research communications
The crystal structures of the ligand N-(quinolin-8-yl)pyrazine-2-carboxamide and of a tetranuclear copper(II) complex
aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title tridentate ligand, C14H10N4O, N-(quinolin-8-yl)pyrazine-2-carboxamide (HL1), crystallizes with three independent molecules (A, B and C) in the All three molecules are relatively planar (r.m.s. deviations are 0.068, 0.055 and 0.06 Å, respectively), with the NH H atom forming three-centered (bifurcated) intramolecular N—H⋯N hydrogen bonds in each molecule. There is also an intramolecular C—H⋯O contact present in each molecule, involving the benzene ring of the quinoline unit and the amide carboxamide O atom. In the crystal, the three molecules stack in columns with the various molecules being linked by offset π-π interactions [intercentroid distances vary from 3.367 (5) to 3.589 (5) Å], forming layers parallel to the ab plane. The title complex, [Cu4(C42H44N8O16)]·2CH3OH, {hexa-μ-acetato-1:2κ2O:O′;2:3κ8O:O′;3:4κ2O:O′-dimethanol-1κO,2κO-bis[N-(quinolin-8-yl)pyrazine-2-carboxamide]-1κ3N,N′,N′′;4κ3N,N′,N′′-tetracopper(II) methanol disolvate} (I), was obtained by the reaction of HL1 with Cu(CH3CO2)2. It consists of a tetranuclear complex with a central tetrakis(μ-acetato)dicopper paddle-wheel moiety linked on either side via bridging acetato ions to a mononuclear copper(II)–(L1) complex; it crystallizes as a methanol disolvate. The complex possesses inversion symmetry, being located about a center of symmetry situated at the mid-point of the Cu⋯Cu bond of the paddle-wheel moiety. In the crystal, the complex molecules are linked by O—H⋯O hydrogen bonds, forming chains along the [01] direction, which are linked by offset π–π interactions [intercentroid distance = 3.7367 (11) Å] and C—H⋯O hydrogen bonds, leading to the formation of a supramolecular framework.
1. Chemical context
The crystal structures of a number of hetero bimetallic iron–manganese cyano complexes of the ligand HL1 have been synthesized in order to explore their super-exchange magnetic properties (Kim et al., 2007; Zhou et al., 2014). To the best of our knowledge (Cambridge Structural Database; Groom et al., 2016), the of the ligand itself has never been described, although the structure of the pyridine analogue, N-(8-quinolyl)pyridine-2-carboxamide, has been reported (Zhang et al., 2001). There is only one previous report of a copper(II) complex of ligand HL1, viz. (acetato)[N-(quinolin-8-yl)pyrazine-2-carboxamidato]copper(II) monohydrate, a mononuclear complex with the ligand coordinating in a tridentate fashion (Meghdadi et al., 2013). It has been shown previously that pyrazine carboxamide ligands are useful for the synthesis of transition-metal complexes that exhibit magnetic super-exchange and anion encapsulation (Hausmann et al., 2003; Cati et al., 2004; Klingele et al., 2007). During further work in this area (Cati, 2002), the title copper(II) complex, I, of ligand HL1 was synthesized, and we report herein on the crystal structures of ligand HL1 and complex I. The various intermolecular interactions in the crystal of HL1 have been studied by Hirshfeld surface analysis.
2. Structural commentary
The ligand HL1 crystallized with three independent molecules (A, B and C) in the and their molecular structures are illustrated in Fig. 1. In each molecule the carboxamide NH H atom forms three-centered (bifurcated) intramolecular N—H⋯N hydrogen bonds involving the quinoline and the adjacent pyrazine N atoms (Fig. 1 and Table 1). This arrangement is similar to that observed in 1,3-bis(2-pyridylimino)isoindoline (Schilf, 2004) and its pyrazine analogue, bis(pyridin-2-yl)-6,7-dihydro-pyrrolo[3,4-b]pyrazine-5,7-diimine (Posel & Stoeckli-Evans, 2018). There is also a short C—H⋯O contact present in each molecule (Fig. 1 and Table 1). Hence, the three molecules have similar conformations, with the pyrazine ring being inclined to the quinoline ring by 4.5 (4)° in molecule A, 3.1 (4)° in B and 4.1 (4)° in C. For the three molecules, the r.m.s. deviations for the mean planes of the non-H atoms are 0.068, 0.055 and 0.06 Å, respectively. Inverted molecule A on molecule B has an r.m.s. deviation of 0.054 Å for the 19 non-H atoms, while inverted molecule B on molecule C has an r.m.s. deviation of 0.054 Å, and molecule A and molecule C have an r.m.s. deviation of 0.057 Å.
|
Reaction of HL1 with Cu(CH3CO2)2 produced a tetranuclear complex, I, with a central tetrakis(μ-acetato)-dicopper paddle-wheel moiety linked on either side via a bridging acetate anion to a mononuclear copper(II)–(L1) complex, illustrated in Fig. 2. Selected geometrical parameters are given in Table 2. The complex possesses inversion symmetry, being located about a center of symmetry situated at the mid-point of the Cu2⋯Cu2i bond [2.6202 (6) Å; symmetry code: (i) −x + 1, −y, −z + 1)] of the paddle-wheel moiety (Table 2). Both copper atoms are fivefold coordinate; CuN3O2 for Cu1 and CuO5 for Cu2. Atom Cu1 is ligated in the equatorial plane by the three N atoms of the ligand and an O atom, O3, of the bridging acetate ion, and with a coordinated methanol O atom, O2, in the apical position. It has an irregular coordination sphere with a τ5 factor of 0.17 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984). Atom Cu2 is ligated by four acetate O atoms (O5, O6, O7 and O8) of the paddle-wheel moiety in the equatorial plane and by atom O4 of the bridging acetate ion in the apical position. It has a perfect square-pyramidal coordination sphere with a τ5 factor of 0.01. There are two intramolecular C—H⋯O contacts present involving the quinoline unit and oxygen atoms O1 of the carboxymide group and O4 of the bridging acetate ion (Fig. 2 and Table 3).
|
3. Supramolecular features
In the crystal of ligand HL1, and as can be seen from Fig. 1, molecule B is closely related to molecules A and C by non-crystallographic inversion symmetry, while molecules A and C are closely related by non-space group translation. An analysis with PLATON/ADDSYM (Spek, 2009), however, concluded that no obvious extra was present and no change in the (Cc) was required. In the crystal, packets of the three molecules stack in the order (ABC), (ABC) etc (Fig. 3; A blue, B red, C green). They are linked by offset π–π interactions, so forming layers lying parallel to the ab plane (Fig. 4 and Table 4).
|
In the crystal of I, molecules are linked by pairs of O—H⋯O hydrogen bonds involving the coordinated methanol molecule and the carboxamide O atom, O1, forming chains propagating along [01]; see Table 3 and Fig. 5. The chains thus formed enclose R22(12) ring motifs, as illustrated in Fig. 5. The methanol solvent molecule is linked to the chain via bifurcated O—H⋯O/O hydrogen bonds, which enclose an R12(4) ring motif (Fig. 5 and Table 3). Inversion-related chains are linked by offset π–π interactions involving the quinoline ring systems [Figs. 5 and 6; Cg⋯Cgvi = 3.7367 (11) Å, Cg is the centroid of the N4/C6–C14 ring, α = 0.04 (7)°, β = 25.7°, interplanar distance = 3.3684 (8) Å, offset 1.618 Å; symmetry code: (vi) −x + 1, −y, −z]. The chains are also linked by C—H⋯O hydrogen bonds, resulting in the formation of a supramolecular framework (Table 3 and Fig. 6).
4. Hirshfeld surface analysis of ligand HL1
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). A recent article by Tiekink and collaborators (Tan et al., 2019) `outlines the various procedures and what can be learned by using CrystalExplorer'.
The Hirshfeld surface of HL1 mapped over dnorm is given in Fig. 7a, where short interatomic contacts are indicated by the faint red spots. The π–π stacking is confirmed by the small blue regions surrounding bright red spots in the various aromatic rings in Fig. 7b, the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 7c, the Hirshfeld surface mapped over the curvedness.
The full two-dimensional fingerprint plots for HL1 and for the individual molecules are given in Fig. 8a. The principal intermolecular interactions for HL1 (Fig. 8b), are delineated into H⋯H at 43.0%, N⋯H/H⋯N at 14.5%, followed by C⋯H/H⋯C interactions at 11.8%. The contributions of the C⋯C and C⋯N interactions, which are 10.8 and 10.7%, respectively, are superior to the contribution of the O⋯H/H⋯O interactions at 8.1%. The relative percentage contributions of close contacts to the Hirshfeld surface for HL1 and for the individual molecules are similar, as indicated in Table 5.
|
5. Database survey
A search of the Cambridge Structural Database (Version 5.40, update February 2019; Groom et al., 2016) of ligand HL1 yielded nine hits. The majority of these compounds are hetero bimetallic iron–manganese cyano complexes that exhibit super-exchange magnetic properties [e.g. CSD refcodes JIVGIF and JIVGOL (Kim et al., 2007) and BOLJOD, BOLJUJ and BOLKIY (Zhou et al., 2014)]. Only one hit concerns a copper(II) complex, namely (acetato)(N-(quinolin-8-yl)pyrazine-2-carboxamidato)copper(II) monohydrate, with the ligand coordinating in a tridentate fashion (AYIFOF; Meghdadi et al., 2013). The copper ion is ligated by the three N atoms of the ligand, and the two O atoms of the acetate anion, hence the copper atom is CuN3O2 five-coordinate with an irregular coordination sphere; τ5 = 0.17. This value is similar to that for atom Cu1 in the title complex I (τ5 factor of 0.17).
A search for complexes of the pyridine analogue of HL1 yielded 16 hits, including the analogue itself, N-(8-quinolyl)pyridine-2-carboxamide (WOVYAH; Zhang et al., 2001). A number of hits involve again hetero bimetallic (Fe–Mn) cyano complexes (e.g. BARTUL and BARVUN; Senapati et al., 2012), and trimetallic (Fe–Mn–Fe) cyano complexes (CEBYIS, CEBYOY and CEBYUE; Ni et al., 2005); they all exhibit super-exchange magnetic properties. The structure of a copper(II) acetate complex, (acetato-O)-aqua-[N-(8-quinolyl)pyridine-2-carboxamide-N,N′,N′′]copper(II) has also been reported (XAFKUL; Zhang et al., 2007). In this mononuclear copper(II) complex, the copper ion is ligated by the three N atoms of the ligand, an O atom of the acetate anion and a water O atom, hence the copper atom is CuN3O2 five-coordinate with an irregular coordination sphere; τ5 = 0.13. This geometry is similar to that of atom Cu1 in the title complex I (τ5 factor of 0.17), and that in compound AYIFOF mentioned above.
A search for the tetrakis(μ-acetato)dicopper paddle-wheel moiety gave 356 hits. Limiting the search for a tetrakis(μ-acetato)-dicopper paddle-wheel moiety bridged on either side by an acetato group to a second copper atom gave 15 hits for 14 structures (see supporting information file S1). Eight of these compounds are polymeric structures, for example, the network structure catena-[octakis(μ2-acetato-O,O′)[μ2-2,5-bis(2-pyridyl)pyrazine-N,N′,N′′,N′′′]tetracopper(II)] [YOMTUP; Neels et al., 1995]. Only six are tetranuclear compounds similar to compound I; for example, hexakis(μ2-acetato)-bis[1-(5-bromosalicylaldimino)-3-(2-methylpiperidino)propane]tetracopper(II) (PIBXOU; Chiari et al., 1993), hexakis(μ2-acetato)bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino] methyl}phenolato)tetracopper(II) [UJOWEX; Huang & Liu, 2016], and tetrakis(μ2-acetato-O,O′)bis(μ2-acetato-O,O,O′)tetrakis(triphenylphosphine-P)dicopper(I)dicopper(II) [CERTOI; Koman et al., 1984: CERTOI10; Valigura et al., 1986]. The Cu⋯Cu distance in the paddle-wheel unit varies from ca 2.604 to 2.669 Å; in I this distance, Cu2⋯Cu2i, is 2.6201 (6) Å. The Cu⋯Cu distance involving the two copper atoms bridged by a single acetato group varies from ca 3.772 to 5.441 Å. The longer distance is observed when only one O atom bridges the two copper atoms as in compound I, where distance Cu2⋯Cu1 is ca 5.147 Å, close to the distance of ca 5.392 Å observed in UJOWEX. A shorter distance is observed when one O atom bridges the two copper atoms and the second O atom coordinates to the second copper atom, in a (μ2-acetato-O,O,O′) manner, as in CERTOI/CERTOI10 where this Cu⋯Cu distance is ca 3.772 Å.
6. Synthesis and crystallization
Synthesis of N-(quinolin-8-yl)pyrazine-2-carboxamide (HL1):
A suspension of pyrazine-2-carboxylic acid (1.49 g, 12 mmol) and 8-aminoquinoline (1.15 g, 8 mmol) in 80 ml of 1,2-dichloroethane was distilled to azeotropically remove any solvated H2O (vapour temperature 355 K). The mixture was allowed to cool, and then 1,1′-carbonyldiimidazole (1.95 g, 12 mmol) was added. After gas evolution had diminished, the solution was heated at reflux for 16 h. The reaction mixture was allowed to cool to RT and then added directly to a column (R = 1.2 cm, 30 g of SiO2) and eluted with CHCl3. On evaporation of the solvent the residue obtained was recrystallized from ethanol giving block-like colourless crystals of HL1 (yield 75%, m.p. 461 K).
Spectroscopic data for HL1 (for the numbering scheme see molecule A in Fig. 1): 1H NMR (400 MHz, DMSO-d6): 11.95 (s, 1H, HN3); 9.41 (d, J2,3 = 1.4, 1H, H2); 9.02 (m, 2H, H3 & H4); 8.93 (m, 1H, H13); 8.89 (dd, 1H, J7,8 = 7.6, J7,9 = 1.2, H7); 8.48 (dd, 1H, J11,12 = 8.3, J11,13 = 1.6, H11); 7.78 (dd, 1H, J9,8 = 8.3, J9,7 = 1.2, H9); 7.69 (m, 2H, H12 & H8). 13C NMR (400 MHz, DMSO-d6): 161.7 (C5), 150.3 (C13), 149.2 (C4), 144.9 (C1), 144.6 (C2), 144.5 (C3), 139.0 (C14), 137.7 (C11), 134.2 (C6), 128.8 (C10), 128.0 (C8), 123.7 (C12), 123.4 (C7), 117.0 C(9). IR (KBr pellet, cm−1): 1686 (vs), 1559 (s), 1533 (vs), 1485 (vs), 1471 (s), 1460 (s), 1425 (s), 1403 (s), 1384 (s), 1325 (s), 1129 (s), 1058 (s), 1020 (s), 830 (s), 796 (s), 763 (s), 741 (s), 710 (s), 599 (s). Analysis for C14H10N4O (Mr = 250.26 g mol−1); calculated (%) C 67.19, H 4.03, N 22.39; found (%) C 67.00, H 4.04, N 22.37.
Synthesis of compound I:
Cu(Ac)2·H2O (74.9 mg; 0.375 mmol) was added to a solution of HL1 (37.5 mg; 0.150 mmol) dissolved in 15 ml of methanol. The green solution was stirred at room temperature for 30 min. It was then left to allow slow evaporation of the solvent giving finally green block-like crystals of I. The crystals were filtered off and washed with diethyl ether (yield 61 mg, 67%). IR (KBr pellet, cm−1): 3422 (s), 1624 (vs), 1581 (vs), 1430 (s), 1396 (vs).
7. Refinement
Crystal data, data collection and structure . Intensity data for ligand HL1 were measured at 223 K on a four-circle diffractometer assuming a C-centered and only one equivalent of data were measured; hence Rint = 0 and the h,k,l reflections for which h + k = 2n + 1 were not measured. For compound I, data were measured at 173 K on a Stoe IPDS1, a one-circle image-plate diffractometer. For compound I a small cusp of data is missing. This is common with data measured using the IPDS1 for monoclinic and triclinic crystal systems.
details are summarized in Table 6
|
For ligand HL1 the NH H atoms could be located in a difference-Fourier map, but during they were included in calculated positions and treated as riding: N—H = 0.87 Å with Uiso(H) = 1.2Ueq(N). The OH H atom of the coordinated methanol molecule in complex I was located in a difference-Fourier map and freely refined. The OH H atom of the solvent methanol molecule in I was included in a calculated position and treated as riding: O—H = 0.84 Å with Uiso(H) = 1.5Ueq(O). For HL1 and complex I the C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).
Supporting information
https://doi.org/10.1107/S2056989019005450/zl2755sup1.cif
contains datablocks HL1, I, Global. DOI:Structure factors: contains datablock HL1. DOI: https://doi.org/10.1107/S2056989019005450/zl2755HL1sup2.hkl
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005450/zl2755Isup3.hkl
CSD search S1. DOI: https://doi.org/10.1107/S2056989019005450/zl2755sup4.pdf
Data collection: STADI4 (Stoe & Cie, 1997) for HL1; EXPOSE in IPDS-I (Stoe & Cie, 2004) for (I). Cell
STADI4 (Stoe & Cie, 1997) for HL1; CELL in IPDS-I (Stoe & Cie, 2004) for (I). Data reduction: X-RED (Stoe & Cie, 1997) for HL1; INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (I). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H10N4O | F(000) = 1560 |
Mr = 250.26 | Dx = 1.425 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5047 (9) Å | Cell parameters from 38 reflections |
b = 23.410 (3) Å | θ = 10.1–19.2° |
c = 13.4115 (11) Å | µ = 0.10 mm−1 |
β = 104.305 (8)° | T = 223 K |
V = 3500.0 (6) Å3 | Block, colourless |
Z = 12 | 0.50 × 0.40 × 0.30 mm |
STOE-Siemens AED2, 4-circle diffractometer | Rint = 0.0 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.0° |
Plane graphite monochromator | h = −13→13 |
ω/\2q scans | k = 0→28 |
4090 measured reflections | l = −15→16 |
4090 independent reflections | 2 standard reflections every 60 min |
2851 reflections with I > 2σ(I) | intensity decay: 1.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0283P)2 + 4.6085P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.003 |
4090 reflections | Δρmax = 0.19 e Å−3 |
515 parameters | Δρmin = −0.21 e Å−3 |
2 restraints | Extinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0021 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7337 (5) | 0.0790 (3) | 0.8655 (4) | 0.0463 (14) | |
N1 | 0.7597 (7) | 0.1224 (4) | 1.1248 (6) | 0.0382 (19) | |
N2 | 0.6261 (8) | 0.2143 (4) | 1.0247 (7) | 0.044 (2) | |
N3 | 0.8141 (6) | 0.0339 (3) | 1.0201 (5) | 0.0360 (15) | |
H3N | 0.822207 | 0.037888 | 1.085969 | 0.043* | |
N4 | 0.9191 (8) | −0.0366 (3) | 1.1719 (7) | 0.0331 (17) | |
C1 | 0.7234 (8) | 0.1270 (4) | 1.0203 (8) | 0.034 (2) | |
C2 | 0.6608 (8) | 0.1720 (4) | 0.9717 (8) | 0.037 (2) | |
H2 | 0.641206 | 0.173510 | 0.899409 | 0.044* | |
C3 | 0.6545 (8) | 0.2114 (4) | 1.1237 (8) | 0.042 (2) | |
H3 | 0.627584 | 0.239705 | 1.162515 | 0.050* | |
C4 | 0.7270 (10) | 0.1651 (5) | 1.1748 (9) | 0.045 (2) | |
H4 | 0.752016 | 0.165464 | 1.247046 | 0.055* | |
C5 | 0.7573 (6) | 0.0775 (3) | 0.9596 (6) | 0.0320 (17) | |
C6 | 0.8616 (9) | −0.0171 (4) | 0.9887 (7) | 0.031 (2) | |
C7 | 0.8578 (10) | −0.0331 (5) | 0.8907 (8) | 0.042 (2) | |
H7 | 0.818655 | −0.009305 | 0.836235 | 0.050* | |
C8 | 0.9096 (10) | −0.0833 (5) | 0.8681 (9) | 0.046 (3) | |
H8 | 0.906182 | −0.092985 | 0.799415 | 0.055* | |
C9 | 0.9658 (10) | −0.1189 (5) | 0.9464 (9) | 0.046 (3) | |
H9 | 1.000005 | −0.153289 | 0.931312 | 0.055* | |
C10 | 0.9724 (10) | −0.1040 (5) | 1.0502 (9) | 0.037 (2) | |
C11 | 1.0315 (11) | −0.1379 (5) | 1.1327 (10) | 0.056 (3) | |
H11 | 1.069668 | −0.171833 | 1.120905 | 0.067* | |
C12 | 1.0335 (10) | −0.1216 (5) | 1.2294 (9) | 0.046 (3) | |
H12 | 1.073731 | −0.143839 | 1.285804 | 0.055* | |
C13 | 0.9749 (9) | −0.0713 (5) | 1.2449 (8) | 0.038 (2) | |
H13 | 0.975561 | −0.061557 | 1.313068 | 0.046* | |
C14 | 0.9177 (9) | −0.0536 (4) | 1.0716 (8) | 0.029 (2) | |
O2 | 1.1664 (6) | 0.0867 (3) | 1.2537 (5) | 0.0469 (17) | |
N21 | 1.1428 (7) | 0.0431 (3) | 0.9977 (6) | 0.0334 (19) | |
N22 | 1.2741 (9) | −0.0505 (4) | 1.0996 (7) | 0.047 (2) | |
N23 | 1.0843 (6) | 0.1305 (3) | 1.1025 (5) | 0.0311 (16) | |
H23N | 1.074944 | 0.126707 | 1.036416 | 0.037* | |
N24 | 0.9780 (7) | 0.2026 (4) | 0.9528 (6) | 0.0359 (19) | |
C21 | 1.1773 (11) | 0.0001 (5) | 0.9463 (8) | 0.041 (2) | |
H21 | 1.158817 | 0.001603 | 0.874010 | 0.049* | |
C22 | 1.2378 (11) | −0.0452 (5) | 0.9946 (9) | 0.049 (3) | |
H22 | 1.256284 | −0.074972 | 0.954083 | 0.058* | |
C23 | 1.2382 (11) | −0.0062 (5) | 1.1504 (9) | 0.046 (3) | |
H23 | 1.256952 | −0.006842 | 1.222691 | 0.055* | |
C24 | 1.1760 (8) | 0.0391 (4) | 1.1000 (7) | 0.030 (2) | |
C25 | 1.1415 (7) | 0.0869 (4) | 1.1595 (6) | 0.035 (2) | |
C26 | 1.0377 (8) | 0.1811 (4) | 1.1325 (7) | 0.0267 (19) | |
C27 | 1.0415 (9) | 0.1959 (4) | 1.2346 (7) | 0.033 (2) | |
H27 | 1.080413 | 0.172461 | 1.289764 | 0.040* | |
C28 | 0.9845 (10) | 0.2474 (5) | 1.2516 (9) | 0.045 (3) | |
H28 | 0.987051 | 0.258236 | 1.319558 | 0.054* | |
C29 | 0.9267 (11) | 0.2815 (4) | 1.1738 (10) | 0.046 (3) | |
H29 | 0.887722 | 0.314476 | 1.188833 | 0.056* | |
C30 | 0.9238 (10) | 0.2689 (5) | 1.0723 (10) | 0.043 (3) | |
C31 | 0.8637 (10) | 0.3020 (5) | 0.9884 (9) | 0.046 (3) | |
H31 | 0.822150 | 0.334769 | 1.000800 | 0.056* | |
C32 | 0.8633 (10) | 0.2884 (5) | 0.8881 (9) | 0.051 (3) | |
H32 | 0.824502 | 0.311252 | 0.832158 | 0.061* | |
C33 | 0.9265 (10) | 0.2366 (5) | 0.8750 (9) | 0.041 (3) | |
H33 | 0.931273 | 0.226477 | 0.808338 | 0.050* | |
C34 | 0.9778 (8) | 0.2169 (4) | 1.0483 (8) | 0.030 (2) | |
O3 | 1.2338 (5) | 0.2464 (3) | 0.8676 (4) | 0.0499 (15) | |
N31 | 1.2533 (7) | 0.2882 (4) | 1.1263 (6) | 0.0357 (18) | |
N32 | 1.1316 (9) | 0.3839 (4) | 1.0267 (8) | 0.056 (2) | |
N33 | 1.3101 (5) | 0.2002 (3) | 1.0212 (5) | 0.0343 (14) | |
H33N | 1.315150 | 0.203851 | 1.086711 | 0.041* | |
N34 | 1.4154 (7) | 0.1285 (4) | 1.1717 (6) | 0.0351 (19) | |
C41 | 1.2238 (8) | 0.2920 (4) | 1.0237 (7) | 0.032 (2) | |
C42 | 1.1626 (9) | 0.3411 (4) | 0.9757 (7) | 0.040 (2) | |
H42 | 1.143118 | 0.343064 | 0.903457 | 0.048* | |
C43 | 1.1578 (10) | 0.3785 (5) | 1.1267 (9) | 0.055 (3) | |
H43 | 1.132327 | 0.406954 | 1.165939 | 0.066* | |
C44 | 1.2214 (9) | 0.3326 (4) | 1.1769 (8) | 0.041 (2) | |
H44 | 1.243254 | 0.332380 | 1.249264 | 0.050* | |
C45 | 1.2556 (6) | 0.2439 (3) | 0.9620 (6) | 0.0337 (17) | |
C46 | 1.3596 (9) | 0.1501 (4) | 0.9928 (8) | 0.035 (2) | |
C47 | 1.3526 (9) | 0.1366 (4) | 0.8925 (7) | 0.036 (2) | |
H47 | 1.310731 | 0.160484 | 0.839348 | 0.043* | |
C48 | 1.4091 (10) | 0.0861 (5) | 0.8688 (9) | 0.043 (3) | |
H48 | 1.406998 | 0.077855 | 0.799766 | 0.052* | |
C49 | 1.4661 (11) | 0.0493 (5) | 0.9437 (10) | 0.048 (3) | |
H49 | 1.499598 | 0.015108 | 0.926739 | 0.057* | |
C50 | 1.4738 (9) | 0.0637 (4) | 1.0481 (9) | 0.034 (2) | |
C51 | 1.5356 (10) | 0.0298 (5) | 1.1340 (10) | 0.052 (3) | |
H51 | 1.576831 | −0.003515 | 1.123746 | 0.062* | |
C52 | 1.5333 (10) | 0.0465 (4) | 1.2297 (10) | 0.048 (3) | |
H52 | 1.573714 | 0.024722 | 1.286647 | 0.058* | |
C53 | 1.4737 (10) | 0.0941 (5) | 1.2445 (9) | 0.044 (3) | |
H53 | 1.473984 | 0.103532 | 1.312724 | 0.053* | |
C54 | 1.4176 (9) | 0.1133 (5) | 1.0717 (8) | 0.034 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.062 (4) | 0.052 (4) | 0.024 (3) | 0.008 (3) | 0.009 (3) | 0.003 (2) |
N1 | 0.038 (4) | 0.041 (5) | 0.033 (4) | 0.001 (3) | 0.004 (3) | −0.002 (3) |
N2 | 0.047 (5) | 0.031 (4) | 0.052 (6) | 0.005 (3) | 0.011 (4) | 0.010 (4) |
N3 | 0.044 (4) | 0.039 (4) | 0.026 (3) | 0.003 (3) | 0.009 (3) | 0.000 (3) |
N4 | 0.037 (4) | 0.032 (4) | 0.028 (4) | 0.004 (3) | 0.004 (3) | 0.001 (3) |
C1 | 0.025 (4) | 0.040 (5) | 0.039 (5) | 0.001 (3) | 0.010 (4) | −0.002 (4) |
C2 | 0.032 (5) | 0.040 (5) | 0.033 (5) | 0.005 (4) | −0.002 (4) | 0.014 (4) |
C3 | 0.031 (5) | 0.033 (5) | 0.059 (7) | 0.007 (4) | 0.008 (4) | 0.001 (4) |
C4 | 0.043 (5) | 0.037 (5) | 0.048 (6) | 0.005 (4) | −0.004 (4) | 0.002 (4) |
C5 | 0.030 (4) | 0.028 (4) | 0.040 (5) | 0.001 (3) | 0.013 (3) | 0.000 (3) |
C6 | 0.033 (5) | 0.026 (4) | 0.032 (5) | −0.007 (3) | 0.004 (4) | 0.001 (3) |
C7 | 0.041 (5) | 0.060 (6) | 0.024 (5) | −0.007 (4) | 0.008 (4) | 0.010 (4) |
C8 | 0.050 (6) | 0.051 (6) | 0.037 (5) | −0.008 (5) | 0.015 (5) | −0.015 (5) |
C9 | 0.057 (6) | 0.042 (5) | 0.043 (6) | −0.002 (5) | 0.020 (5) | −0.015 (5) |
C10 | 0.036 (5) | 0.033 (5) | 0.041 (6) | 0.006 (4) | 0.011 (4) | 0.005 (4) |
C11 | 0.058 (7) | 0.043 (6) | 0.075 (8) | 0.017 (5) | 0.031 (6) | 0.013 (5) |
C12 | 0.042 (5) | 0.040 (6) | 0.053 (7) | 0.001 (5) | 0.007 (5) | 0.024 (5) |
C13 | 0.035 (5) | 0.057 (6) | 0.021 (4) | −0.005 (4) | 0.004 (4) | 0.002 (4) |
C14 | 0.031 (5) | 0.031 (4) | 0.027 (5) | −0.009 (4) | 0.011 (4) | 0.001 (4) |
O2 | 0.055 (4) | 0.052 (4) | 0.034 (4) | 0.009 (3) | 0.011 (3) | 0.010 (3) |
N21 | 0.039 (4) | 0.025 (4) | 0.035 (5) | 0.005 (3) | 0.007 (4) | 0.004 (3) |
N22 | 0.059 (6) | 0.038 (5) | 0.043 (5) | 0.009 (4) | 0.011 (4) | 0.010 (4) |
N23 | 0.038 (4) | 0.033 (4) | 0.021 (4) | 0.007 (3) | 0.005 (3) | 0.000 (3) |
N24 | 0.032 (4) | 0.043 (5) | 0.031 (4) | −0.006 (4) | 0.005 (3) | 0.000 (4) |
C21 | 0.059 (6) | 0.034 (5) | 0.032 (5) | −0.005 (5) | 0.015 (5) | −0.005 (4) |
C22 | 0.074 (8) | 0.032 (6) | 0.042 (6) | −0.005 (5) | 0.019 (6) | −0.003 (5) |
C23 | 0.054 (6) | 0.042 (6) | 0.045 (7) | −0.005 (5) | 0.020 (5) | 0.010 (5) |
C24 | 0.033 (5) | 0.027 (5) | 0.029 (5) | −0.008 (4) | 0.006 (4) | 0.004 (4) |
C25 | 0.025 (4) | 0.055 (6) | 0.022 (4) | −0.004 (4) | −0.001 (3) | 0.016 (4) |
C26 | 0.020 (4) | 0.033 (5) | 0.027 (5) | −0.002 (4) | 0.004 (3) | 0.004 (4) |
C27 | 0.039 (5) | 0.029 (5) | 0.031 (5) | −0.014 (4) | 0.010 (4) | −0.009 (4) |
C28 | 0.053 (7) | 0.044 (6) | 0.046 (6) | −0.015 (5) | 0.025 (5) | −0.009 (5) |
C29 | 0.054 (6) | 0.025 (5) | 0.068 (8) | −0.004 (4) | 0.031 (6) | −0.008 (5) |
C30 | 0.038 (6) | 0.041 (6) | 0.054 (7) | −0.005 (5) | 0.019 (5) | −0.006 (5) |
C31 | 0.050 (6) | 0.034 (5) | 0.055 (7) | −0.002 (5) | 0.015 (5) | 0.002 (5) |
C32 | 0.043 (6) | 0.058 (8) | 0.049 (7) | −0.001 (6) | 0.006 (5) | −0.005 (5) |
C33 | 0.043 (6) | 0.036 (6) | 0.042 (6) | 0.001 (4) | 0.006 (5) | 0.013 (5) |
C34 | 0.022 (4) | 0.025 (4) | 0.038 (5) | −0.003 (3) | 0.001 (4) | −0.009 (4) |
O3 | 0.062 (4) | 0.064 (4) | 0.024 (3) | 0.007 (3) | 0.011 (3) | 0.009 (3) |
N31 | 0.036 (4) | 0.038 (4) | 0.032 (4) | −0.001 (3) | 0.005 (3) | 0.002 (3) |
N32 | 0.061 (5) | 0.046 (5) | 0.061 (6) | 0.009 (4) | 0.015 (5) | 0.010 (5) |
N33 | 0.035 (3) | 0.043 (4) | 0.026 (3) | 0.000 (3) | 0.008 (3) | 0.002 (3) |
N34 | 0.038 (4) | 0.039 (4) | 0.028 (4) | −0.007 (3) | 0.008 (3) | 0.000 (3) |
C41 | 0.026 (4) | 0.035 (5) | 0.036 (5) | −0.002 (3) | 0.008 (4) | 0.009 (4) |
C42 | 0.041 (5) | 0.043 (6) | 0.033 (5) | 0.007 (4) | 0.006 (4) | 0.008 (4) |
C43 | 0.054 (6) | 0.053 (7) | 0.056 (7) | 0.012 (5) | 0.009 (5) | 0.009 (5) |
C44 | 0.047 (5) | 0.040 (5) | 0.038 (5) | 0.012 (4) | 0.013 (4) | −0.001 (4) |
C45 | 0.038 (4) | 0.026 (4) | 0.036 (4) | 0.001 (3) | 0.007 (3) | 0.003 (3) |
C46 | 0.039 (5) | 0.033 (5) | 0.038 (5) | −0.006 (4) | 0.018 (4) | −0.013 (4) |
C47 | 0.039 (5) | 0.042 (5) | 0.030 (5) | −0.005 (4) | 0.014 (4) | −0.003 (4) |
C48 | 0.045 (6) | 0.047 (6) | 0.045 (6) | −0.017 (5) | 0.024 (5) | −0.021 (5) |
C49 | 0.050 (6) | 0.043 (6) | 0.056 (7) | −0.008 (5) | 0.024 (5) | −0.023 (5) |
C50 | 0.036 (5) | 0.024 (5) | 0.045 (6) | −0.008 (4) | 0.015 (4) | 0.000 (4) |
C51 | 0.044 (5) | 0.037 (5) | 0.082 (9) | 0.005 (4) | 0.032 (6) | 0.013 (5) |
C52 | 0.039 (5) | 0.042 (6) | 0.063 (7) | 0.010 (4) | 0.012 (5) | 0.036 (5) |
C53 | 0.037 (5) | 0.056 (6) | 0.035 (5) | −0.009 (4) | 0.002 (4) | 0.001 (4) |
C54 | 0.035 (5) | 0.040 (5) | 0.027 (5) | −0.007 (4) | 0.013 (4) | −0.001 (4) |
O1—C5 | 1.224 (9) | C26—C27 | 1.403 (13) |
N1—C4 | 1.311 (14) | C26—C34 | 1.439 (14) |
N1—C1 | 1.364 (12) | C27—C28 | 1.418 (15) |
N2—C3 | 1.289 (13) | C27—H27 | 0.9400 |
N2—C2 | 1.337 (13) | C28—C29 | 1.351 (17) |
N3—C5 | 1.366 (10) | C28—H28 | 0.9400 |
N3—C6 | 1.419 (11) | C29—C30 | 1.385 (17) |
N3—H3N | 0.8700 | C29—H29 | 0.9400 |
N4—C13 | 1.312 (14) | C30—C31 | 1.400 (16) |
N4—C14 | 1.398 (13) | C30—C34 | 1.438 (15) |
C1—C2 | 1.349 (14) | C31—C32 | 1.380 (16) |
C1—C5 | 1.521 (11) | C31—H31 | 0.9400 |
C2—H2 | 0.9400 | C32—C33 | 1.447 (16) |
C3—C4 | 1.435 (15) | C32—H32 | 0.9400 |
C3—H3 | 0.9400 | C33—H33 | 0.9400 |
C4—H4 | 0.9400 | O3—C45 | 1.230 (9) |
C6—C7 | 1.358 (13) | N31—C41 | 1.337 (12) |
C6—C14 | 1.424 (14) | N31—C44 | 1.340 (12) |
C7—C8 | 1.385 (15) | N32—C43 | 1.306 (14) |
C7—H7 | 0.9400 | N32—C42 | 1.312 (13) |
C8—C9 | 1.371 (17) | N33—C45 | 1.350 (10) |
C8—H8 | 0.9400 | N33—C46 | 1.399 (11) |
C9—C10 | 1.419 (16) | N33—H33N | 0.8700 |
C9—H9 | 0.9400 | N34—C53 | 1.314 (14) |
C10—C11 | 1.395 (16) | N34—C54 | 1.395 (13) |
C10—C14 | 1.400 (11) | C41—C42 | 1.417 (14) |
C11—C12 | 1.347 (17) | C41—C45 | 1.494 (12) |
C11—H11 | 0.9400 | C42—H42 | 0.9400 |
C12—C13 | 1.398 (15) | C43—C44 | 1.378 (16) |
C12—H12 | 0.9400 | C43—H43 | 0.9400 |
C13—H13 | 0.9400 | C44—H44 | 0.9400 |
O2—C25 | 1.224 (11) | C46—C47 | 1.366 (13) |
N21—C24 | 1.333 (12) | C46—C54 | 1.398 (15) |
N21—C21 | 1.334 (13) | C47—C48 | 1.422 (13) |
N22—C23 | 1.360 (15) | C47—H47 | 0.9400 |
N22—C22 | 1.372 (15) | C48—C49 | 1.362 (17) |
N23—C25 | 1.347 (11) | C48—H48 | 0.9400 |
N23—C26 | 1.399 (11) | C49—C50 | 1.421 (16) |
N23—H23N | 0.8700 | C49—H49 | 0.9400 |
N24—C34 | 1.324 (13) | C50—C54 | 1.403 (11) |
N24—C33 | 1.329 (13) | C50—C51 | 1.435 (16) |
C21—C22 | 1.344 (17) | C51—C52 | 1.348 (16) |
C21—H21 | 0.9400 | C51—H51 | 0.9400 |
C22—H22 | 0.9400 | C52—C53 | 1.350 (15) |
C23—C24 | 1.362 (16) | C52—H52 | 0.9400 |
C23—H23 | 0.9400 | C53—H53 | 0.9400 |
C24—C25 | 1.484 (13) | ||
C4—N1—C1 | 114.3 (10) | C26—C27—C28 | 117.5 (10) |
C3—N2—C2 | 118.4 (9) | C26—C27—H27 | 121.2 |
C5—N3—C6 | 128.0 (7) | C28—C27—H27 | 121.2 |
C5—N3—H3N | 116.0 | C29—C28—C27 | 122.5 (11) |
C6—N3—H3N | 116.0 | C29—C28—H28 | 118.7 |
C13—N4—C14 | 115.5 (8) | C27—C28—H28 | 118.7 |
C2—C1—N1 | 123.4 (9) | C28—C29—C30 | 121.4 (10) |
C2—C1—C5 | 120.8 (9) | C28—C29—H29 | 119.3 |
N1—C1—C5 | 115.8 (9) | C30—C29—H29 | 119.3 |
N2—C2—C1 | 121.0 (9) | C29—C30—C31 | 124.0 (11) |
N2—C2—H2 | 119.5 | C29—C30—C34 | 119.5 (12) |
C1—C2—H2 | 119.5 | C31—C30—C34 | 116.3 (11) |
N2—C3—C4 | 120.1 (9) | C32—C31—C30 | 122.5 (11) |
N2—C3—H3 | 120.0 | C32—C31—H31 | 118.8 |
C4—C3—H3 | 120.0 | C30—C31—H31 | 118.8 |
N1—C4—C3 | 122.6 (10) | C31—C32—C33 | 115.5 (11) |
N1—C4—H4 | 118.7 | C31—C32—H32 | 122.2 |
C3—C4—H4 | 118.7 | C33—C32—H32 | 122.2 |
O1—C5—N3 | 125.8 (7) | N24—C33—C32 | 123.1 (11) |
O1—C5—C1 | 120.6 (8) | N24—C33—H33 | 118.4 |
N3—C5—C1 | 113.5 (7) | C32—C33—H33 | 118.4 |
C7—C6—N3 | 126.7 (9) | N24—C34—C30 | 122.3 (11) |
C7—C6—C14 | 119.3 (9) | N24—C34—C26 | 119.8 (8) |
N3—C6—C14 | 114.0 (8) | C30—C34—C26 | 117.9 (10) |
C6—C7—C8 | 122.3 (10) | C41—N31—C44 | 116.1 (9) |
C6—C7—H7 | 118.9 | C43—N32—C42 | 116.0 (10) |
C8—C7—H7 | 118.9 | C45—N33—C46 | 129.6 (7) |
C9—C8—C7 | 119.7 (10) | C45—N33—H33N | 115.2 |
C9—C8—H8 | 120.2 | C46—N33—H33N | 115.2 |
C7—C8—H8 | 120.2 | C53—N34—C54 | 115.5 (9) |
C8—C9—C10 | 120.2 (10) | N31—C41—C42 | 119.5 (9) |
C8—C9—H9 | 119.9 | N31—C41—C45 | 119.1 (8) |
C10—C9—H9 | 119.9 | C42—C41—C45 | 121.4 (8) |
C11—C10—C14 | 118.2 (9) | N32—C42—C41 | 123.5 (9) |
C11—C10—C9 | 122.4 (10) | N32—C42—H42 | 118.3 |
C14—C10—C9 | 119.4 (9) | C41—C42—H42 | 118.3 |
C12—C11—C10 | 119.5 (10) | N32—C43—C44 | 122.5 (11) |
C12—C11—H11 | 120.3 | N32—C43—H43 | 118.7 |
C10—C11—H11 | 120.3 | C44—C43—H43 | 118.7 |
C11—C12—C13 | 119.2 (10) | N31—C44—C43 | 122.3 (10) |
C11—C12—H12 | 120.4 | N31—C44—H44 | 118.8 |
C13—C12—H12 | 120.4 | C43—C44—H44 | 118.8 |
N4—C13—C12 | 125.1 (10) | O3—C45—N33 | 126.1 (7) |
N4—C13—H13 | 117.4 | O3—C45—C41 | 121.2 (8) |
C12—C13—H13 | 117.4 | N33—C45—C41 | 112.7 (7) |
N4—C14—C10 | 122.5 (8) | C47—C46—C54 | 120.3 (9) |
N4—C14—C6 | 118.4 (9) | C47—C46—N33 | 122.3 (9) |
C10—C14—C6 | 119.1 (8) | C54—C46—N33 | 117.5 (8) |
C24—N21—C21 | 115.7 (9) | C46—C47—C48 | 119.6 (10) |
C23—N22—C22 | 113.1 (10) | C46—C47—H47 | 120.2 |
C25—N23—C26 | 130.3 (8) | C48—C47—H47 | 120.2 |
C25—N23—H23N | 114.9 | C49—C48—C47 | 121.6 (10) |
C26—N23—H23N | 114.9 | C49—C48—H48 | 119.2 |
C34—N24—C33 | 120.0 (9) | C47—C48—H48 | 119.2 |
N21—C21—C22 | 122.0 (11) | C48—C49—C50 | 118.6 (10) |
N21—C21—H21 | 119.0 | C48—C49—H49 | 120.7 |
C22—C21—H21 | 119.0 | C50—C49—H49 | 120.7 |
C21—C22—N22 | 123.8 (11) | C54—C50—C49 | 119.9 (9) |
C21—C22—H22 | 118.1 | C54—C50—C51 | 116.2 (8) |
N22—C22—H22 | 118.1 | C49—C50—C51 | 123.9 (10) |
N22—C23—C24 | 122.1 (11) | C52—C51—C50 | 118.8 (10) |
N22—C23—H23 | 118.9 | C52—C51—H51 | 120.6 |
C24—C23—H23 | 118.9 | C50—C51—H51 | 120.6 |
N21—C24—C23 | 123.2 (9) | C51—C52—C53 | 120.7 (10) |
N21—C24—C25 | 117.0 (8) | C51—C52—H52 | 119.7 |
C23—C24—C25 | 119.8 (9) | C53—C52—H52 | 119.7 |
O2—C25—N23 | 123.1 (9) | N34—C53—C52 | 125.5 (11) |
O2—C25—C24 | 121.8 (9) | N34—C53—H53 | 117.2 |
N23—C25—C24 | 115.1 (8) | C52—C53—H53 | 117.2 |
N23—C26—C27 | 124.6 (9) | N34—C54—C46 | 116.9 (9) |
N23—C26—C34 | 114.2 (8) | N34—C54—C50 | 123.2 (8) |
C27—C26—C34 | 121.1 (9) | C46—C54—C50 | 120.0 (7) |
C4—N1—C1—C2 | 1.0 (13) | C27—C28—C29—C30 | −2.4 (17) |
C4—N1—C1—C5 | −178.7 (8) | C28—C29—C30—C31 | 178.9 (11) |
C3—N2—C2—C1 | 0.3 (14) | C28—C29—C30—C34 | 3.3 (17) |
N1—C1—C2—N2 | −2.7 (14) | C29—C30—C31—C32 | 179.5 (11) |
C5—C1—C2—N2 | 177.0 (8) | C34—C30—C31—C32 | −4.8 (16) |
C2—N2—C3—C4 | 3.3 (14) | C30—C31—C32—C33 | 1.6 (16) |
C1—N1—C4—C3 | 2.7 (14) | C34—N24—C33—C32 | −3.1 (16) |
N2—C3—C4—N1 | −5.1 (16) | C31—C32—C33—N24 | 2.6 (16) |
C6—N3—C5—O1 | 2.7 (13) | C33—N24—C34—C30 | −0.4 (15) |
C6—N3—C5—C1 | −177.2 (8) | C33—N24—C34—C26 | −177.6 (9) |
C2—C1—C5—O1 | 3.8 (12) | C29—C30—C34—N24 | −179.8 (8) |
N1—C1—C5—O1 | −176.5 (8) | C31—C30—C34—N24 | 4.3 (16) |
C2—C1—C5—N3 | −176.2 (8) | C29—C30—C34—C26 | −2.6 (16) |
N1—C1—C5—N3 | 3.4 (10) | C31—C30—C34—C26 | −178.5 (7) |
C5—N3—C6—C7 | −1.3 (14) | N23—C26—C34—N24 | −4.6 (12) |
C5—N3—C6—C14 | 178.9 (7) | C27—C26—C34—N24 | 178.4 (9) |
N3—C6—C7—C8 | 178.4 (9) | N23—C26—C34—C30 | 178.1 (9) |
C14—C6—C7—C8 | −1.8 (15) | C27—C26—C34—C30 | 1.1 (14) |
C6—C7—C8—C9 | 0.8 (17) | C44—N31—C41—C42 | 0.0 (12) |
C7—C8—C9—C10 | −0.9 (17) | C44—N31—C41—C45 | −179.6 (8) |
C8—C9—C10—C11 | −178.2 (11) | C43—N32—C42—C41 | −1.7 (15) |
C8—C9—C10—C14 | 2.1 (15) | N31—C41—C42—N32 | −0.5 (14) |
C14—C10—C11—C12 | 0.5 (15) | C45—C41—C42—N32 | 179.1 (9) |
C9—C10—C11—C12 | −179.3 (11) | C42—N32—C43—C44 | 4.3 (17) |
C10—C11—C12—C13 | 0.7 (17) | C41—N31—C44—C43 | 2.5 (14) |
C14—N4—C13—C12 | 1.7 (15) | N32—C43—C44—N31 | −5.0 (18) |
C11—C12—C13—N4 | −1.9 (18) | C46—N33—C45—O3 | 3.7 (13) |
C13—N4—C14—C10 | −0.3 (12) | C46—N33—C45—C41 | −175.4 (8) |
C13—N4—C14—C6 | −178.2 (9) | N31—C41—C45—O3 | −177.5 (8) |
C11—C10—C14—N4 | −0.7 (12) | C42—C41—C45—O3 | 2.9 (12) |
C9—C10—C14—N4 | 179.0 (11) | N31—C41—C45—N33 | 1.6 (10) |
C11—C10—C14—C6 | 177.2 (11) | C42—C41—C45—N33 | −178.0 (8) |
C9—C10—C14—C6 | −3.1 (12) | C45—N33—C46—C47 | −3.9 (14) |
C7—C6—C14—N4 | −179.1 (9) | C45—N33—C46—C54 | 176.2 (7) |
N3—C6—C14—N4 | 0.8 (12) | C54—C46—C47—C48 | −2.6 (14) |
C7—C6—C14—C10 | 2.9 (12) | N33—C46—C47—C48 | 177.4 (9) |
N3—C6—C14—C10 | −177.2 (7) | C46—C47—C48—C49 | 2.8 (15) |
C24—N21—C21—C22 | 2.4 (16) | C47—C48—C49—C50 | −3.2 (16) |
N21—C21—C22—N22 | −3.1 (19) | C48—C49—C50—C54 | 3.5 (14) |
C23—N22—C22—C21 | 2.7 (17) | C48—C49—C50—C51 | −177.4 (10) |
C22—N22—C23—C24 | −2.0 (16) | C54—C50—C51—C52 | 1.6 (13) |
C21—N21—C24—C23 | −1.8 (15) | C49—C50—C51—C52 | −177.6 (10) |
C21—N21—C24—C25 | 178.6 (9) | C50—C51—C52—C53 | 0.3 (16) |
N22—C23—C24—N21 | 1.8 (16) | C54—N34—C53—C52 | −0.3 (15) |
N22—C23—C24—C25 | −178.6 (9) | C51—C52—C53—N34 | −1.0 (18) |
C26—N23—C25—O2 | −3.2 (15) | C53—N34—C54—C46 | −178.0 (9) |
C26—N23—C25—C24 | 178.6 (8) | C53—N34—C54—C50 | 2.4 (12) |
N21—C24—C25—O2 | 178.9 (9) | C47—C46—C54—N34 | −176.6 (9) |
C23—C24—C25—O2 | −0.7 (13) | N33—C46—C54—N34 | 3.4 (13) |
N21—C24—C25—N23 | −2.8 (11) | C47—C46—C54—C50 | 3.0 (13) |
C23—C24—C25—N23 | 177.5 (9) | N33—C46—C54—C50 | −177.0 (7) |
C25—N23—C26—C27 | −0.7 (15) | C49—C50—C54—N34 | 176.2 (11) |
C25—N23—C26—C34 | −177.6 (8) | C51—C50—C54—N34 | −3.0 (11) |
N23—C26—C27—C28 | −176.8 (8) | C49—C50—C54—C46 | −3.4 (11) |
C34—C26—C27—C28 | −0.2 (14) | C51—C50—C54—C46 | 177.4 (11) |
C26—C27—C28—C29 | 0.8 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N1 | 0.87 | 2.21 | 2.661 (10) | 112 |
N3—H3N···N4 | 0.87 | 2.23 | 2.667 (10) | 111 |
C7—H7···O1 | 0.94 | 2.36 | 2.967 (13) | 122 |
N23—H23N···N21 | 0.87 | 2.22 | 2.662 (10) | 112 |
N23—H23N···N24 | 0.87 | 2.24 | 2.675 (11) | 110 |
C21—H21···O2i | 0.94 | 2.64 | 3.264 (12) | 125 |
C22—H22···O2i | 0.94 | 2.64 | 3.278 (13) | 125 |
C27—H27···O2 | 0.94 | 2.34 | 2.912 (13) | 119 |
N33—H33N···N31 | 0.87 | 2.21 | 2.667 (10) | 113 |
N33—H33N···N34 | 0.87 | 2.26 | 2.674 (11) | 109 |
C44—H44···O1ii | 0.94 | 2.61 | 3.244 (11) | 125 |
C47—H47···O3 | 0.94 | 2.27 | 2.893 (12) | 123 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x+1/2, −y+1/2, z+1/2. |
[Cu4(C42H44N8O16)]·2CH4O | Z = 1 |
Mr = 1235.09 | F(000) = 632 |
Triclinic, P1 | Dx = 1.645 Mg m−3 |
a = 8.1485 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.2132 (9) Å | Cell parameters from 8000 reflections |
c = 14.2662 (12) Å | θ = 2.2–25.9° |
α = 98.352 (9)° | µ = 1.76 mm−1 |
β = 93.668 (10)° | T = 153 K |
γ = 103.578 (9)° | Block, green |
V = 1247.11 (19) Å3 | 0.50 × 0.30 × 0.25 mm |
STOE IPDS 1 diffractometer | 4499 independent reflections |
Radiation source: fine-focus sealed tube | 3906 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.050 |
φ rotation scans | θmax = 25.9°, θmin = 2.2° |
Absorption correction: multi-scan (MULABS; Spek, 2009) | h = −10→10 |
Tmin = 0.564, Tmax = 1.000 | k = −13→13 |
9825 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3 |
4499 reflections | (Δ/σ)max = 0.001 |
344 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.39598 (3) | 0.31687 (2) | 0.17585 (2) | 0.01373 (9) | |
O2 | 0.1648 (2) | 0.37443 (17) | 0.10360 (12) | 0.0196 (4) | |
H2O | 0.208 (3) | 0.440 (3) | 0.081 (2) | 0.020 (7)* | |
C15 | 0.0276 (3) | 0.3951 (3) | 0.15486 (19) | 0.0295 (6) | |
H15C | −0.070186 | 0.391617 | 0.109933 | 0.044* | |
H15B | 0.061424 | 0.477100 | 0.195227 | 0.044* | |
H15A | −0.003095 | 0.330750 | 0.194798 | 0.044* | |
N1 | 0.5500 (2) | 0.49209 (19) | 0.19753 (13) | 0.0158 (4) | |
N2 | 0.7940 (2) | 0.7145 (2) | 0.20796 (15) | 0.0220 (4) | |
N3 | 0.5020 (2) | 0.30915 (19) | 0.05748 (13) | 0.0143 (4) | |
N4 | 0.2904 (2) | 0.13793 (19) | 0.12373 (13) | 0.0151 (4) | |
O1 | 0.6953 (2) | 0.42282 (17) | −0.02929 (12) | 0.0214 (4) | |
C1 | 0.6469 (3) | 0.5128 (2) | 0.12584 (15) | 0.0145 (4) | |
C2 | 0.7678 (3) | 0.6243 (2) | 0.13166 (17) | 0.0193 (5) | |
H2 | 0.834295 | 0.637233 | 0.080020 | 0.023* | |
C3 | 0.6944 (3) | 0.6927 (2) | 0.27740 (17) | 0.0221 (5) | |
H3 | 0.707511 | 0.755074 | 0.331961 | 0.027* | |
C4 | 0.5719 (3) | 0.5817 (2) | 0.27251 (16) | 0.0193 (5) | |
H4 | 0.503163 | 0.569718 | 0.323337 | 0.023* | |
C5 | 0.6164 (3) | 0.4088 (2) | 0.04218 (15) | 0.0145 (5) | |
C6 | 0.4453 (3) | 0.1982 (2) | −0.00583 (15) | 0.0142 (4) | |
C7 | 0.4895 (3) | 0.1676 (2) | −0.09636 (15) | 0.0174 (5) | |
H7 | 0.568342 | 0.227202 | −0.122700 | 0.021* | |
C8 | 0.4187 (3) | 0.0487 (2) | −0.14995 (16) | 0.0209 (5) | |
H8 | 0.450487 | 0.029735 | −0.212245 | 0.025* | |
C9 | 0.3049 (3) | −0.0406 (2) | −0.11458 (16) | 0.0209 (5) | |
H9 | 0.258555 | −0.120132 | −0.152212 | 0.025* | |
C10 | 0.2569 (3) | −0.0133 (2) | −0.02131 (16) | 0.0172 (5) | |
C11 | 0.1416 (3) | −0.0996 (2) | 0.02149 (18) | 0.0212 (5) | |
H11 | 0.088973 | −0.180113 | −0.012911 | 0.025* | |
C12 | 0.1067 (3) | −0.0660 (2) | 0.11283 (17) | 0.0221 (5) | |
H12 | 0.030098 | −0.123070 | 0.142415 | 0.027* | |
C13 | 0.1849 (3) | 0.0530 (2) | 0.16210 (16) | 0.0183 (5) | |
H13 | 0.161656 | 0.074312 | 0.225945 | 0.022* | |
C14 | 0.3277 (3) | 0.1054 (2) | 0.03234 (15) | 0.0141 (4) | |
Cu2 | 0.44706 (3) | 0.08030 (3) | 0.45535 (2) | 0.01311 (9) | |
O3 | 0.3072 (2) | 0.34649 (16) | 0.29775 (11) | 0.0178 (3) | |
O4 | 0.3848 (2) | 0.19608 (16) | 0.36021 (11) | 0.0195 (4) | |
O5 | 0.5820 (2) | 0.21036 (16) | 0.55744 (12) | 0.0220 (4) | |
O6 | 0.6575 (2) | 0.08152 (17) | 0.39303 (11) | 0.0208 (4) | |
O7 | 0.3245 (2) | −0.07186 (17) | 0.36824 (12) | 0.0250 (4) | |
O8 | 0.25541 (19) | 0.05939 (17) | 0.53366 (12) | 0.0214 (4) | |
C16 | 0.3260 (3) | 0.2889 (2) | 0.36657 (15) | 0.0144 (4) | |
C17 | 0.2738 (4) | 0.3410 (3) | 0.46051 (17) | 0.0300 (6) | |
H17A | 0.225199 | 0.411380 | 0.452304 | 0.045* | |
H17B | 0.373388 | 0.369265 | 0.507758 | 0.045* | |
H17C | 0.188966 | 0.276304 | 0.482413 | 0.045* | |
C18 | 0.6718 (3) | 0.1805 (2) | 0.62131 (16) | 0.0179 (5) | |
C19 | 0.7880 (3) | 0.2856 (3) | 0.69104 (19) | 0.0294 (6) | |
H19A | 0.736862 | 0.295786 | 0.751097 | 0.044* | |
H19B | 0.804464 | 0.362812 | 0.664396 | 0.044* | |
H19C | 0.897884 | 0.266140 | 0.702785 | 0.044* | |
C20 | 0.7617 (3) | 0.0184 (2) | 0.40933 (15) | 0.0159 (5) | |
C21 | 0.9158 (3) | 0.0332 (3) | 0.35565 (17) | 0.0227 (5) | |
H21C | 1.015191 | 0.034582 | 0.398686 | 0.034* | |
H21B | 0.934162 | 0.111348 | 0.330169 | 0.034* | |
H21A | 0.898758 | −0.036643 | 0.303063 | 0.034* | |
O9 | 0.7083 (3) | 0.2935 (2) | 0.28288 (15) | 0.0402 (5) | |
H9O | 0.646942 | 0.230274 | 0.299405 | 0.060* | |
C22 | 0.7910 (4) | 0.3767 (3) | 0.3638 (2) | 0.0457 (8) | |
H22A | 0.853986 | 0.453730 | 0.344812 | 0.069* | |
H22B | 0.869998 | 0.339429 | 0.397142 | 0.069* | |
H22C | 0.707048 | 0.395299 | 0.406157 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01849 (15) | 0.01031 (18) | 0.01175 (14) | 0.00192 (11) | 0.00404 (10) | 0.00134 (11) |
O2 | 0.0199 (8) | 0.0199 (11) | 0.0213 (8) | 0.0052 (7) | 0.0047 (6) | 0.0088 (8) |
C15 | 0.0202 (12) | 0.0357 (18) | 0.0291 (13) | 0.0058 (11) | 0.0026 (10) | −0.0044 (12) |
N1 | 0.0172 (9) | 0.0165 (12) | 0.0143 (9) | 0.0048 (7) | 0.0002 (7) | 0.0042 (8) |
N2 | 0.0228 (10) | 0.0146 (12) | 0.0249 (10) | −0.0001 (8) | −0.0024 (8) | 0.0016 (9) |
N3 | 0.0158 (8) | 0.0126 (11) | 0.0137 (9) | 0.0013 (7) | 0.0013 (7) | 0.0028 (8) |
N4 | 0.0155 (8) | 0.0142 (11) | 0.0158 (9) | 0.0044 (7) | 0.0020 (7) | 0.0021 (8) |
O1 | 0.0257 (8) | 0.0193 (10) | 0.0188 (8) | 0.0015 (7) | 0.0093 (7) | 0.0052 (7) |
C1 | 0.0143 (10) | 0.0146 (13) | 0.0165 (10) | 0.0061 (8) | −0.0003 (8) | 0.0055 (9) |
C2 | 0.0171 (10) | 0.0168 (14) | 0.0228 (11) | 0.0019 (9) | 0.0007 (9) | 0.0040 (10) |
C3 | 0.0273 (12) | 0.0150 (14) | 0.0212 (12) | 0.0032 (9) | −0.0031 (9) | −0.0008 (10) |
C4 | 0.0238 (11) | 0.0187 (14) | 0.0151 (10) | 0.0059 (9) | 0.0003 (9) | 0.0016 (9) |
C5 | 0.0141 (10) | 0.0141 (14) | 0.0163 (10) | 0.0049 (8) | −0.0006 (8) | 0.0044 (9) |
C6 | 0.0149 (9) | 0.0134 (13) | 0.0151 (10) | 0.0055 (8) | −0.0014 (8) | 0.0029 (9) |
C7 | 0.0208 (10) | 0.0206 (14) | 0.0123 (10) | 0.0068 (9) | 0.0020 (8) | 0.0045 (9) |
C8 | 0.0265 (12) | 0.0248 (15) | 0.0126 (10) | 0.0108 (10) | 0.0014 (9) | 0.0002 (10) |
C9 | 0.0277 (12) | 0.0164 (14) | 0.0162 (11) | 0.0061 (9) | −0.0031 (9) | −0.0036 (9) |
C10 | 0.0174 (10) | 0.0158 (14) | 0.0172 (11) | 0.0047 (9) | −0.0030 (8) | 0.0002 (9) |
C11 | 0.0209 (11) | 0.0125 (14) | 0.0264 (12) | 0.0009 (9) | −0.0027 (9) | −0.0015 (10) |
C12 | 0.0198 (11) | 0.0177 (15) | 0.0258 (12) | −0.0026 (9) | 0.0035 (9) | 0.0049 (10) |
C13 | 0.0201 (11) | 0.0165 (14) | 0.0176 (11) | 0.0021 (9) | 0.0050 (8) | 0.0034 (9) |
C14 | 0.0149 (9) | 0.0147 (13) | 0.0135 (10) | 0.0057 (8) | −0.0001 (8) | 0.0019 (9) |
Cu2 | 0.01474 (14) | 0.01284 (18) | 0.01143 (14) | 0.00311 (10) | 0.00007 (10) | 0.00198 (11) |
O3 | 0.0262 (8) | 0.0157 (10) | 0.0141 (7) | 0.0083 (6) | 0.0048 (6) | 0.0043 (7) |
O4 | 0.0279 (8) | 0.0187 (10) | 0.0140 (7) | 0.0094 (7) | 0.0004 (6) | 0.0046 (7) |
O5 | 0.0240 (8) | 0.0170 (10) | 0.0218 (8) | 0.0028 (7) | −0.0047 (7) | −0.0003 (7) |
O6 | 0.0231 (8) | 0.0236 (11) | 0.0198 (8) | 0.0098 (7) | 0.0079 (6) | 0.0081 (7) |
O7 | 0.0314 (9) | 0.0198 (11) | 0.0204 (8) | 0.0039 (7) | −0.0073 (7) | 0.0006 (7) |
O8 | 0.0191 (8) | 0.0252 (11) | 0.0234 (8) | 0.0077 (7) | 0.0059 (6) | 0.0103 (8) |
C16 | 0.0140 (10) | 0.0149 (14) | 0.0133 (10) | 0.0022 (8) | −0.0002 (8) | 0.0026 (9) |
C17 | 0.0464 (15) | 0.0338 (18) | 0.0164 (12) | 0.0196 (13) | 0.0102 (11) | 0.0066 (11) |
C18 | 0.0141 (10) | 0.0203 (15) | 0.0165 (11) | 0.0023 (9) | 0.0021 (8) | −0.0028 (9) |
C19 | 0.0265 (12) | 0.0227 (17) | 0.0313 (14) | 0.0005 (10) | −0.0082 (11) | −0.0064 (11) |
C20 | 0.0174 (10) | 0.0140 (14) | 0.0131 (10) | 0.0011 (8) | −0.0002 (8) | −0.0030 (9) |
C21 | 0.0198 (11) | 0.0244 (16) | 0.0234 (12) | 0.0041 (9) | 0.0048 (9) | 0.0037 (10) |
O9 | 0.0560 (13) | 0.0284 (14) | 0.0405 (11) | 0.0107 (10) | 0.0252 (10) | 0.0108 (10) |
C22 | 0.0507 (18) | 0.033 (2) | 0.053 (2) | 0.0066 (14) | 0.0113 (15) | 0.0083 (16) |
Cu1—N1 | 2.037 (2) | C11—C12 | 1.370 (4) |
Cu1—N3 | 1.9457 (18) | C11—H11 | 0.9500 |
Cu1—N4 | 1.998 (2) | C12—C13 | 1.397 (4) |
Cu1—O2 | 2.3541 (16) | C12—H12 | 0.9500 |
Cu1—O3 | 1.9401 (15) | C13—H13 | 0.9500 |
O2—C15 | 1.420 (3) | Cu2—Cu2i | 2.6202 (6) |
O2—H2O | 0.85 (3) | Cu2—O4 | 2.1255 (16) |
C15—H15C | 0.9800 | Cu2—O5 | 1.9703 (17) |
C15—H15B | 0.9800 | Cu2—O6 | 1.9793 (15) |
C15—H15A | 0.9800 | Cu2—O7 | 1.9692 (18) |
N1—C4 | 1.328 (3) | Cu2—O8 | 1.9671 (16) |
N1—C1 | 1.345 (3) | O3—C16 | 1.271 (3) |
N2—C3 | 1.334 (3) | O4—C16 | 1.238 (3) |
N2—C2 | 1.343 (3) | O5—C18 | 1.264 (3) |
N3—C5 | 1.331 (3) | O6—C20 | 1.258 (3) |
N3—C6 | 1.388 (3) | O7—C18i | 1.256 (3) |
N4—C13 | 1.332 (3) | O8—C20i | 1.267 (3) |
N4—C14 | 1.375 (3) | C16—C17 | 1.510 (3) |
O1—C5 | 1.249 (3) | C17—H17A | 0.9800 |
C1—C2 | 1.386 (3) | C17—H17B | 0.9800 |
C1—C5 | 1.506 (3) | C17—H17C | 0.9800 |
C2—H2 | 0.9500 | C18—C19 | 1.513 (3) |
C3—C4 | 1.391 (3) | C19—H19A | 0.9800 |
C3—H3 | 0.9500 | C19—H19B | 0.9800 |
C4—H4 | 0.9500 | C19—H19C | 0.9800 |
C6—C7 | 1.380 (3) | C20—C21 | 1.501 (3) |
C6—C14 | 1.436 (3) | C21—H21C | 0.9800 |
C7—C8 | 1.407 (4) | C21—H21B | 0.9800 |
C7—H7 | 0.9500 | C21—H21A | 0.9800 |
C8—C9 | 1.375 (4) | O9—C22 | 1.396 (4) |
C8—H8 | 0.9500 | O9—H9O | 0.8400 |
C9—C10 | 1.422 (3) | C22—H22A | 0.9800 |
C9—H9 | 0.9500 | C22—H22B | 0.9800 |
C10—C14 | 1.406 (3) | C22—H22C | 0.9800 |
C10—C11 | 1.418 (3) | ||
O3—Cu1—N3 | 172.66 (8) | C11—C12—H12 | 120.3 |
O3—Cu1—N4 | 105.05 (7) | C13—C12—H12 | 120.3 |
N3—Cu1—N4 | 82.29 (8) | N4—C13—C12 | 123.0 (2) |
O3—Cu1—N1 | 91.72 (7) | N4—C13—H13 | 118.5 |
N3—Cu1—N1 | 80.94 (8) | C12—C13—H13 | 118.5 |
N4—Cu1—N1 | 162.67 (8) | N4—C14—C10 | 122.1 (2) |
O3—Cu1—O2 | 88.87 (6) | N4—C14—C6 | 116.8 (2) |
N3—Cu1—O2 | 91.42 (7) | C10—C14—C6 | 121.1 (2) |
N4—Cu1—O2 | 90.51 (7) | O8—Cu2—O7 | 88.94 (8) |
N1—Cu1—O2 | 94.20 (7) | O8—Cu2—O5 | 89.35 (7) |
C15—O2—Cu1 | 121.65 (14) | O7—Cu2—O5 | 169.04 (7) |
C15—O2—H2O | 109.0 (19) | O8—Cu2—O6 | 168.74 (7) |
Cu1—O2—H2O | 105.5 (18) | O7—Cu2—O6 | 91.16 (7) |
O2—C15—H15C | 109.5 | O5—Cu2—O6 | 88.42 (7) |
O2—C15—H15B | 109.5 | O8—Cu2—O4 | 102.95 (6) |
H15C—C15—H15B | 109.5 | O7—Cu2—O4 | 92.05 (7) |
O2—C15—H15A | 109.5 | O5—Cu2—O4 | 98.88 (7) |
H15C—C15—H15A | 109.5 | O6—Cu2—O4 | 88.31 (6) |
H15B—C15—H15A | 109.5 | O8—Cu2—Cu2i | 86.81 (5) |
C4—N1—C1 | 118.3 (2) | O7—Cu2—Cu2i | 82.29 (5) |
C4—N1—Cu1 | 129.20 (16) | O5—Cu2—Cu2i | 86.81 (5) |
C1—N1—Cu1 | 112.44 (15) | O6—Cu2—Cu2i | 82.04 (5) |
C3—N2—C2 | 116.5 (2) | O4—Cu2—Cu2i | 168.68 (5) |
C5—N3—C6 | 125.59 (19) | C16—O3—Cu1 | 124.70 (15) |
C5—N3—Cu1 | 118.94 (16) | C16—O4—Cu2 | 135.91 (14) |
C6—N3—Cu1 | 115.44 (14) | C18—O5—Cu2 | 119.47 (16) |
C13—N4—C14 | 118.3 (2) | C20—O6—Cu2 | 125.71 (15) |
C13—N4—Cu1 | 129.49 (17) | C18i—O7—Cu2 | 125.03 (15) |
C14—N4—Cu1 | 112.08 (15) | C20i—O8—Cu2 | 120.48 (15) |
N1—C1—C2 | 120.3 (2) | O4—C16—O3 | 123.9 (2) |
N1—C1—C5 | 116.22 (19) | O4—C16—C17 | 120.1 (2) |
C2—C1—C5 | 123.5 (2) | O3—C16—C17 | 116.0 (2) |
N2—C2—C1 | 122.1 (2) | C16—C17—H17A | 109.5 |
N2—C2—H2 | 118.9 | C16—C17—H17B | 109.5 |
C1—C2—H2 | 118.9 | H17A—C17—H17B | 109.5 |
N2—C3—C4 | 122.2 (2) | C16—C17—H17C | 109.5 |
N2—C3—H3 | 118.9 | H17A—C17—H17C | 109.5 |
C4—C3—H3 | 118.9 | H17B—C17—H17C | 109.5 |
N1—C4—C3 | 120.7 (2) | O7i—C18—O5 | 126.2 (2) |
N1—C4—H4 | 119.6 | O7i—C18—C19 | 116.8 (2) |
C3—C4—H4 | 119.6 | O5—C18—C19 | 117.0 (2) |
O1—C5—N3 | 128.5 (2) | C18—C19—H19A | 109.5 |
O1—C5—C1 | 120.2 (2) | C18—C19—H19B | 109.5 |
N3—C5—C1 | 111.34 (18) | H19A—C19—H19B | 109.5 |
C7—C6—N3 | 128.8 (2) | C18—C19—H19C | 109.5 |
C7—C6—C14 | 118.3 (2) | H19A—C19—H19C | 109.5 |
N3—C6—C14 | 112.89 (19) | H19B—C19—H19C | 109.5 |
C6—C7—C8 | 120.5 (2) | O6—C20—O8i | 124.8 (2) |
C6—C7—H7 | 119.8 | O6—C20—C21 | 118.0 (2) |
C8—C7—H7 | 119.8 | O8i—C20—C21 | 117.2 (2) |
C9—C8—C7 | 121.8 (2) | C20—C21—H21C | 109.5 |
C9—C8—H8 | 119.1 | C20—C21—H21B | 109.5 |
C7—C8—H8 | 119.1 | H21C—C21—H21B | 109.5 |
C8—C9—C10 | 119.6 (2) | C20—C21—H21A | 109.5 |
C8—C9—H9 | 120.2 | H21C—C21—H21A | 109.5 |
C10—C9—H9 | 120.2 | H21B—C21—H21A | 109.5 |
C14—C10—C11 | 117.6 (2) | C22—O9—H9O | 109.5 |
C14—C10—C9 | 118.7 (2) | O9—C22—H22A | 109.5 |
C11—C10—C9 | 123.6 (2) | O9—C22—H22B | 109.5 |
C12—C11—C10 | 119.5 (2) | H22A—C22—H22B | 109.5 |
C12—C11—H11 | 120.3 | O9—C22—H22C | 109.5 |
C10—C11—H11 | 120.3 | H22A—C22—H22C | 109.5 |
C11—C12—C13 | 119.4 (2) | H22B—C22—H22C | 109.5 |
C4—N1—C1—C2 | 1.0 (3) | C8—C9—C10—C11 | −179.5 (2) |
Cu1—N1—C1—C2 | −175.58 (16) | C14—C10—C11—C12 | −1.5 (3) |
C4—N1—C1—C5 | −179.55 (19) | C9—C10—C11—C12 | 178.1 (2) |
Cu1—N1—C1—C5 | 3.9 (2) | C10—C11—C12—C13 | 0.3 (4) |
C3—N2—C2—C1 | −1.6 (3) | C14—N4—C13—C12 | −2.0 (3) |
N1—C1—C2—N2 | 0.5 (3) | Cu1—N4—C13—C12 | 173.02 (17) |
C5—C1—C2—N2 | −178.9 (2) | C11—C12—C13—N4 | 1.5 (4) |
C2—N2—C3—C4 | 1.3 (3) | C13—N4—C14—C10 | 0.7 (3) |
C1—N1—C4—C3 | −1.4 (3) | Cu1—N4—C14—C10 | −175.18 (16) |
Cu1—N1—C4—C3 | 174.59 (16) | C13—N4—C14—C6 | −178.42 (19) |
N2—C3—C4—N1 | 0.2 (4) | Cu1—N4—C14—C6 | 5.8 (2) |
C6—N3—C5—O1 | −0.8 (4) | C11—C10—C14—N4 | 1.0 (3) |
Cu1—N3—C5—O1 | −178.55 (18) | C9—C10—C14—N4 | −178.6 (2) |
C6—N3—C5—C1 | 179.67 (18) | C11—C10—C14—C6 | −179.94 (19) |
Cu1—N3—C5—C1 | 1.9 (2) | C9—C10—C14—C6 | 0.4 (3) |
N1—C1—C5—O1 | 176.57 (19) | C7—C6—C14—N4 | 178.15 (19) |
C2—C1—C5—O1 | −4.0 (3) | N3—C6—C14—N4 | −0.7 (3) |
N1—C1—C5—N3 | −3.8 (3) | C7—C6—C14—C10 | −0.9 (3) |
C2—C1—C5—N3 | 175.59 (19) | N3—C6—C14—C10 | −179.77 (18) |
C5—N3—C6—C7 | −1.5 (4) | Cu2—O4—C16—O3 | 176.52 (15) |
Cu1—N3—C6—C7 | 176.32 (18) | Cu2—O4—C16—C17 | −2.7 (3) |
C5—N3—C6—C14 | 177.16 (19) | Cu1—O3—C16—O4 | −9.5 (3) |
Cu1—N3—C6—C14 | −5.0 (2) | Cu1—O3—C16—C17 | 169.72 (17) |
N3—C6—C7—C8 | 179.5 (2) | Cu2—O5—C18—O7i | −6.0 (3) |
C14—C6—C7—C8 | 0.8 (3) | Cu2—O5—C18—C19 | 173.09 (16) |
C6—C7—C8—C9 | −0.3 (4) | Cu2—O6—C20—O8i | 2.5 (3) |
C7—C8—C9—C10 | −0.2 (4) | Cu2—O6—C20—C21 | −179.18 (15) |
C8—C9—C10—C14 | 0.1 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O1ii | 0.86 (3) | 1.84 (3) | 2.689 (3) | 178 (3) |
O9—H9O···O4 | 0.84 | 2.33 | 2.955 (3) | 132 |
O9—H9O···O6 | 0.84 | 2.30 | 3.000 (3) | 141 |
C3—H3···O8iii | 0.95 | 2.56 | 3.508 (3) | 174 |
C7—H7···O1 | 0.95 | 2.36 | 2.943 (3) | 119 |
C9—H9···O9iv | 0.95 | 2.57 | 3.415 (3) | 149 |
C13—H13···O4 | 0.95 | 2.54 | 3.175 (3) | 124 |
C21—H21C···O8v | 0.98 | 2.59 | 3.563 (3) | 170 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z; (v) x+1, y, z. |
Cg1, Cg5 and Cg9 are the centroids of the pyrazine rings (N1/N2/C1–C4) in molecule A, (N22/N23/C21–C24) in molecule B and (N31/N32/C41–C44) in molecule C, respectively. Cg4, Cg8 and Cg12 are the centroids of the quinoline ring systems (N4/C6–C14)in molecule A, (N24/C26–C34) in molecule B and (N34/C46–C54) in molecule C, respectively. |
Ringpz | ringquin | centroid–centroid | α | β | γ | interplanar_1 | interplanar_2 | offset |
Cg1 | Cg8i | 3.589 (5) | 2.9 (4) | 9.2 | 8.2 | 3.552 (4) | 3.543 (4) | 0.572 |
Cg1 | Cg12i | 3.493 (5) | 4.1 (4) | 12.2 | 8.6 | 3.453 (4) | 3.414 (3) | 0.737 |
Cg5 | Cg4ii | 3.367 (5) | 3.8 (4) | 4.7 | 2.3 | 3.364 (4) | 3.355 (4) | 0.275 |
Cg5 | Cg12iii | 3.492 (5) | 4.1 (4) | 2.7 | 6.7 | 3.468 (4) | 3.488 (3) | 0.163 |
Cg9 | Cg4iv | 3.455 (6) | 4.2 (4) | 11.0 | 8.0 | 3.420 (4) | 3.390 (4) | 0.662 |
Cg9 | Cg8v | 3.532 (6) | 2.9 (4) | 3.4 | 5.7 | 3.515 (4) | 3.526 (4) | 0.211 |
Symmetry codes: (i) x, y + 1, z - 1/2; (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) x - 1/2, y - 1/2, z; (iv) x, -y + 1, z + 1/2; (v) x + 1/2, y + 1/2, z. |
Contact | HL1 | Molecule A | Molecule B | Molecule C |
H···H | 43.0 | 44.5 | 41.7 | 43.0 |
N···H/H···N | 14.5 | 13.5 | 14.6 | 14.3 |
C···H/H···C | 11.8 | 10.5 | 11.7 | 11.1 |
O···H/H···O | 8.1 | 9.2 | 10.2 | 9.4 |
C···C | 10.8 | 10.6 | 10.6 | 10.5 |
C···N | 10.7 | 10.5 | 10.1 | 10.7 |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834–4838. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993. Web of Science CSD CrossRef Google Scholar
Huang, G. & Liu, X. (2016). Acta Cryst. E72, 597–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, J. I., Yoo, H. S., Koh, E. K. & Hong, C. S. (2007). Inorg. Chem. 46, 10461–10463. Web of Science CSD CrossRef PubMed CAS Google Scholar
Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645. Google Scholar
Koman, M., Valigura, D., Ďurčanská, E. & Ondrejovič, G. (1984). J. Chem. Soc. Chem. Commun. pp. 381–383. CrossRef Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Meghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330–4343. Web of Science CSD CrossRef CAS Google Scholar
Neels, A., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1995). Inorg. Chem. 34, 1946–1949. CSD CrossRef CAS Web of Science Google Scholar
Ni, Z.-H., Kou, H.-Z., Zhang, L.-F., Ni, W.-W., Jiang, Y.-B., Cui, A.-L., Ribas, J. & Sato, O. (2005). Inorg. Chem. 44, 9631–9633. Web of Science CSD CrossRef PubMed CAS Google Scholar
Posel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682. Google Scholar
Schilf, W. (2004). J. Mol. Struct. 691, 141–148. Web of Science CSD CrossRef CAS Google Scholar
Senapati, T., Pichon, C., Ababei, R., Mathonière, C. & Clérac, R. (2012). Inorg. Chem. 51, 3796–3812. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1997). STADI4. Stoe & Cie GmbH, Damstadt, Germany. Google Scholar
Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Valigura, D., Koman, M., Ďurčanská, E., Ondrejovič, G. & Mroziński, J. (1986). J. Chem. Soc. Dalton Trans. pp. 2339–2344. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109–110. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhou, H., Wang, Y., Mou, F., Shen, X. & Liu, Y. (2014). New J. Chem. 38, 5925–5934. Web of Science CSD CrossRef CAS Google Scholar
Zhang, J.-Y., Ke, X.-K, Tu, C., Lin, J., Ding, J., Lin, L., Fun, H.-K., You X.-Z. & Guo. Z.-J. (2013). BioMetals, 16, 485–96. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.