—C6A0.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O4Ai0.952.433.320 (3)156
N2A—H2A···O1A0.90 (1)1.81 (2)2.531 (3)135 (3)
C22—H22···O1ii0.952.273.207 (3)169
C16—H16A···O5iii0.982.633.532 (3)154
C12—H12B···O3Aiv0.982.533.413 (3)151
C11—H11···O3v0.952.503.350 (3)150
C5—H5C···O3v0.982.653.426 (3)137
C1—H1B···O3Avi0.982.583.490 (3)154
C1—H1B···O10.982.342.842 (3)111
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+1; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y, z+3/2; (v) x1/2, y, z+1/2; (vi) x, y1/2, z+3/2.
 

References

First citationAlbert, J., González, A., Granell, J., Moragas, R., Puerta, C. & Valerga, P. (1997). Organometallics, 16, 3775–3778.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, H. G. & Prakash, C. (1971). J. Pharm. Sci. 60, 323–325.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhudina, O. G., Shchegol'kov, E. V., Burgart, V., Saloutin, V. I., Bukhvalov, D. V., Starichenko, D. V., Shvachko, Yu. N., Korolev, A. V., Ustinov, V. V., Aleksandrov, G. G., Eremenko, I. L., Kazheva, O. N., Shilov, G. V., D'yachenko, O. A. & Chupakhin, O. N. (2007). Russ. Chem. Bull. 56, 108–114.  CrossRef CAS Google Scholar
First citationKüçükgüzel, G., Rollas, S., Küçükgüzel, I. & Kiraz, M. (1999). Eur. J. Med. Chem. 34, 1093–1100.  Google Scholar
First citationMarten, J., Seichter, W. & Weber, E. (2005). Z. Anorg. Allg. Chem. 631, 869–877.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarten, J., Seichter, W. & Weber, E. (2018). IUCrData, 3, x181344.  Google Scholar
First citationMarten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716–731.  Web of Science CSD CrossRef CAS Google Scholar
First citationMishra, L., Yadaw, A. K., Srivastava, S. & Bahadur Patel, A. (2000). New J. Chem. 24, 505–510.  CrossRef CAS Google Scholar
First citationPhillips, R. R. (1959). Org. React. 10, 143–178.  CAS Google Scholar
First citationReichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef PubMed Google Scholar
First citationSethukumar, A. & Arul Prakasam, B. (2010). J. Mol. Struct. 963, 250–257.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds