research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­dr­oxy-5-nitro­anilino)methyl­­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, mipigor@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 24 April 2019; accepted 10 May 2019; online 17 May 2019)

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2[\overline{1}]0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.

1. Chemical context

Compounds containing the RHC=NR fragment, obtained by the condensation reaction of primary amines with aldehydes or ketones under proper conditions, are named Schiff bases after Hugo Schiff (Schiff, 1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]). Schiff bases have a wide variety of applications in many areas such as analytical, biological, and inorganic chemistry (Jain et al., 2008[Jain, J., Masand, N., Sinha, R., Garg, V. & Patil, V. (2008). J. Cell Tissue Res. 8, 1431-1431.]; Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]; Calligaris & Randaccio, 1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). Many Schiff bases are biologically active and some bases show phototochromism which can be used for radiation intensity measurements, display systems or optical devices (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). In the present study, a new Schiff base, (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one, was obtained in crystalline form from the reaction of 2-amino-4-nitro­phenol with 2-hy­droxy-5-methyl­benzaldehyde. We report here the synthesis and the crystal and mol­ecular structures of the title compound along with the results of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

Fig. 1[link] illustrates the mol­ecular structure of the title compound. Its asymmetric unit contains one independent mol­ecule, which adopts the keto–enamine tautomeric form. The mol­ecule is almost planar, the C1–C6 and C8–C13 rings making a dihedral angle of 4.99 (7)°. The O4=C9, C9—C8, C8=C7, C7—N2 and N2—C5 bond lengths are typical of double and single bonds, respectively (Table 1[link]), thus indicating that the title mol­ecule exists as a keto–enamine tautomer (Kansiz et al., 2018[Kansiz, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-ray Struct. Anal. Online, 34, 17-18.]). The bond lengths at the N1 atom are typical of aromatic nitro groups. The mol­ecular structure is stabilized by the intra­molecular N—H⋯O hydrogen bond involving the keto O4 and amine N2 atoms (Fig. 1[link], Table 2[link]).

Table 1
Selected bond lengths (Å)

O3—C4 1.3329 (14) O2—N1 1.2213 (15)
O4—C9 1.2887 (15) N1—C1 1.4530 (15)
N2—C7 1.3070 (15) C7—C8 1.4054 (16)
N2—C5 1.4035 (15) C8—C9 1.4340 (15)
O1—N1 1.2202 (15)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.86 2.5661 (13) 139
O3—H3⋯O4i 0.82 1.77 2.5465 (12) 156
C6—H6⋯O1ii 0.93 2.51 3.4383 (16) 172
C7—H7⋯O1ii 0.93 2.40 3.3182 (14) 172
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines denote the intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif.

3. Supra­molecular features

The most important inter­molecular inter­actions in the title structure are the medium–strong O3—H3⋯O4i hydrogen bonds, which link inversion-related mol­ecules into dimers with an [R_{2}^{2}](18) ring motif (Table 2[link]). These dimers are further connected by pairs of weak C—H⋯O hydrogen bonds with an [R_{2}^{2}](10) ring motif to form ribbons extended along the [2[\overline{1}]0] direction (Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote the inter­molecular C—H⋯O and O—H⋯O hydrogen bonds forming dimers with [R_{2}^{2}](10) and [R_{2}^{2}](18) ring motifs (Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-[(2-hy­droxy­phenyl­iminio)meth­yl]phenolate fragment revealed 25 hits where this fragment adopts the keto–enamine tautomeric form. The enamine (N2—C7) and keto (C9—O4) bond lengths in the title compound are the same within standard uncertainties as the corresponding bond lengths in the structures of 2-{[(2-hy­droxy­phen­yl)iminio]meth­yl}-4-meth­oxy­phenolate (BALGUR02; Makal et al., 2011[Makal, A., Schilf, W., Kamieński, B., Szady-Chelmieniecka, A., Grech, E. & Woźniak, K. (2011). Dalton Trans. 40, 421-430.]), 4-bromo-2-{[(2-hy­droxy-5-methyl­phen­yl)iminio]meth­yl}phenolate (EYUSIC; Takjoo et al., 2017[Takjoo, R., Akbari, A., Ebrahimipour, S. Y., Kubicki, M., Mohamadi, M. & Mollania, N. (2017). Inorg. Chim. Acta, 455, 173-182.]), 2-hy­droxy-6-{[(2-hy­droxy­phen­yl)iminio]meth­­yl}phenolate methanol solvate (HEKSIC; Ezeorah et al., 2018[Ezeorah, J. C., Ossai, V., Obasi, L. N., Elzagheid, M. I., Rhyman, L., Lutter, M., Jurkschat, K., Dege, N. & Ramasami, P. (2018). J. Mol. Struct. 1152, 21-28.]) and 2-{(E)-[(5-bromo-2-hy­droxy­phen­yl)methyl­idene]amino}-4-chloro­phenol (SEFKUL; Ebrahimipour et al., 2012[Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148-155.]). In the structures of these typical keto–enamine tautomers, the bonds corresponding to C7—C8 in the title structure are distinctly longer, being in the range of 1.416–1.423 Å. As for the C9—O4 bond, its length compares well with 1.286 (2) Å for HEKSIC and 1.291 (2) Å for SEFKUL, but this bond is shorter than 1.298 (2) Å for EYUSIC and 1.310 (2) Å for BALGUR02. It is likely that the inter­molecular O—H⋯O hydrogen bond, where the keto O atom acts as a hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the keto–enamine form. In fact, in all 25 structures of the keto–enamine tautomers, hydrogen bonds of this type are observed.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surfaces were mapped with different properties namely, dnorm, electrostatic potential, di and de (Fig. 3[link]). The Hirshfeld surfaces mapped over dnorm utilize the function of normalized distances de and di, where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour conventions used for the dnorm-mapped Hirshfeld surfaces recognize long inter­molecular contacts, the contacts at the van der Waals separations, and short inter­molecular contacts, respectively. The red region is apparent around the keto oxygen atom (O4) participating in the O—H⋯O and N—H⋯O contacts mentioned above (Fig. 3[link], Table 2[link]). Fig. 4[link] illustrates the Hirshfeld surface of the mol­ecule in the crystal, with the evident hydrogen-bonding inter­actions indicated as intense red spots.

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over (a) dnorm, (b) electrostatic potential, (c) di and (d) de.
[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surfaces to visualize the inter­molecular inter­actions for the title compound.

The two-dimensional fingerprint plot derived from a Hirshfeld surface provides a convenient visual summary of the frequency of each combination of de and di across the surface of a mol­ecule. A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The blue colour refers to the frequency of occurrence of the (di, de) pairs with the full fingerprint outlined in grey. Fig. 5[link]a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Individual fingerprint plots (Fig. 5[link]b) reveal that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (33.9%). It is usually the case that the main contribution to the overall surface arises from H⋯H contacts. In addition, O⋯H/H⋯O and C⋯H/H⋯C contacts contribute 29.8% and 17.3%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O and C⋯H/H⋯C contacts indicate the presence of inter­molecular O—H⋯O and C—H⋯O inter­actions, respectively. Much weaker C⋯O/O⋯C (6.8%) and C⋯C (4.8%) contacts also occur.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, with a dnorm view and the relative contributions of the atom pairs to the Hirshfeld surface.

The view of the electrostatic potential obtained using CrystalExplorer17 enables the visualization of the donors and acceptors of inter­molecular inter­actions through blue and red regions around the participating atoms corresponding to positive and negative electrostatic potential, respectively, on the surface. The view of the electrostatic potential in the range −0.0500 to 0.0500 a.u., calculated for the title compound at the HF/STO-3G level, is shown in Fig. 6[link]. The acceptors for N—H⋯O and O—H⋯O hydrogen bonds are shown as red areas around the O4 atom related with negative electrostatic potentials (Fig. 6[link]).

[Figure 6]
Figure 6
A view of the mol­ecular electrostatic potential of the title compound in the range −0.0500 to 0.0500 a.u. calculated at the HF/STO-3 G level.

6. Synthesis and crystallization

The title compound was prepared by mixing the solutions of 2-hy­droxy-5-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-amino-4-nitro­phenol (38.5 mg, 0.25 mmol) in ethanol (15 ml) with subsequent stirring for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 523–525 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hy­droxy H atom was located in a difference-Fourier map, and the OH group was allowed to rotate during the refinement procedure (AFIX 147). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms. The amine H atom was also refined using a riding model: N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula C14H12N2O4
Mr 272.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.0052 (4), 7.8206 (5), 26.2985 (19)
β (°) 90.303 (5)
V3) 1235.07 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.57 × 0.43 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.946, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 8536, 3300, 2436
Rint 0.028
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.08
No. of reflections 3300
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-6-[(2-Hydroxy-5-nitroanilino)methylidene]-4-methylcyclohexa-2,4-dien-1-one top
Crystal data top
C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0052 (4) ÅCell parameters from 9358 reflections
b = 7.8206 (5) Åθ = 2.6–29.6°
c = 26.2985 (19) ŵ = 0.11 mm1
β = 90.303 (5)°T = 296 K
V = 1235.07 (14) Å3Plate, orange
Z = 40.57 × 0.43 × 0.19 mm
Data collection top
STOE IPDS 2
diffractometer
3300 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2436 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.028
rotation method scansθmax = 29.2°, θmin = 2.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 78
Tmin = 0.946, Tmax = 0.981k = 1010
8536 measured reflectionsl = 2736
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.0139P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3300 reflectionsΔρmax = 0.15 e Å3
183 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.85290 (16)0.10060 (14)0.53689 (4)0.0593 (3)
H30.9262620.0635190.5608500.089*
O40.85793 (15)0.05497 (13)0.40914 (4)0.0573 (3)
N20.57371 (16)0.20069 (12)0.46738 (4)0.0413 (2)
H20.6979950.1485870.4626360.050*
O10.00525 (18)0.53706 (15)0.56524 (4)0.0687 (3)
O20.0910 (2)0.50110 (16)0.64372 (4)0.0716 (3)
N10.12631 (18)0.47944 (14)0.59848 (4)0.0482 (3)
C50.52750 (19)0.24767 (14)0.51773 (4)0.0377 (2)
C10.32008 (19)0.38097 (14)0.58331 (5)0.0400 (3)
C60.34505 (19)0.34263 (14)0.53221 (4)0.0394 (2)
H60.2413710.3799970.5082830.047*
C70.45170 (19)0.22613 (14)0.42678 (4)0.0405 (3)
H70.3158080.2819420.4301090.049*
C40.68303 (19)0.19257 (15)0.55447 (5)0.0423 (3)
C80.51880 (18)0.17203 (15)0.37826 (4)0.0397 (2)
C130.3761 (2)0.20126 (16)0.33610 (5)0.0440 (3)
H130.2423130.2584530.3411900.053*
C90.72607 (19)0.08425 (16)0.37131 (5)0.0432 (3)
C120.4290 (2)0.14798 (17)0.28810 (5)0.0476 (3)
C20.4709 (2)0.32843 (16)0.61998 (5)0.0457 (3)
H2A0.4501770.3566300.6539840.055*
C30.6520 (2)0.23381 (16)0.60524 (5)0.0480 (3)
H3A0.7545880.1970520.6294870.058*
C110.6332 (2)0.06220 (19)0.28190 (5)0.0541 (3)
H110.6720780.0248060.2495710.065*
C100.7763 (2)0.03164 (19)0.32125 (5)0.0540 (3)
H100.9096250.0249550.3150490.065*
C140.2767 (3)0.1771 (2)0.24318 (5)0.0638 (4)
H14A0.1411280.2293340.2545080.096*
H14B0.2434850.0695300.2272670.096*
H14C0.3486360.2509040.2191610.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0503 (5)0.0818 (6)0.0458 (5)0.0315 (5)0.0095 (4)0.0046 (5)
O40.0477 (5)0.0811 (6)0.0430 (5)0.0271 (5)0.0075 (4)0.0024 (4)
N20.0384 (5)0.0503 (5)0.0352 (5)0.0132 (4)0.0015 (4)0.0015 (4)
O10.0591 (6)0.0891 (7)0.0578 (6)0.0363 (5)0.0010 (5)0.0009 (5)
O20.0699 (7)0.0984 (8)0.0467 (6)0.0202 (6)0.0138 (5)0.0104 (5)
N10.0454 (6)0.0538 (6)0.0455 (6)0.0084 (5)0.0058 (5)0.0033 (5)
C50.0383 (5)0.0422 (5)0.0327 (5)0.0055 (4)0.0029 (4)0.0001 (4)
C10.0389 (6)0.0429 (6)0.0382 (6)0.0042 (4)0.0009 (4)0.0006 (4)
C60.0375 (5)0.0456 (6)0.0351 (6)0.0068 (4)0.0033 (4)0.0022 (4)
C70.0386 (5)0.0459 (6)0.0369 (6)0.0103 (4)0.0031 (4)0.0002 (4)
C40.0379 (5)0.0479 (6)0.0409 (6)0.0088 (5)0.0056 (5)0.0004 (5)
C80.0392 (6)0.0443 (6)0.0356 (5)0.0068 (4)0.0014 (4)0.0011 (4)
C130.0416 (6)0.0527 (6)0.0378 (6)0.0091 (5)0.0042 (5)0.0025 (5)
C90.0390 (6)0.0521 (6)0.0384 (6)0.0080 (5)0.0023 (5)0.0011 (5)
C120.0492 (7)0.0590 (7)0.0344 (6)0.0014 (5)0.0037 (5)0.0033 (5)
C20.0513 (7)0.0517 (6)0.0339 (6)0.0043 (5)0.0029 (5)0.0021 (5)
C30.0477 (6)0.0579 (7)0.0382 (6)0.0091 (5)0.0125 (5)0.0007 (5)
C110.0537 (7)0.0733 (9)0.0354 (6)0.0060 (6)0.0043 (5)0.0040 (6)
C100.0453 (7)0.0722 (8)0.0445 (7)0.0148 (6)0.0044 (5)0.0040 (6)
C140.0669 (9)0.0863 (10)0.0381 (7)0.0072 (8)0.0102 (6)0.0039 (7)
Geometric parameters (Å, º) top
O3—C41.3329 (14)C8—C131.4162 (16)
O3—H30.8200C8—C91.4340 (15)
O4—C91.2887 (15)C13—C121.3683 (18)
N2—C71.3070 (15)C13—H130.9300
N2—C51.4035 (15)C9—C101.4134 (18)
N2—H20.8600C12—C111.4077 (19)
O1—N11.2202 (15)C12—C141.5074 (19)
O2—N11.2213 (15)C2—C31.3726 (17)
N1—C11.4530 (15)C2—H2A0.9300
C5—C61.3789 (15)C3—H3A0.9300
C5—C41.4077 (15)C11—C101.3629 (19)
C1—C21.3823 (17)C11—H110.9300
C1—C61.3857 (16)C10—H100.9300
C6—H60.9300C14—H14A0.9600
C7—C81.4054 (16)C14—H14B0.9600
C7—H70.9300C14—H14C0.9600
C4—C31.3873 (18)
C4—O3—H3109.5C12—C13—H13119.0
C7—N2—C5128.19 (10)C8—C13—H13119.0
C7—N2—H2115.9O4—C9—C10122.28 (11)
C5—N2—H2115.9O4—C9—C8121.13 (11)
O1—N1—O2122.72 (11)C10—C9—C8116.59 (11)
O1—N1—C1118.29 (10)C13—C12—C11117.30 (12)
O2—N1—C1118.99 (11)C13—C12—C14122.28 (12)
C6—C5—N2124.25 (10)C11—C12—C14120.42 (12)
C6—C5—C4120.05 (10)C3—C2—C1118.70 (11)
N2—C5—C4115.70 (10)C3—C2—H2A120.6
C2—C1—C6122.58 (11)C1—C2—H2A120.6
C2—C1—N1119.25 (11)C2—C3—C4120.53 (11)
C6—C1—N1118.17 (10)C2—C3—H3A119.7
C5—C6—C1118.33 (10)C4—C3—H3A119.7
C5—C6—H6120.8C10—C11—C12122.80 (12)
C1—C6—H6120.8C10—C11—H11118.6
N2—C7—C8122.26 (10)C12—C11—H11118.6
N2—C7—H7118.9C11—C10—C9121.30 (12)
C8—C7—H7118.9C11—C10—H10119.4
O3—C4—C3124.50 (10)C9—C10—H10119.4
O3—C4—C5115.68 (10)C12—C14—H14A109.5
C3—C4—C5119.81 (10)C12—C14—H14B109.5
C7—C8—C13119.15 (10)H14A—C14—H14B109.5
C7—C8—C9120.86 (10)C12—C14—H14C109.5
C13—C8—C9119.97 (10)H14A—C14—H14C109.5
C12—C13—C8122.04 (11)H14B—C14—H14C109.5
C7—N2—C5—C64.9 (2)C9—C8—C13—C120.05 (19)
C7—N2—C5—C4175.61 (12)C7—C8—C9—O41.11 (19)
O1—N1—C1—C2173.86 (12)C13—C8—C9—O4179.47 (12)
O2—N1—C1—C26.20 (19)C7—C8—C9—C10178.60 (12)
O1—N1—C1—C66.51 (18)C13—C8—C9—C100.25 (18)
O2—N1—C1—C6173.42 (12)C8—C13—C12—C110.1 (2)
N2—C5—C6—C1179.62 (11)C8—C13—C12—C14179.34 (13)
C4—C5—C6—C10.16 (17)C6—C1—C2—C30.3 (2)
C2—C1—C6—C50.28 (18)N1—C1—C2—C3179.26 (11)
N1—C1—C6—C5179.33 (10)C1—C2—C3—C40.3 (2)
C5—N2—C7—C8179.95 (11)O3—C4—C3—C2179.58 (13)
C6—C5—C4—O3179.56 (11)C5—C4—C3—C20.2 (2)
N2—C5—C4—O30.93 (17)C13—C12—C11—C100.1 (2)
C6—C5—C4—C30.12 (18)C14—C12—C11—C10179.58 (15)
N2—C5—C4—C3179.62 (11)C12—C11—C10—C90.4 (2)
N2—C7—C8—C13178.88 (11)O4—C9—C10—C11179.23 (13)
N2—C7—C8—C90.51 (19)C8—C9—C10—C110.5 (2)
C7—C8—C13—C12178.33 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.862.5661 (13)139
O3—H3···O4i0.821.772.5465 (12)156
C6—H6···O1ii0.932.513.4383 (16)172
C7—H7···O1ii0.932.403.3182 (14)172
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z+1.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationEbrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.  Google Scholar
First citationEzeorah, J. C., Ossai, V., Obasi, L. N., Elzagheid, M. I., Rhyman, L., Lutter, M., Jurkschat, K., Dege, N. & Ramasami, P. (2018). J. Mol. Struct. 1152, 21–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationJain, J., Masand, N., Sinha, R., Garg, V. & Patil, V. (2008). J. Cell Tissue Res. 8, 1431–1431.  CAS Google Scholar
First citationKansiz, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-ray Struct. Anal. Online, 34, 17–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMakal, A., Schilf, W., Kamieński, B., Szady-Chelmieniecka, A., Grech, E. & Woźniak, K. (2011). Dalton Trans. 40, 421–430.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTakjoo, R., Akbari, A., Ebrahimipour, S. Y., Kubicki, M., Mohamadi, M. & Mollania, N. (2017). Inorg. Chim. Acta, 455, 173–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds