research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, bDepartment of Physical & Applied Sciences, University of Houston – Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA, and cInstitute of Applied Physics, Academy str., 5 MD2028, Chisinau, Moldova
*Correspondence e-mail: rigindale@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 April 2019; accepted 14 May 2019; online 21 May 2019)

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.

1. Chemical context

Many drugs exist in several polymorphic modifications (Bernstein, 2011[Bernstein, J. (2011). Cryst. Growth Des. 11, 632-650.]; Brittain, 2009[Brittain, H. G. (2009). Polymorphism in pharmaceutical solids. Informa, Healthcare. NY.]). For example, a second polymorph, II, was reported (Vishweshwar et al., 2005[Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802-16803.]) in 2005[Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802-16803.] for aspirin, one of the most widely consumed medications; this was similar in structure to the original form I (Wheatley, 1964[Wheatley, P. J. (1964). J. Chem. Soc. pp. 6036-6048.]) and was widely discussed (Bond et al., 2007[Bond, A. D., Boese, R. & Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 618-622.], 2011[Bond, A. D., Solanko, K. A., Parsons, S., Redder, S. & Boese, R. (2011). CrystEngComm, 13, 399-401.]). The third ambient polymorph of aspirin, crystallized from the melt, was described recently using a combination of X-ray powder diffraction analysis and crystal structure prediction algorithms (Shtukenberg et al., 2017[Shtukenberg, A. G., Hu, C. T., Zhu, Q., Schmidt, M. U., Xu, W., Tan, M. & Kahr, B. (2017). Cryst. Growth Des. 17, 3562-3566.]). Paracetamol, one of the most frequently used anti­pyretic and analgesic drugs, is known in three crystal modifications: a monoclinic (form I) (Haisa et al., 1976[Haisa, M., Kashino, S., Kawai, R. & Maeda, H. (1976). Acta Cryst. B32, 1283-1285.]), an ortho­rhom­bic (form II) (Haisa et al., 1974[Haisa, M., Kashino, S. & Maeda, H. (1974). Acta Cryst. B30, 2510-2512.]), and an unstable phase (form III), which can only be stabilized under certain conditions (Burger & Ramberger, 1979[Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 72, 273-316.]). The non-steroidal anti-inflammatory drug mefenamic acid is known to exist as dimorphs (I and II) and a metastable polymorph obtained during co-crystallization experiments (SeethaLekshmi & Guru Row, 2012[SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283-4289.]). The existence of three different polymorphic forms has been reported for anhydrous carbamazepine, an anti­convulsant drug (Rustichelli et al., 2000[Rustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M. C., Ficarra, R. & Tommasini, S. (2000). J. Pharm. Biomed. Anal. 23, 41-54.]). We previously reported (Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]) two polymorphs of α-methyl-α-phenyl­succinimide (3-methyl-3-phenyl­pyrrol­idine-2,5-dione), the N-de­methyl­ated metabolite of the anti­convulsant methsuximide. Herein, we report on the crystal structure and the Hirshfeld surface analysis of a new polymorph of the title compound, obtained by recrystallization of the commercial product (Alfa Aesar, stock No. A18501) from a water–ethanol (1:1) solution. Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in a 1:1 volume ratio (Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]).

[Scheme 1]

2. Structural commentary

A view of the mol­ecule of the new polymorph (henceforth referred to as rac-2) is illustrated in Fig. 1[link]a. In the mol­ecule, the rotation of the amide group around the C7—C10 bond is characterized by an N1—C10—C7—C8 torsion angle of −141.14 (9)°, thus corresponding in conformation to the previously reported polymorph (further notated as rac-1, space group C2/c), where the torsion angle is −130.06 (9)°, and one of two conformers in the R-enanti­omer [space group P1, torsion angle = −144.08 (13)°; Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]). The overlay diagram for the two racemic forms shown in Fig. 1[link]b shows the almost perfect fit (r.m.s. deviation = 0.263 Å). The bond lengths in the mol­ecule are in line with those of reported analogues (CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Figure 1]
Figure 1
(a) View of the mol­ecular structure of the title rac-2 polymorph with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. (b) Superposition of the rac-1 (red) and rac-2 (green) polymorphs.

3. Supra­molecular features

Mol­ecule of the title compound contain one amino group as a potential double hydrogen-bond donor and one carbonyl group capable of acting as a multiple hydrogen-bond acceptor. Contrary to the previously reported rac-1 and two enanti­omeric forms (Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]), where the amino group acted as double hydrogen-bond donor while the carbonyl oxygen atom acted as a double hydrogen-bond acceptor being involved in two N–H⋯O hydrogen bonds leading to the formation of supra­molecular ribbons, in rac-2 only one hydrogen atom of the amino group is involved in a single N—H⋯O hydrogen bond (Table 1[link]). This hydrogen bond links mol­ecules related by the glide plane into chains along the c-axis direction (Fig. 2[link]). The packing of the chains obeys inversion symmetry with only van der Waals contacts between the chains (Fig. 3[link]). In spite of the fewer number of strong directed inter­molecular inter­actions in the crystal, the structure of rac-2 is characterized by a more effective crystal packing of the single chains, compared to the packing of ribbons in rac-1 and in the enanti­omers, which follows from the higher value of the crystal density (calculated as 1.227 g cm−3; Table 2[link]) compared with values of 1.160 g cm−3 for rac-1 and 1.188 g cm−3 and 1.189 g cm−3 for the R- and S-enanti­omers (Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.895 (15) 2.071 (15) 2.9533 (13) 168.4 (13)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Crystal lattice energies (kJ mol−1) for racemic 2-phenyl­butyramide polymorphs computed using AA-CLP software

Polymorph Eelectrostatic Epolarization Edispersion Eexchange-repulsion Etotal Crystal density (g cm−3)
rac-1 −35.6a −27.6a −100.4a 55.0a −108.6a 1.160b
rac-2 −33.9 −28.3 −107.9 53.8 −116.3 1.227
Notes: afrom Krivoshein et al. (2018[Krivoshein, A. V., Lindeman, S. V., Bentum, S., Averkiev, B. B., Sena, V. & Timofeeva, T. V. (2018). Z. Kristallogr. Cryst. Mat. 233, 781-793.]); bfrom Khrustalev et al. (2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]).
[Figure 2]
Figure 2
View of a hydrogen-bonded chain.
[Figure 3]
Figure 3
The crystal packing of the rac-2 polymorph.

4. Hirshfeld surface analysis and calculation of crystal lattice energies

Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.]) was used to generate the Hirshfeld surfaces (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]). The total dnorm surfaces for polymorphs rac-2 and rac-1 are shown in Figs. 4[link] and 5[link], respectively, in which the red spots correspond to the most significant N—H⋯O inter­actions in the crystal (Table 1[link]). The surface diagram unambiguously shows that there are fewer active binding sites in rac-2 in comparison to rac-1. The two-dimensional fingerprint plots from the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) allows the inter­molecular inter­actions to be analysed in detail and for even rather subtle differences between polymorphic systems to be qu­anti­fied (Bernstein, 2011[Bernstein, J. (2011). Cryst. Growth Des. 11, 632-650.]). The two-dimensional fingerprint plots for rac-2 and rac-1 are shown in Figs. 6[link] and 7[link], respectively. They clearly indicate the different distribution of inter­actions for a single mol­ecule in the two structures. Decomposition of the full fingerprint plot for rac-2 shows five principle types of inter­actions that include H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, and C⋯O/O⋯C contacts in decreasing order (Fig. 6[link]). For the rac-1 polymorph, the set includes only four types of inter­actions, viz. H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts (Fig. 7[link]). The predominant inter­actions in both cases are H⋯H, constituting 65.7% in rac-2 and 67.3% in rac-1. With a significantly less contribution, the next most important inter­actions are H⋯C/C⋯H, contributing 19.6% in both cases, and being slightly asymmetric in shape in favour of (inter­nal)C⋯H(external) contacts for both polymorphs. The directed H⋯O/O⋯H contacts constitute 11.4% for rac-2 and 10.8% for rac-1, with slight a asymmetry in favour of (inter­nal)O⋯H(external) contacts for both polymorphs.

[Figure 4]
Figure 4
Hirshfeld surface for the rac-2 polymorph plotted over dnorm in the range −0.4994 to 1.0567 a.u.
[Figure 5]
Figure 5
Hirshfeld surface for the rac-1 polymorph plotted over dnorm in the range −0.5239 to 1.3882 a.u.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the rac-2 polymorph, showing all inter­actions, and delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯O/O⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the rac-1 polymorph, showing all inter­actions, and delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface analysis confirms the decisive role of H-contacts that include hydrogen bonding and van der Waals inter­actions in the crystal packing. The crystal-lattice energies (Table 2[link]) were calculated from the atomic coordinates obtained in the single-crystal X-ray diffraction experiments using the atom–atom force field with subdivision of the inter­action energies into Coulombic, polarization, London dispersion, and Pauli repulsion components (AA-CLP; Gavezzotti, 2011[Gavezzotti, A. (2011). New J. Chem. 35, 1360-1368.], 2013[Gavezzotti, A. (2013). New J. Chem. 37, 2110-2119.]) implemented in the CLP-PIXEL computer program package (version 3.0, available from www.angelogavezzotti.it). These show that the rac-2 polymorph is more stable in terms of two criteria: total crystal energy and crystal density.

5. Database survey

The Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) includes crystallographic data for the R- and S-enanti­omers of 2-phenyl­butyramide (VOQGUF and VOQHAM, space group P1; Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]) and the racemic form (VOQHEQ, space group C2/c; Khrustalev et al., 2014[Khrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360-3369.]). As mentioned above, the conformations of two rac-polymorphs are quite similar, while the crystal packing differs significantly with more efficient crystal packing for the rac-2 polymorph reported here.

6. Crystallization

Crystals were obtain by the slow evaporation approach. 0.5 g of 2-phenyl­butyramide (Alfa Aesar, stock No. A18501) were dissolved with extensive vortexing in 3 mL of a water/ethanol mixture (1:1 v/v) and left at room temperature (293–295 K) for six weeks. Block-shaped crystals formed on the walls of the vessel.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C10H13NO
Mr 163.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.575 (2), 10.746 (3), 9.798 (3)
β (°) 101.811 (3)
V3) 883.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.15 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.674, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9961, 2240, 1914
Rint 0.038
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.08
No. of reflections 2240
No. of parameters 161
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.31, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.])and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Phenylbutyramide top
Crystal data top
C10H13NOF(000) = 352
Mr = 163.21Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.575 (2) ÅCell parameters from 3598 reflections
b = 10.746 (3) Åθ = 2.4–30.1°
c = 9.798 (3) ŵ = 0.08 mm1
β = 101.811 (3)°T = 100 K
V = 883.8 (4) Å3Block, colourless
Z = 40.15 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
1914 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.5°, θmin = 2.4°
Tmin = 0.674, Tmax = 0.746h = 1110
9961 measured reflectionsk = 1414
2240 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1474P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2240 reflectionsΔρmax = 0.31 e Å3
161 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32919 (9)0.23775 (7)0.06137 (7)0.0216 (2)
N10.27946 (11)0.17768 (8)0.26886 (9)0.0192 (2)
H1A0.2469 (17)0.1033 (15)0.2342 (15)0.031 (4)*
H1B0.2895 (17)0.1927 (14)0.3601 (15)0.028 (3)*
C10.68011 (12)0.34374 (9)0.20614 (10)0.0179 (2)
H10.6296 (16)0.3276 (12)0.1099 (14)0.021 (3)*
C20.84492 (13)0.33963 (10)0.24848 (11)0.0206 (2)
H20.9097 (17)0.3192 (13)0.1809 (14)0.027 (3)*
C30.91672 (13)0.36033 (10)0.38704 (11)0.0217 (2)
H31.0322 (19)0.3568 (14)0.4177 (15)0.035 (4)*
C40.82161 (13)0.38440 (10)0.48320 (11)0.0219 (2)
H40.8698 (17)0.3979 (13)0.5822 (15)0.027 (3)*
C50.65680 (13)0.38737 (9)0.44137 (10)0.0184 (2)
H50.5908 (15)0.4038 (12)0.5099 (13)0.017 (3)*
C60.58384 (12)0.36770 (8)0.30233 (10)0.0151 (2)
C70.40388 (12)0.37876 (9)0.25694 (10)0.0150 (2)
H70.3586 (15)0.3913 (12)0.3424 (13)0.019 (3)*
C80.35882 (12)0.49138 (9)0.16087 (11)0.0189 (2)
H8A0.4084 (18)0.5661 (13)0.2142 (15)0.030 (4)*
H8B0.4098 (16)0.4803 (12)0.0771 (14)0.024 (3)*
C90.18019 (13)0.50974 (11)0.11476 (12)0.0226 (2)
H9A0.1318 (18)0.4394 (14)0.0522 (15)0.033 (4)*
H9B0.1575 (19)0.5862 (15)0.0573 (16)0.039 (4)*
H9C0.1253 (18)0.5153 (14)0.1957 (16)0.034 (4)*
C100.33405 (11)0.25883 (9)0.18573 (10)0.0148 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (4)0.0250 (4)0.0141 (4)0.0021 (3)0.0046 (3)0.0035 (3)
N10.0241 (5)0.0158 (4)0.0184 (4)0.0028 (3)0.0060 (3)0.0006 (3)
C10.0198 (5)0.0181 (5)0.0155 (4)0.0020 (4)0.0026 (4)0.0003 (3)
C20.0202 (5)0.0185 (5)0.0244 (5)0.0016 (4)0.0073 (4)0.0004 (4)
C30.0168 (5)0.0182 (5)0.0279 (5)0.0025 (4)0.0004 (4)0.0011 (4)
C40.0259 (6)0.0191 (5)0.0177 (5)0.0025 (4)0.0025 (4)0.0003 (4)
C50.0227 (5)0.0160 (5)0.0162 (5)0.0006 (4)0.0034 (4)0.0003 (3)
C60.0167 (5)0.0118 (4)0.0163 (4)0.0012 (3)0.0022 (3)0.0010 (3)
C70.0163 (5)0.0159 (5)0.0129 (4)0.0007 (3)0.0035 (3)0.0002 (3)
C80.0187 (5)0.0176 (5)0.0202 (5)0.0003 (4)0.0036 (4)0.0036 (4)
C90.0196 (5)0.0231 (5)0.0244 (5)0.0031 (4)0.0028 (4)0.0036 (4)
C100.0131 (4)0.0158 (4)0.0150 (4)0.0012 (3)0.0020 (3)0.0003 (3)
Geometric parameters (Å, º) top
O1—C101.2316 (12)C5—H50.979 (12)
N1—H1A0.890 (16)C5—C61.3940 (14)
N1—H1B0.895 (15)C6—C71.5206 (14)
N1—C101.3414 (13)C7—H71.002 (12)
C1—H10.970 (13)C7—C81.5333 (14)
C1—C21.3898 (15)C7—C101.5282 (13)
C1—C61.3982 (14)C8—H8A1.004 (14)
C2—H20.973 (14)C8—H8B1.013 (13)
C2—C31.3891 (15)C8—C91.5187 (15)
C3—H30.975 (16)C9—H9A1.007 (15)
C3—C41.3909 (16)C9—H9B0.992 (16)
C4—H40.984 (14)C9—H9C1.004 (15)
C4—C51.3890 (15)
H1A—N1—H1B120.1 (13)C6—C7—H7108.0 (7)
C10—N1—H1A118.2 (9)C6—C7—C8110.76 (8)
C10—N1—H1B121.0 (9)C6—C7—C10110.30 (8)
C2—C1—H1120.6 (8)C8—C7—H7108.4 (7)
C2—C1—C6120.62 (9)C10—C7—H7108.2 (7)
C6—C1—H1118.8 (8)C10—C7—C8111.06 (8)
C1—C2—H2119.4 (8)C7—C8—H8A106.5 (8)
C3—C2—C1120.46 (10)C7—C8—H8B107.9 (8)
C3—C2—H2120.1 (8)H8A—C8—H8B108.0 (11)
C2—C3—H3120.9 (9)C9—C8—C7113.41 (8)
C2—C3—C4119.20 (10)C9—C8—H8A110.2 (8)
C4—C3—H3119.9 (9)C9—C8—H8B110.5 (8)
C3—C4—H4120.6 (8)C8—C9—H9A110.4 (8)
C5—C4—C3120.45 (9)C8—C9—H9B110.2 (9)
C5—C4—H4119.0 (8)C8—C9—H9C112.4 (9)
C4—C5—H5119.9 (7)H9A—C9—H9B105.6 (12)
C4—C5—C6120.73 (9)H9A—C9—H9C108.9 (12)
C6—C5—H5119.4 (7)H9B—C9—H9C109.2 (12)
C1—C6—C7121.41 (9)O1—C10—N1122.40 (9)
C5—C6—C1118.55 (9)O1—C10—C7122.52 (9)
C5—C6—C7119.98 (9)N1—C10—C7115.07 (8)
C1—C2—C3—C40.44 (16)C5—C6—C7—C8112.46 (10)
C1—C6—C7—C864.48 (12)C5—C6—C7—C10124.17 (9)
C1—C6—C7—C1058.89 (11)C6—C1—C2—C30.55 (16)
C2—C1—C6—C50.03 (15)C6—C7—C8—C9178.47 (8)
C2—C1—C6—C7177.01 (9)C6—C7—C10—O183.85 (11)
C2—C3—C4—C50.18 (15)C6—C7—C10—N195.67 (10)
C3—C4—C5—C60.70 (15)C8—C7—C10—O139.34 (13)
C4—C5—C6—C10.59 (15)C8—C7—C10—N1141.14 (9)
C4—C5—C6—C7176.43 (9)C10—C7—C8—C958.60 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.895 (15)2.071 (15)2.9533 (13)168.4 (13)
Symmetry code: (i) x, y+1/2, z+1/2.
Crystal lattice energies (kJ mol-1) for racemic 2-phenylbutyramide polymorphs computed using AA-CLP software top
PolymorphEelectrostaticEpolarizationEdispersionEexchange-repulsionEtotalCrystal density (g cm-3)
rac-1-35.6a-27.6a-100.4a55.0a-108.6a1.160b
rac-2-33.9-28.3-107.953.8-116.31.227
Notes: afrom Krivoshein et al. (2018); bfrom Khrustalev et al. (2014).
 

Funding information

Funding for this research was provided by: NSF DMR 1523611 (PREM) and Welch Foundation (Departmental Grant; award No. BC-0022) .

References

First citationBernstein, J. (2011). Cryst. Growth Des. 11, 632–650.  Web of Science CrossRef CAS Google Scholar
First citationBond, A. D., Boese, R. & Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 618–622.  Web of Science CSD CrossRef CAS Google Scholar
First citationBond, A. D., Solanko, K. A., Parsons, S., Redder, S. & Boese, R. (2011). CrystEngComm, 13, 399–401.  Web of Science CrossRef CAS Google Scholar
First citationBrittain, H. G. (2009). Polymorphism in pharmaceutical solids. Informa, Healthcare. NY.  Google Scholar
First citationBruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. & Ramberger, R. (1979). Mikrochim. Acta, 72, 273–316.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGavezzotti, A. (2011). New J. Chem. 35, 1360–1368.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2013). New J. Chem. 37, 2110–2119.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaisa, M., Kashino, S., Kawai, R. & Maeda, H. (1976). Acta Cryst. B32, 1283–1285.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaisa, M., Kashino, S. & Maeda, H. (1974). Acta Cryst. B30, 2510–2512.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKhrustalev, V. N., Sandhu, B., Bentum, S., Fonari, A., Krivoshein, A. V. & Timofeeva, T. V. (2014). Cryst. Growth Des. 14, 3360–3369.  CSD CrossRef CAS PubMed Google Scholar
First citationKrivoshein, A. V., Lindeman, S. V., Bentum, S., Averkiev, B. B., Sena, V. & Timofeeva, T. V. (2018). Z. Kristallogr. Cryst. Mat. 233, 781–793.  CSD CrossRef CAS Google Scholar
First citationRustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M. C., Ficarra, R. & Tommasini, S. (2000). J. Pharm. Biomed. Anal. 23, 41–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283–4289.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtukenberg, A. G., Hu, C. T., Zhu, Q., Schmidt, M. U., Xu, W., Tan, M. & Kahr, B. (2017). Cryst. Growth Des. 17, 3562–3566.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationVishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. & Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802–16803.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWheatley, P. J. (1964). J. Chem. Soc. pp. 6036–6048.  CSD CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds