research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the synthetic inter­mediate 3-[(6-chloro-7H-purin-7-yl)meth­yl]cyclo­butan-1-one, and of two oxetanocin derivatives: 3-[(6-chloro-8,9-di­hydro-7H-purin-7-yl)meth­yl]cyclo­butan-1-ol and 3-[(6-chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-ol

aDepartment of Chemistry, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
*Correspondence e-mail: audette@yorku.ca

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 10 September 2018; accepted 1 April 2019; online 3 May 2019)

The crystal structures of an inter­mediate, C10H9ClN4O, 3-[(6-chloro-7H-purin-7-yl)meth­yl]cyclo­butan-1-one (I), and two N-7 and N-9 regioisomeric oxetanocin nucleoside analogs, C10H13ClN4O, 3-[(6-chloro-8,9-di­hydro-7H-purin-7-yl)meth­yl]cyclo­butan-1-ol (II) and C10H11ClN4O, 3-[(6-chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-ol (IV), are reported. The crystal structures of the nucleoside analogs confirmed the reduction of the N-7- and N-9-substituted cyclo­butano­nes with LiAl(OtBu)3 to occur with facial selectivity, yielding cis-nucleosides analogs similar to those found in nature. Reduction of the purine ring of the N-7 cyclo­butanone to a di­hydro­purine was observed for compound (II) but not for the purine ring of the N-9 cyclo­butanone on formation of compound (IV). In the crystal of (I), mol­ecules are linked by a weak Cl⋯O inter­action, forming a 21 helix along [010]. The helices are linked by offset ππ inter­actions [inter­centroid distance = 3.498 (1) Å], forming layers parallel to (101). In the crystal of (II), mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by O—H⋯N hydrogen bonds, forming chains along [001], which in turn are linked by C—H⋯π and offset ππ inter­actions [inter­centroid distance = 3.509 (1) Å], forming slabs parallel to the ac plane. In the crystal of (IV), mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains along [101]. The chains are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π and offset ππ inter­actions [inter­centroid distance = 3.364 (1) Å], forming a supra­molecular framework.

1. Chemical context

Derivatives of naturally occurring nucleotides are an emerging class of anti­viral therapeutics that are used to target tumors, herpes virus and the human immunodeficiency virus (HIV) (De Clercq, 2005[De Clercq, E. (2005). Expert Opin. Emerg. Drugs, 10, 241-273.]). The development of new and different nucleoside analogs is important in combating drug-resistant mutants and increasing therapeutic effectivity. The naturally occurring oxetanocin A, a nucleoside analog, demonstrated efficacy against herpes and HIV (Hoshino et al., 1987[Hoshino, H., Shimizu, N., Shimada, N., Takita, T. & Takeuchi, T. (1987). J. Antibiot. 40, 1077-1078.]). Further exploration of oxetanocin A derivatives such as cyclo­but-A and cyclo­but-B (Lobucavir) represented an increase in potency and metabolic stability (Hoshino et al., 1987[Hoshino, H., Shimizu, N., Shimada, N., Takita, T. & Takeuchi, T. (1987). J. Antibiot. 40, 1077-1078.]; Bisacchi et al., 1991[Bisacchi, G. S., Braitman, A., Cianci, C. W., Clark, J. M., Field, A. K., Hagen, M. E., Hockstein, D. R., Malley, M. F., Mitt, T., Slusarchyk, W. A., et al. (1991). J. Med. Chem. 34, 1415-1421.]). The current study focuses on the structural characterization of two nucleoside analogs, (II)[link] and (IV)[link], as well as the purinyl-cyclo­butanone inter­mediate (I)[link], prior to reduction.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)[link], (II)[link] and (IV)[link] are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. In compounds (I)[link] and (II)[link] there is a short intra­molecular C—H⋯Cl inter­action present (Tables 1[link] and 2[link], respectively).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6′—H6′B⋯Cl1 0.99 2.66 3.407 (2) 132

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the N1/C2/N3/C4/C5/C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6′—H6′2⋯Cl1 0.99 2.64 3.390 (3) 132
N9—H9⋯N3i 0.83 (2) 2.14 (2) 2.952 (2) 166 (2)
O1′—H1′⋯N1ii 0.84 (3) 2.09 (3) 2.909 (2) 164 (3)
C4′—H4′⋯Cg1iii 0.99 2.87 3.857 (3) 170
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯Cl inter­action (Table 1[link]) is shown as a thin dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯Cl inter­action (Table 2[link]) is shown as a thin dashed line. The minor fraction of the disordered atoms C4′ and C6′, i.e. C4′B and 6′B, are shown with dashed bonds.
[Figure 3]
Figure 3
The mol­ecular structure of compound (IV)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In compound (I)[link] the purine ring is attached to the cyclo­butanone unit through atom N7, rendering the attachment cis to the chlorine atom bound to the aromatic ring at the C6 position. The mean plane of the cyclo­butane ring (A = C2′–C5′) is inclined to the mean plane of the purine ring system (B = N1/N37N7/N9/C2/C4/C5/C6/C8) by 52.62 (11)°, while the torsion angle N7—C5′—C4′⋯C2′ is ca 125.4°.

Reduction of compound (I)[link] with lithium tri-tert-but­oxy­aluminum hydride lead to the formation of the oxetanocin derivative compound (II)[link]. Here the the mean plane of the cyclo­butanol ring (A) is inclined to the mean plane of the purine ring system (B) by 26.37 (15)°, while the torsion angle N7—C5′—C4′⋯C2′ is ca 120.0°. Atoms C6′ and C4′ are positionally disordered and were split giving a refined occupancy ratio for C6′:C6′B and C4′:C4′B of 0.858 (4):0.142 (4) (Fig. 2[link]).

In compound (IV)[link], the cyclo­butanol ring is attached to atom N9 of the purine ring (Fig. 3[link]). As a result of the trans positioning of the cyclo­butanol unit, there are no intra­molecular hydrogen bonds between the chlorine atom and the cyclo­butanol or methyl­ene connector as observed in compounds (I)[link] and (II)[link]. Here, the mean plane of the cyclo­butanol ring (A) is inclined to the mean plane of the purine ring system (B) by 71.20 (13)°, and the torsion angle N7—C5′—C4′⋯C2′ is ca 144.8°.

Reduction of the purine ring of the N-7 cyclo­butanone to a di­hydro­purine was observed for compound (II)[link] but not for the purine ring of the N-9 cyclo­butanone on formation of compound (IV)[link]. This is confirmed by the values of the bond lengths and bond angles involving atom C8; see Table 3[link]. Similar over-reductions of purine derivatives can be found in the literature, where electron-deficient purines are dearomatized by NaBH4 to a di­hydro­purine (Aarhus et al., 2014[Aarhus, T. I., Fritze, U. F., Hennum, M. & Gundersen, L. L. (2014). Tetrahedron Lett. 55, 5748-5750.]). We speculate the reason for over-reduction of the N-7 ketone may be due to the strain associated with the system. N-7 alkyl­ation forces the chlorine of the purine ring to be oriented towards the cyclo­butanone ring, which increases the strain energy of the system. This strain energy is released when the rigid aromatic structure of the purine is reduced to a more flexible di­hydro­purine (sp2 C8 to sp3 C8). This strained orientation is not observed for the N-9 ketone, hence the integrity of its purine ring is preserved.

Table 3
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg1 is the centroid of the N1/C2/N3/C4/C5/C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1′—H1′⋯N7i 0.84 2.03 2.853 (3) 168
C8—H8⋯O1′ii 0.95 2.27 3.148 (2) 153
C2—H2⋯N3iii 0.95 2.48 3.311 (3) 146
C2′—H2′⋯Cg1iv 0.99 2.84 3.628 (2) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by a weak Cl⋯O inter­action [Cl1⋯O1′(−x + 1, y − [{1\over 2}], −z + [{3\over 2}]) = 3.180 (2) Å], forming a 21 helix along [010], see Fig. 4[link]. The helices are linked by offset π-π- inter­actions, forming layers parallel to (101): CgBCgBi = 3.498 (1) Å, CgB is the centroid of the purine ring system, α = 0.00 (5) Å, β = 21.6°, inter­planar distance = 3.252 (1) Å, offset = 1.289 Å, symmetry code (i) −x + 2, −y + 1, −z + 1.

[Figure 4]
Figure 4
Crystal packing of compound (I)[link], viewed normal to (101). The weak inter­molecular Cl⋯O inter­actions are shown as dashed lines. For clarity, the C-bound H atoms have been omitted.

In the crystal of (II)[link], mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Table 2[link] and Fig. 5[link]). The dimers are linked by O—H⋯N hydrogen bonds, forming ribbons along [001], which in turn are linked by C—H⋯π (Table 2[link]) and offset ππ inter­actions, forming slabs parallel to the ac plane. [Details of the offset ππ inter­actions: CgBCgBv = 3.498 (1) Å, CgB is the centroid of the purine ring system, α = 0.00 (5) Å, β = 21.6°, inter­planar distance = 3.252 (1) Å, offset = 1.289 Å, symmetry code (v) −x + 2, −y + 1, −z + 1.]

[Figure 5]
Figure 5
Crystal packing of compound (II)[link], viewed along the b axis. The N—H⋯N and O—H⋯N hydrogen bonds (Table 2[link]) are shown as dashed lines. For clarity, the C-bound H atoms have been omitted. The minor components of the disordered atoms C4′ and C6′ (i.e. C4′B and 6′B) have been omitted.

In the crystal of (IV)[link], mol­ecules are linked by O—H⋯N hydrogen bonds (Table 3[link]), forming chains along direction [101]. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π (Table 4[link]) and offset ππ inter­actions, forming a supra­molecular framework (see Fig. 6[link]). [Details of the offset ππ inter­actions: CgBCgBvi = 3.534 (1) Å, CgB is the centroid of the purine ring system, α = 0.02 (10) Å, β = 17.8°, inter­planar distance = 3.364 (1) Å, offset = 1.08 Å, symmetry code (vi) −x + 1, −y + 1, −z. ]

Table 4
Geometric parameters (Å, °) about atom C8 for compounds (I)[link], (II)[link] and (IV)

Bond/angle (I) (II) (IV)
C8—N7 1.381 (2) 1.471 (3) 1.362 (3)
C8—N9 1.301 (2) 1.455 (3) 1.321 (3)
N7—C8—N9 114.95 (15) 103.41 (15) 114.28 (18)
[Figure 6]
Figure 6
Crystal packing of compound (IV)[link], viewed along the b axis. The various hydrogen bonds (Table 3[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found two related structure, viz. 6-chloro-9-(3-hy­droxy­methyl-3-hy­droxy­cyclo­but­yl)purine (CSD refcode SOGROV; Boumchita et al., 1991[Legraverend, M., Boumchita, H., Guilhem, J. & Bisagni, E. (1991). Heterocycles, 32, 867-871.])) and cis-1-bromo­methyl-3-(6-chloro-9H-purin-yl)cyclo­butanol (ZUMHAQ; Gharbaoui et al., 1995[Gharbaoui, T., Legraverend, M., Ludwig, O., Bisagni, E., Aubertin, A.-M. & Chertanova, L. (1995). Tetrahedron, 51, 1641-1652.]). The coordinates are not available for either structure.

5. Synthesis and crystallization

Synthesis of compounds (I)[link] and (III): Potassium carbonate (12.0 mmol) was added to a solution of (3-oxo­cyclo­but­yl)methyl benzoate (10.0 mmol) in methanol (20 ml) and stirred for 1 h at room temperature. Saturated sodium bicarbonate (10.0 ml) was added and stirring continued for an additional 15 min. The solvent was evaporated under vacuum, followed by purification by flash column chromatography with ethyl acetate, resulting in 3-(hy­droxy­meth­yl)cyclo­butan-1-one in 70% yield.

3-(Hy­droxy­meth­yl)cyclo­butan-1-one (1 mmol) was dissolved in 10 ml of dry di­chloro­methane and cooled to 195 K. Hunig's base (3.2 mmol) was added, followed by tri­fluoro­methane­sulfonic anhydride (1 mmol) and the mixture was stirred for 10 min, cooled to 273 K and stirred to obtain the qualitative conversion to (3-oxo­cyclo­but­yl)methyl tri­fluoro­methane­sulfonate.

The (3-oxo­cyclo­but­yl)methyl tri­fluoro­methane­sulfonate (5.61 mmol) was added to a mixture containing 6-chloro-7H-purine (5.61 mmol), potassium hydroxide (5.61 mmol), tris­[2-(2-meth­oxy­eth­oxy)eth­yl]amine (0.28 mmol), magnesium sulfate (2 g) and anhydrous aceto­nitrile (100 ml), which was then heated to 333 K for 5 h and cooled to room temperature. The product was purified using 5% methanol and 5% tri­methyl­amine in chloro­form, which yielded two UV-active compounds.

The two UV-active compounds were separated using flash column chromatography with ethyl acetate, giving 51% of the N-9 alkyl­ated derivative; 3-[(6-chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-one (III) and 37% of the N-7 alkyl­ated deriv­ative 3-[(6-chloro-7H-purin-7-yl)meth­yl]cyclo­butan-1-one (I)[link].

Synthesis of 3-[(6-chloro-8,9-di­hydro-7H-purin-7-yl)meth­yl]cyclo­butan-1-ol (II)[link]: 3-[(6-Chloro-7H-purin-7-yl)meth­yl]cyclo­butan-1-one (I)[link] (0.21 mmol) in di­chloro­methane (10 ml) was cooled to 195 K and lithium tri-tert-but­oxy­aluminum hydride was added. The mixture was cooled to room temperature and sodium borohydride (0.32 mmol) was added and the resulting mixture allowed to stir overnight. Methanol (2 ml) was added and the mixture allowed to stir overnight to convert the over-reduced 3-[(6-chloro-7H-purin-7-yl]meth­yl)cyclo­butanone(I) to 3-[(6-chloro-8,9-di­hydro-7H-purin-7-yl)meth­yl]cyclo­butan-1-ol (II)[link].

Synthesis of cis-3-[(6-chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-ol (IV)[link]: 3-[(6-Chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-one (III) (0.21 mmol) was added to diethyl ether and cooled to 195 K and lithium tri-tert-but­oxy­aluminum hydride (0.32 mmol) was added. The reaction was allowed to warm to room temperature and left to stir overnight, which provided qu­anti­tative conversion to cis-3-[(6-chloro-9H-purin-9-yl)meth­yl]cyclo­butan-1-ol (IV)[link]. Crystallization was achieved through evaporation over three days with tetra­hydro­furan as the solvent.

Pale-yellow plate-like crystals of (I)[link], suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in di­chloro­methane and heptane. Colourless plate-like crystals of (II)[link], were obtained by slow evaporation of a solution in methanol, di­chloro­methane and diethyl ether (1:1:1, 9 ml). Colorless plate-like crystals of (IV)[link], were obtained by slow evaporation of a solution in methanol (3 ml) .

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For all three compounds, C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). For compound (II)[link], the OH and NH H atoms were located in a difference-Fourier map. While the OH H atom was freely refined the NH H atom was refined with a distance restraint: N—H = 0.86 (2) Å. For compound (IV)[link], the OH H atom was located in a difference-Fourier map and freely refined. In compound (II)[link], atoms C6′ and C4′ are positionally disordered and were split giving a refined occupancy ratio for C6′:C6′B and C4′:C4′B of 0.858 (4):0.142 (4). For the final refinement of compound (II)[link] three most disagreeable reflections (3[\overline{7}]1, 3[\overline{7}]2, [\overline{3}]70) were omitted, and for the final refinement of compound (IV)[link] four most disagreeable reflections ([\overline{8}]58, [\overline{1}]66, [\overline{7}]57, [\overline{2}]67) were omitted.

Table 5
Experimental details

  (I) (II) (IV)
Crystal data
Chemical formula C10H9ClN4O C10H13ClN4O C10H11ClN4O
Mr 236.66 240.69 238.68
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 110 110 110
a, b, c (Å) 11.9736 (5), 6.8854 (4), 12.2746 (5) 6.1101 (4), 8.6075 (5), 11.0083 (7) 12.7276 (8), 5.9725 (4), 14.819 (1)
α, β, γ (°) 90, 92.938 (4), 90 68.957 (6), 83.799 (5), 87.189 (5) 90, 108.250 (3), 90
V3) 1010.63 (8) 537.15 (6) 1069.81 (12)
Z 4 2 4
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 0.36 3.03 3.04
Crystal size (mm) 0.43 × 0.21 × 0.04 0.44 × 0.30 × 0.12 0.50 × 0.21 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker–Nonius Kappa CCD Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Numerical (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.661, 1.000 0.771, 1.000 0.043, 0.741
No. of measured, independent and observed [I > 2σ(I)] reflections 35539, 2508, 2217 9261, 1793, 1681 7078, 1732, 1569
Rint 0.046 0.028 0.045
(sin θ/λ)max−1) 0.667 0.592 0.587
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.07 0.037, 0.098, 1.07 0.038, 0.103, 0.94
No. of reflections 2508 1793 1732
No. of parameters 145 160 146
No. of restraints 0 1 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.28 0.71, −0.27 0.35, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-[(6-Chloro-7H-purin-7-yl)methyl]cyclobutan-1-one (I) top
Crystal data top
C10H9ClN4OF(000) = 488
Mr = 236.66Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9736 (5) ÅCell parameters from 9903 reflections
b = 6.8854 (4) Åθ = 3.3–32.6°
c = 12.2746 (5) ŵ = 0.36 mm1
β = 92.938 (4)°T = 110 K
V = 1010.63 (8) Å3Plate, pale_yellow
Z = 40.43 × 0.21 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2508 independent reflections
Radiation source: sealed X-ray tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1515
Tmin = 0.661, Tmax = 1.000k = 99
35539 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.9477P]
where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.70136 (4)0.21385 (7)0.52904 (4)0.02685 (14)
N10.81306 (13)0.2530 (2)0.35301 (12)0.0230 (3)
N30.93051 (12)0.5196 (2)0.30500 (11)0.0219 (3)
N70.84068 (11)0.6388 (2)0.56456 (11)0.0183 (3)
N90.95030 (12)0.7744 (2)0.44062 (12)0.0216 (3)
O1'0.43878 (13)0.6449 (3)0.76126 (16)0.0503 (5)
C2'0.53242 (16)0.6753 (3)0.73657 (17)0.0303 (4)
C3'0.64220 (16)0.7042 (3)0.80129 (15)0.0297 (4)
H3'A0.6705980.5857400.8390750.036*
H3'B0.6424610.8164810.8516950.036*
C4'0.69801 (14)0.7464 (3)0.69174 (14)0.0215 (4)
H4'0.7203280.8858050.6855330.026*
C5'0.58520 (15)0.7032 (3)0.62724 (16)0.0297 (4)
H5'A0.5547630.8148700.5844830.036*
H5'B0.5862950.5841320.5820800.036*
C6'0.79428 (14)0.6106 (3)0.67259 (12)0.0198 (3)
H6'A0.8541600.6321560.7299570.024*
H6'B0.7682620.4747990.6787460.024*
C20.88240 (14)0.3491 (3)0.28787 (13)0.0230 (4)
H20.8983770.2859130.2216490.028*
C40.90857 (13)0.6006 (3)0.40103 (13)0.0183 (3)
C50.83895 (13)0.5123 (2)0.47653 (12)0.0176 (3)
C60.79181 (14)0.3358 (3)0.44645 (13)0.0198 (3)
C80.90917 (14)0.7900 (3)0.53629 (14)0.0205 (3)
H80.9250730.8973560.5831670.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0305 (2)0.0264 (2)0.0241 (2)0.00833 (17)0.00535 (16)0.00170 (17)
N10.0231 (7)0.0246 (8)0.0213 (7)0.0002 (6)0.0002 (6)0.0029 (6)
N30.0215 (7)0.0272 (8)0.0173 (7)0.0026 (6)0.0046 (5)0.0014 (6)
N70.0202 (7)0.0202 (7)0.0146 (6)0.0007 (5)0.0030 (5)0.0009 (5)
N90.0213 (7)0.0210 (7)0.0229 (7)0.0006 (6)0.0036 (5)0.0027 (6)
O1'0.0302 (8)0.0585 (12)0.0639 (11)0.0075 (8)0.0186 (8)0.0010 (9)
C2'0.0257 (9)0.0282 (10)0.0377 (10)0.0011 (7)0.0102 (8)0.0006 (8)
C3'0.0284 (9)0.0409 (12)0.0207 (8)0.0025 (8)0.0091 (7)0.0002 (8)
C4'0.0198 (8)0.0263 (9)0.0187 (8)0.0019 (6)0.0046 (6)0.0022 (6)
C5'0.0215 (8)0.0425 (12)0.0251 (9)0.0037 (8)0.0000 (7)0.0010 (8)
C6'0.0228 (8)0.0253 (9)0.0116 (7)0.0016 (7)0.0033 (6)0.0011 (6)
C20.0229 (8)0.0301 (9)0.0162 (7)0.0041 (7)0.0021 (6)0.0038 (7)
C40.0177 (7)0.0204 (8)0.0168 (7)0.0022 (6)0.0003 (6)0.0037 (6)
C50.0179 (7)0.0213 (8)0.0135 (7)0.0035 (6)0.0004 (6)0.0011 (6)
C60.0195 (7)0.0223 (8)0.0175 (7)0.0007 (6)0.0015 (6)0.0039 (6)
C80.0205 (7)0.0176 (8)0.0232 (8)0.0009 (6)0.0014 (6)0.0022 (6)
Geometric parameters (Å, º) top
Cl1—C61.7372 (17)C3'—H3'A0.9900
N1—C61.317 (2)C3'—H3'B0.9900
N1—C21.354 (2)C4'—C6'1.512 (2)
N3—C21.320 (2)C4'—C5'1.559 (2)
N3—C41.342 (2)C4'—H4'1.0000
N7—C81.381 (2)C5'—H5'A0.9900
N7—C51.387 (2)C5'—H5'B0.9900
N7—C6'1.4765 (19)C6'—H6'A0.9900
N9—C81.301 (2)C6'—H6'B0.9900
N9—C41.376 (2)C2—H20.9500
O1'—C2'1.195 (2)C4—C51.415 (2)
C2'—C3'1.514 (3)C5—C61.382 (2)
C2'—C5'1.524 (3)C8—H80.9500
C3'—C4'1.559 (2)
C6—N1—C2117.04 (16)C2'—C5'—H5'B114.0
C2—N3—C4113.96 (15)C4'—C5'—H5'B114.0
C8—N7—C5105.24 (13)H5'A—C5'—H5'B111.2
C8—N7—C6'125.49 (14)N7—C6'—C4'112.54 (14)
C5—N7—C6'128.74 (15)N7—C6'—H6'A109.1
C8—N9—C4104.09 (14)C4'—C6'—H6'A109.1
O1'—C2'—C3'133.7 (2)N7—C6'—H6'B109.1
O1'—C2'—C5'133.0 (2)C4'—C6'—H6'B109.1
C3'—C2'—C5'93.29 (14)H6'A—C6'—H6'B107.8
C2'—C3'—C4'88.33 (14)N3—C2—N1128.03 (16)
C2'—C3'—H3'A113.9N3—C2—H2116.0
C4'—C3'—H3'A113.9N1—C2—H2116.0
C2'—C3'—H3'B113.9N3—C4—N9126.01 (15)
C4'—C3'—H3'B113.9N3—C4—C5123.02 (16)
H3'A—C3'—H3'B111.1N9—C4—C5110.96 (14)
C6'—C4'—C5'116.77 (16)C6—C5—N7138.56 (15)
C6'—C4'—C3'112.49 (15)C6—C5—C4116.68 (15)
C5'—C4'—C3'90.22 (14)N7—C5—C4104.75 (14)
C6'—C4'—H4'111.9N1—C6—C5121.22 (16)
C5'—C4'—H4'111.9N1—C6—Cl1116.95 (14)
C3'—C4'—H4'111.9C5—C6—Cl1121.83 (13)
C2'—C5'—C4'87.96 (14)N9—C8—N7114.95 (15)
C2'—C5'—H5'A114.0N9—C8—H8122.5
C4'—C5'—H5'A114.0N7—C8—H8122.5
O1'—C2'—C3'—C4'175.7 (3)C8—N7—C5—C6179.2 (2)
C5'—C2'—C3'—C4'3.32 (16)C6'—N7—C5—C67.2 (3)
C2'—C3'—C4'—C6'122.53 (16)C8—N7—C5—C40.10 (17)
C2'—C3'—C4'—C5'3.24 (16)C6'—N7—C5—C4171.83 (15)
O1'—C2'—C5'—C4'175.7 (3)N3—C4—C5—C60.8 (2)
C3'—C2'—C5'—C4'3.32 (16)N9—C4—C5—C6179.83 (14)
C6'—C4'—C5'—C2'118.72 (16)N3—C4—C5—N7178.47 (15)
C3'—C4'—C5'—C2'3.22 (15)N9—C4—C5—N70.52 (18)
C8—N7—C6'—C4'76.0 (2)C2—N1—C6—C50.4 (2)
C5—N7—C6'—C4'113.61 (19)C2—N1—C6—Cl1179.16 (13)
C5'—C4'—C6'—N772.5 (2)N7—C5—C6—N1177.58 (18)
C3'—C4'—C6'—N7174.86 (15)C4—C5—C6—N11.4 (2)
C4—N3—C2—N12.1 (3)N7—C5—C6—Cl12.9 (3)
C6—N1—C2—N31.5 (3)C4—C5—C6—Cl1178.08 (12)
C2—N3—C4—N9178.09 (16)C4—N9—C8—N70.70 (19)
C2—N3—C4—C50.8 (2)C5—N7—C8—N90.4 (2)
C8—N9—C4—N3178.22 (16)C6'—N7—C8—N9172.66 (15)
C8—N9—C4—C50.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Cl10.992.663.407 (2)132
C4—H4···Cl1i1.002.973.7889 (19)140
C6—H6B···N1ii0.992.683.343 (2)124
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
3-[(6-Chloro-8,9-dihydro-7H-purin-7-yl)methyl]cyclobutan-1-ol (II) top
Crystal data top
C10H13ClN4OZ = 2
Mr = 240.69F(000) = 252
Triclinic, P1Dx = 1.488 Mg m3
a = 6.1101 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.6075 (5) ÅCell parameters from 8605 reflections
c = 11.0083 (7) Åθ = 4.3–65.4°
α = 68.957 (6)°µ = 3.03 mm1
β = 83.799 (5)°T = 110 K
γ = 87.189 (5)°Plate, colorless
V = 537.15 (6) Å30.44 × 0.30 × 0.12 mm
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
1793 independent reflections
Radiation source: sealed X-ray tube, Enhance (Cu) X-ray Source1681 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.028
ω scansθmax = 66.0°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 75
Tmin = 0.771, Tmax = 1.000k = 1010
9261 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
1793 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.71 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.16834 (8)0.41808 (6)0.40624 (5)0.02598 (19)
N10.4817 (3)0.2850 (2)0.28999 (16)0.0208 (4)
C20.6669 (3)0.2012 (3)0.28642 (19)0.0208 (4)
H20.7190700.1937950.2041610.025*
N30.7920 (3)0.1241 (2)0.38609 (16)0.0201 (4)
C40.7122 (3)0.1387 (2)0.49898 (19)0.0181 (4)
C50.5139 (3)0.2254 (2)0.51675 (19)0.0175 (4)
C60.4064 (3)0.2984 (2)0.40720 (19)0.0185 (4)
N70.4843 (3)0.2163 (2)0.64573 (16)0.0195 (4)
C80.6671 (3)0.1184 (3)0.71453 (19)0.0217 (4)
H8A0.7502750.1847680.7508300.026*
H8B0.6127780.0164170.7863890.026*
N90.8027 (3)0.0776 (2)0.61286 (16)0.0212 (4)
H90.916 (3)0.018 (3)0.627 (2)0.021 (6)*
O1'0.1576 (3)0.2578 (2)1.12373 (14)0.0278 (4)
H1'0.256 (5)0.284 (4)1.161 (3)0.045 (8)*
C2'0.2169 (4)0.3455 (3)0.9900 (2)0.0273 (5)
H2'0.2304290.4668330.9736320.033*
C3'0.4091 (4)0.2873 (3)0.9160 (2)0.0346 (6)
H3'10.4464030.1676410.9564020.041*
H3'20.5419330.3569320.8957490.041*
C5'0.0629 (4)0.3203 (3)0.8985 (2)0.0277 (5)
H5'10.0442860.4125240.8668790.033*
H5'20.0112590.2112150.9333260.033*
C4'0.2642 (4)0.3281 (3)0.7998 (2)0.0240 (6)0.858 (4)
H4'0.2886180.4458760.7395040.029*0.858 (4)
C6'0.2716 (4)0.2157 (3)0.7213 (2)0.0229 (6)0.858 (4)
H6'10.2391120.1005180.7815650.027*0.858 (4)
H6'20.1551810.2511060.6606800.027*0.858 (4)
C4'B0.246 (3)0.216 (2)0.8417 (15)0.0240 (6)0.142 (4)
H4'B0.2287330.0922430.8702060.029*0.142 (4)
C6'B0.332 (3)0.308 (2)0.7043 (15)0.0229 (6)0.142 (4)
H6'30.2062240.3450770.6508240.027*0.142 (4)
H6'40.4065210.4095220.7013600.027*0.142 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0222 (3)0.0321 (3)0.0240 (3)0.0101 (2)0.0049 (2)0.0110 (2)
N10.0227 (9)0.0239 (9)0.0162 (8)0.0000 (7)0.0018 (7)0.0078 (7)
C20.0227 (11)0.0255 (10)0.0158 (10)0.0004 (8)0.0012 (8)0.0104 (8)
N30.0198 (9)0.0244 (9)0.0173 (8)0.0013 (7)0.0010 (7)0.0100 (7)
C40.0171 (10)0.0192 (10)0.0186 (10)0.0008 (8)0.0003 (8)0.0080 (8)
C50.0181 (10)0.0193 (9)0.0166 (10)0.0025 (8)0.0006 (8)0.0087 (8)
C60.0168 (10)0.0204 (10)0.0192 (10)0.0014 (8)0.0004 (8)0.0087 (8)
N70.0173 (9)0.0277 (9)0.0155 (8)0.0057 (7)0.0014 (7)0.0109 (7)
C80.0212 (11)0.0293 (11)0.0176 (10)0.0059 (8)0.0036 (8)0.0121 (8)
N90.0181 (9)0.0294 (10)0.0181 (9)0.0094 (7)0.0038 (7)0.0114 (7)
O1'0.0275 (9)0.0394 (9)0.0177 (7)0.0028 (7)0.0043 (6)0.0115 (7)
C2'0.0286 (12)0.0371 (12)0.0179 (10)0.0017 (9)0.0008 (9)0.0119 (9)
C3'0.0257 (12)0.0522 (15)0.0340 (13)0.0000 (11)0.0030 (10)0.0253 (12)
C5'0.0250 (11)0.0400 (13)0.0215 (11)0.0119 (9)0.0052 (9)0.0157 (10)
C4'0.0258 (13)0.0263 (14)0.0205 (12)0.0035 (11)0.0002 (10)0.0104 (11)
C6'0.0164 (12)0.0341 (16)0.0216 (12)0.0011 (11)0.0000 (10)0.0147 (11)
C4'B0.0258 (13)0.0263 (14)0.0205 (12)0.0035 (11)0.0002 (10)0.0104 (11)
C6'B0.0164 (12)0.0341 (16)0.0216 (12)0.0011 (11)0.0000 (10)0.0147 (11)
Geometric parameters (Å, º) top
Cl1—C61.739 (2)C2'—C3'1.524 (3)
N1—C21.317 (3)C2'—C5'1.527 (3)
N1—C61.365 (3)C2'—H2'1.0000
C2—N31.355 (3)C3'—C4'1.561 (3)
C2—H20.9500C3'—C4'B1.626 (16)
N3—C41.332 (3)C3'—H3'10.9900
C4—N91.342 (3)C3'—H3'20.9900
C4—C51.424 (3)C5'—C4'1.537 (3)
C5—C61.366 (3)C5'—C4'B1.616 (15)
C5—N71.386 (2)C5'—H5'10.9900
N7—C6'B1.440 (15)C5'—H5'20.9900
N7—C6'1.465 (3)C4'—C6'1.508 (3)
N7—C81.471 (3)C4'—H4'1.0000
C8—N91.455 (3)C6'—H6'10.9900
C8—H8A0.9900C6'—H6'20.9900
C8—H8B0.9900C4'B—C6'B1.48 (2)
N9—H90.833 (17)C4'B—H4'B1.0000
O1'—C2'1.407 (3)C6'B—H6'30.9900
O1'—H1'0.84 (3)C6'B—H6'40.9900
C2—N1—C6116.73 (17)C2'—C3'—H3'1114.0
N1—C2—N3127.76 (18)C4'—C3'—H3'1114.0
N1—C2—H2116.1C2'—C3'—H3'2114.0
N3—C2—H2116.1C4'—C3'—H3'2114.0
C4—N3—C2113.74 (17)H3'1—C3'—H3'2111.2
N3—C4—N9126.70 (19)C2'—C5'—C4'88.64 (17)
N3—C4—C5124.39 (18)C2'—C5'—C4'B92.8 (6)
N9—C4—C5108.91 (17)C2'—C5'—H5'1113.9
C6—C5—N7136.29 (19)C4'—C5'—H5'1113.9
C6—C5—C4115.33 (18)C2'—C5'—H5'2113.9
N7—C5—C4108.35 (17)C4'—C5'—H5'2113.9
N1—C6—C5122.04 (18)H5'1—C5'—H5'2111.1
N1—C6—Cl1115.38 (15)C6'—C4'—C5'118.5 (2)
C5—C6—Cl1122.56 (15)C6'—C4'—C3'120.1 (2)
C5—N7—C6'B128.7 (6)C5'—C4'—C3'87.40 (17)
C5—N7—C6'125.55 (17)C6'—C4'—H4'109.7
C5—N7—C8108.55 (16)C5'—C4'—H4'109.7
C6'B—N7—C8121.7 (6)C3'—C4'—H4'109.7
C6'—N7—C8118.33 (17)N7—C6'—C4'113.3 (2)
N9—C8—N7103.41 (15)N7—C6'—H6'1108.9
N9—C8—H8A111.1C4'—C6'—H6'1108.9
N7—C8—H8A111.1N7—C6'—H6'2108.9
N9—C8—H8B111.1C4'—C6'—H6'2108.9
N7—C8—H8B111.1H6'1—C6'—H6'2107.7
H8A—C8—H8B109.0C6'B—C4'B—C5'112.7 (13)
C4—N9—C8110.76 (17)C6'B—C4'B—C3'99.0 (12)
C4—N9—H9125.9 (17)C5'—C4'B—C3'82.6 (7)
C8—N9—H9123.2 (17)C6'B—C4'B—H4'B118.5
C2'—O1'—H1'103 (2)C5'—C4'B—H4'B118.5
O1'—C2'—C3'121.1 (2)C3'—C4'B—H4'B118.5
O1'—C2'—C5'114.52 (18)N7—C6'B—C4'B115.0 (14)
C3'—C2'—C5'89.12 (16)N7—C6'B—H6'3108.5
O1'—C2'—H2'110.1C4'B—C6'B—H6'3108.5
C3'—C2'—H2'110.1N7—C6'B—H6'4108.5
C5'—C2'—H2'110.1C4'B—C6'B—H6'4108.5
C2'—C3'—C4'87.87 (18)H6'3—C6'B—H6'4107.5
C2'—C3'—C4'B92.5 (5)
C6—N1—C2—N30.8 (3)N7—C8—N9—C41.3 (2)
N1—C2—N3—C40.3 (3)O1'—C2'—C3'—C4'138.2 (2)
C2—N3—C4—N9178.94 (19)C5'—C2'—C3'—C4'19.78 (18)
C2—N3—C4—C50.4 (3)O1'—C2'—C3'—C4'B105.1 (6)
N3—C4—C5—C61.1 (3)C5'—C2'—C3'—C4'B13.3 (6)
N9—C4—C5—C6178.36 (17)O1'—C2'—C5'—C4'144.2 (2)
N3—C4—C5—N7179.35 (17)C3'—C2'—C5'—C4'20.09 (19)
N9—C4—C5—N70.1 (2)O1'—C2'—C5'—C4'B110.7 (6)
C2—N1—C6—C51.6 (3)C3'—C2'—C5'—C4'B13.4 (6)
C2—N1—C6—Cl1177.14 (14)C2'—C5'—C4'—C6'142.7 (2)
N7—C5—C6—N1179.3 (2)C2'—C5'—C4'—C3'19.62 (18)
C4—C5—C6—N11.6 (3)C2'—C3'—C4'—C6'141.4 (2)
N7—C5—C6—Cl10.7 (3)C2'—C3'—C4'—C5'19.66 (18)
C4—C5—C6—Cl1176.96 (14)C5—N7—C6'—C4'135.6 (2)
C6—C5—N7—C6'B10.1 (10)C8—N7—C6'—C4'78.4 (3)
C4—C5—N7—C6'B167.6 (10)C5'—C4'—C6'—N7171.4 (2)
C6—C5—N7—C6'32.6 (4)C3'—C4'—C6'—N766.6 (3)
C4—C5—N7—C6'149.7 (2)C2'—C5'—C4'B—C6'B109.4 (12)
C6—C5—N7—C8178.7 (2)C2'—C5'—C4'B—C3'12.7 (6)
C4—C5—N7—C80.9 (2)C2'—C3'—C4'B—C6'B124.6 (10)
C5—N7—C8—N91.3 (2)C2'—C3'—C4'B—C5'12.7 (6)
C6'B—N7—C8—N9168.2 (9)C5—N7—C6'B—C4'B146.2 (9)
C6'—N7—C8—N9152.69 (18)C8—N7—C6'B—C4'B46.6 (16)
N3—C4—N9—C8179.79 (18)C5'—C4'B—C6'B—N7175.7 (10)
C5—C4—N9—C80.8 (2)C3'—C4'B—C6'B—N798.5 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring N1/C2/N3/C4/C5/C6.
D—H···AD—HH···AD···AD—H···A
C6—H62···Cl10.992.643.390 (3)132
N9—H9···N3i0.83 (2)2.14 (2)2.952 (2)166 (2)
O1—H1···N1ii0.84 (3)2.09 (3)2.909 (2)164 (3)
C4—H4···Cg1iii0.992.873.857 (3)170
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
3-[(6-Chloro-9H-purin-9-yl)methyl]cyclobutan-1-ol (IV) top
Crystal data top
C10H11ClN4OF(000) = 496
Mr = 238.68Dx = 1.482 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.7276 (8) ÅCell parameters from 4964 reflections
b = 5.9725 (4) Åθ = 4.0–64.9°
c = 14.819 (1) ŵ = 3.04 mm1
β = 108.250 (3)°T = 110 K
V = 1069.81 (12) Å3Plate, colourless
Z = 40.50 × 0.21 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1732 independent reflections
Radiation source: sealed X-ray tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.9 pixels mm-1θmax = 64.9°, θmin = 4.0°
ω scansh = 1414
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2018)
k = 47
Tmin = 0.043, Tmax = 0.741l = 1717
7078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.4189P]
where P = (Fo2 + 2Fc2)/3
1732 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65978 (4)0.22748 (10)0.21719 (4)0.0258 (2)
O1'0.06577 (11)0.5696 (3)0.19248 (10)0.0233 (4)
H1'0.0671870.4569860.2267980.035*
N30.44729 (14)0.7995 (3)0.06539 (12)0.0218 (4)
N10.61729 (14)0.5895 (3)0.11346 (12)0.0196 (4)
N70.39848 (13)0.3289 (3)0.19580 (12)0.0199 (4)
N90.30402 (13)0.6280 (3)0.11873 (11)0.0186 (4)
C40.40817 (16)0.6422 (4)0.11001 (13)0.0178 (5)
C50.46564 (16)0.4569 (4)0.15808 (13)0.0168 (5)
C3'0.12604 (16)0.5194 (4)0.07173 (14)0.0201 (5)
H3'A0.0904060.4360470.0314310.024*
H3'B0.1792300.4240100.0906140.024*
C60.57424 (16)0.4399 (4)0.15774 (13)0.0180 (5)
C80.30351 (16)0.4385 (4)0.16970 (14)0.0192 (5)
H80.2402640.3893010.1851650.023*
C20.55210 (18)0.7598 (4)0.07007 (15)0.0223 (5)
H20.5846090.8652500.0388010.027*
C2'0.04431 (16)0.6477 (4)0.15487 (14)0.0177 (5)
H2'0.0773860.6735880.2069460.021*
C4'0.17237 (18)0.7495 (4)0.03173 (15)0.0216 (5)
H4'0.2319500.7962870.0585470.026*
C6'0.21115 (17)0.7800 (4)0.07552 (15)0.0208 (5)
H6'A0.2348060.9369280.0914630.025*
H6'B0.1495390.7475120.1009680.025*
C5'0.05979 (17)0.8537 (4)0.09087 (15)0.0217 (5)
H5'A0.0051700.8662250.0560360.026*
H5'B0.0665930.9961600.1227170.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0169 (3)0.0313 (4)0.0291 (3)0.0052 (2)0.0069 (2)0.0101 (2)
O1'0.0144 (7)0.0311 (10)0.0231 (8)0.0006 (6)0.0037 (6)0.0095 (7)
N30.0217 (9)0.0229 (11)0.0184 (9)0.0037 (8)0.0027 (7)0.0013 (8)
N10.0194 (9)0.0206 (10)0.0183 (8)0.0042 (8)0.0051 (7)0.0005 (8)
N70.0155 (9)0.0260 (11)0.0177 (8)0.0011 (8)0.0045 (7)0.0024 (8)
N90.0142 (8)0.0232 (11)0.0160 (8)0.0021 (8)0.0013 (7)0.0017 (8)
C40.0169 (10)0.0206 (12)0.0129 (9)0.0030 (9)0.0004 (8)0.0016 (8)
C50.0156 (9)0.0207 (12)0.0121 (9)0.0022 (8)0.0014 (7)0.0014 (8)
C3'0.0188 (10)0.0231 (12)0.0177 (10)0.0034 (9)0.0045 (8)0.0013 (9)
C60.0160 (10)0.0219 (12)0.0134 (9)0.0010 (9)0.0006 (8)0.0002 (9)
C80.0159 (10)0.0234 (13)0.0177 (9)0.0013 (9)0.0045 (8)0.0003 (9)
C20.0230 (11)0.0232 (13)0.0193 (10)0.0064 (9)0.0047 (9)0.0015 (9)
C2'0.0134 (9)0.0220 (12)0.0165 (10)0.0005 (9)0.0031 (8)0.0007 (9)
C4'0.0186 (11)0.0249 (13)0.0194 (11)0.0010 (9)0.0035 (9)0.0009 (9)
C6'0.0193 (11)0.0209 (12)0.0194 (10)0.0043 (9)0.0021 (8)0.0000 (9)
C5'0.0206 (10)0.0223 (13)0.0185 (10)0.0032 (9)0.0011 (8)0.0001 (9)
Geometric parameters (Å, º) top
Cl1—C61.723 (2)C3'—C2'1.544 (3)
O1'—C2'1.415 (2)C3'—H3'A0.9900
O1'—H1'0.8400C3'—H3'B0.9900
N3—C41.332 (3)C8—H80.9500
N3—C21.335 (3)C2—H20.9500
N1—C61.325 (3)C2'—C5'1.528 (3)
N1—C21.342 (3)C2'—H2'1.0000
N7—C81.321 (3)C4'—C6'1.520 (3)
N7—C51.388 (3)C4'—C5'1.556 (3)
N9—C81.362 (3)C4'—H4'1.0000
N9—C41.374 (3)C6'—H6'A0.9900
N9—C6'1.469 (3)C6'—H6'B0.9900
C4—C51.393 (3)C5'—H5'A0.9900
C5—C61.388 (3)C5'—H5'B0.9900
C3'—C4'1.539 (3)
C2'—O1'—H1'109.5N3—C2—H2116.0
C4—N3—C2111.81 (19)N1—C2—H2116.0
C6—N1—C2117.32 (17)O1'—C2'—C5'115.42 (17)
C8—N7—C5103.39 (18)O1'—C2'—C3'119.16 (18)
C8—N9—C4106.00 (17)C5'—C2'—C3'88.88 (16)
C8—N9—C6'127.78 (17)O1'—C2'—H2'110.6
C4—N9—C6'126.10 (18)C5'—C2'—H2'110.6
N3—C4—N9127.7 (2)C3'—C2'—H2'110.6
N3—C4—C5126.60 (19)C6'—C4'—C3'118.02 (19)
N9—C4—C5105.69 (18)C6'—C4'—C5'118.75 (18)
C6—C5—N7134.5 (2)C3'—C4'—C5'88.05 (16)
C6—C5—C4114.87 (19)C6'—C4'—H4'110.1
N7—C5—C4110.64 (17)C3'—C4'—H4'110.1
C4'—C3'—C2'86.87 (17)C5'—C4'—H4'110.1
C4'—C3'—H3'A114.2N9—C6'—C4'109.58 (17)
C2'—C3'—H3'A114.2N9—C6'—H6'A109.8
C4'—C3'—H3'B114.2C4'—C6'—H6'A109.8
C2'—C3'—H3'B114.2N9—C6'—H6'B109.8
H3'A—C3'—H3'B111.3C4'—C6'—H6'B109.8
N1—C6—C5121.3 (2)H6'A—C6'—H6'B108.2
N1—C6—Cl1117.18 (15)C2'—C5'—C4'86.82 (16)
C5—C6—Cl1121.52 (16)C2'—C5'—H5'A114.2
N7—C8—N9114.28 (18)C4'—C5'—H5'A114.2
N7—C8—H8122.9C2'—C5'—H5'B114.2
N9—C8—H8122.9C4'—C5'—H5'B114.2
N3—C2—N1128.1 (2)H5'A—C5'—H5'B111.3
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring N1/C2/N3/C4/C5/C6.
D—H···AD—HH···AD···AD—H···A
O1—H1···N7i0.842.032.853 (3)168
C8—H8···O1ii0.952.273.148 (2)153
C2—H2···N3iii0.952.483.311 (3)146
C2—H2···Cg1iv0.992.843.628 (2)136
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x3/2, y+1/2, z3/2.
Geometric parameters (Å, °) about atom C8 for compounds (I), (II) and (IV) top
Bond/angle(I)(II)(IV)
C8—N71.381 (2)1.471 (3)1.362 (3)
C8—N91.301 (2)1.455 (3)1.321 (3)
N7—C8—N9114.95 (15)103.41 (15)114.28 (18)
 

Footnotes

Contributed equally to this work.

Acknowledgements

The authors are grateful to Dr Paul Doyle of the Department of Chemistry X-ray Facility at University of Western Ontario for assistance with the data collection.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant No. RGPIN-06218-2014 to Gerald F. Audette).

References

First citationAarhus, T. I., Fritze, U. F., Hennum, M. & Gundersen, L. L. (2014). Tetrahedron Lett. 55, 5748–5750.  Web of Science CrossRef CAS Google Scholar
First citationBisacchi, G. S., Braitman, A., Cianci, C. W., Clark, J. M., Field, A. K., Hagen, M. E., Hockstein, D. R., Malley, M. F., Mitt, T., Slusarchyk, W. A., et al. (1991). J. Med. Chem. 34, 1415–1421.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDe Clercq, E. (2005). Expert Opin. Emerg. Drugs, 10, 241–273.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGharbaoui, T., Legraverend, M., Ludwig, O., Bisagni, E., Aubertin, A.-M. & Chertanova, L. (1995). Tetrahedron, 51, 1641–1652.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoshino, H., Shimizu, N., Shimada, N., Takita, T. & Takeuchi, T. (1987). J. Antibiot. 40, 1077–1078.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLegraverend, M., Boumchita, H., Guilhem, J. & Bisagni, E. (1991). Heterocycles, 32, 867–871.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds