research communications
N,N′-[(ethyne-1,2-diyl)bis(1,4-phenylenecarbonyl)]bis(L-alaninate)
of dimethylaTU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
The diphenylethyne unit of the title molecule, C24H24N2O6, deviates slightly from planarity. The L-alanine moieties adopt distorted helical conformations of opposite winding direction. Infinite ribbons of N—H⋯O=C-connected molecules represent the basic supramolecular entities of the These aggregates are linked by C—H⋯O hydrogen bonds involving the oxygen atoms of the methyl carboxylate units. The crystal studied was refined as an inversion twin.
Keywords: crystal structure; bis(L-alaninate); molecular tape formation; N—H⋯O=C and C—H⋯O hydrogen bonding.
CCDC reference: 1912918
1. Chemical context
Currently, the design of solid porous framework materials has developed into a very significant aspect of supramolecular crystal engineering (Desiraju et al., 2011). In connection with it, molecules frequently featuring a linear rigid structure and having coordinating or otherwise binding active functions as terminal groups are a desired structural unit in building such systems (Lin et al., 2006; Hausdorf et al., 2009; Zheng et al., 2010). For this reason, the corresponding structural units are called `linker molecules'. A particular type of linker molecule consisting of a rod-like central unit and peptide terminal groups are promising in the assembly of bio-inspired framework materials including the subject Examples are the coordination polymers put together by N,N′-terephthalatoylbis(glycinate) (Eissmann et al., 2010) and CuII (Kostakis et al., 2005) or equivalent bis(L-phenylalaninate) and CuII (Wisser et al., 2008). In view of this applicability, the structural extension of this compound type is probably a future-oriented design. Precursor substances concerning this project have been prepared and structurally described in considerable numbers (Eissmann & Weber, 2011a,b). Here, we report for the first time the synthesis and of a corresponding linker molecule.
2. Structural commentary
The title compound crystallizes in the monoclinic system (space group P21) with one molecule in the The molecular structure (Fig. 1) is characterized by nearly planar trans-configured amide groups with ω1 = 169.9 (6)° and ω2 = 176.7 (6)°, which can be derived from torsion angles of −0.6 (5) and −3.3 (6)° for the atomic sequences C2—N1—C5—O1 and C22—N2—C20—O4. The least-squares planes through the amide groups are inclined at angles of 37.4 (9) and 40.1 (11)° with respect to the aromatic ring to which they are attached. The two L-alanine residues exist in distorted helical conformations of opposite winding direction with torsion angles φ1 = −70.2 (4)°, ψ1 = −19.4 (5)°, φ2 = 46.3 (5)° and ψ2 = 49.4 (4)°. The central diphenylethyne element deviates slightly from planarity, showing a dihedral angle of 6.2 (2)° between the planes of the aromatic rings.
3. Supramolecular features
In the crystal, each molecule interacts with two neighbors via N—H⋯O=Camide hydrogen bonding, thus generating infinite ribbons (Table 1, Fig. 2) which extend parallel to the a axis. These molecular aggregates are additionally stabilized by a C—H⋯O bond (Desiraju & Steiner, 1999) between the ester oxygen atom O2 and the methine hydrogen of the stereogenic center C22. As shown in Fig. 2, within the tape structure the N—H⋯O bonds take part in two ring motifs that can be described by the graph sets R22(30) and R22(10) (Etter et al., 1990; Bernstein et al., 1995). The ester groups participate to a different degree in molecular association along the stacking direction (c axis) of the molecular tapes. With the exception of O6, all ester oxygen atoms are involved in C—H⋯O interactions with methoxy hydrogen atoms acting as donors. The analysis of these intertape interactions reveals another two ring motifs of graph set R22(8) and R44(26) (Fig. 3). According to the given pattern of hydrogen bonding, the is composed of two-dimensional hydrogen-bonded layers connected by the linker molecules in a zigzag pattern. The presence of the bulky headgroups prevents arene⋯arene interactions.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016) revealed six hits for crystal structures of methyl N-benzoyl-L-alaninate and its para-substituted derivatives. Of particular interest are the structures of methyl N-(4-bromolbenzoyl)-L-alaninate (IVOKIO; Eissmann & Weber, 2011a) and methyl N-(4-ethynylbenzoyl)-L-alaninate (PAHMIN; Eissmann & Weber, 2011b). Their crystal packings are composed of structurally similar strands of N—H⋯O=C-bonded molecules in which the amide N—H group acts as a donor and the amide O atom as an acceptor site. Unlike in the title compound, this interaction is assisted by a C—H⋯O contact involving the L-alanine Cα methyl group as a donor and the sp3-hybridized ester oxygen atom as an acceptor. In contrast, the of methyl N-benzoyl-L-alaninate (XAZZON; Coghlan et al., 2000) is composed of zigzag strands of N—H⋯O=C-bonded molecules. The ester group of the molecule participates in interstand association via C—H⋯C=O-type hydrogen bonds, giving rise to two-dimensional supramolecular networks.
5. Synthesis and crystallization
The title compound was prepared from methyl N-(4-bromobenzoyl)-L-alaninate (component-1) (Eissmann & Weber, 2011a) and methyl N-(4-ethynylbenzoyl)-L-alaninate (component-2) (Eissmann & Weber, 2011b) via a Sonogashira–Hagihara cross-coupling reaction (Sonogashira et al. 1975) as follows. Component-1 (1.72 g, 6.0 mmol) and component-2 (1.39 g, 6.0 mmol) were dissolved in a degassed mixture of dry trimethylamine (15 ml) and ethyl acetate (25 ml). To this solution, the catalyst being composed of triphenylphosphine (31.5 mg, 0.12 mmol), copper(I) iodide (22.9 mg, 0.12 mmol) and trans-dichlorobis(triphenylphosphine)palladium(II) (42.1 mg, 0.06 mmol) was added. The mixture was stirred at room temperature away from light for 16 h. The precipitate which was formed was separated, washed three times with ethyl acetate (20 ml each) and suspended in an aqueous NH4Cl solution (100 ml). In this sequence, the isolated solid was washed with water (2 × 50 ml) and diethyl ether (4 × 25 ml). After drying in air, the product was obtained as a beige powder (1.39 g, 53%; m.p. 510–511 K; [α]D20 +61.4, 0.01 M, DMSO). 1H NMR (CDCl3): δH 1.42 (6H, d, 3JHH 7.30, CH—CH3), 3.66 (6H, s, O—CH3), 4.51 (2H, qui, 3JHH 7.15, CH), 7.71 (4H, d, 3JHH 8.35, ArH), 7.96 (4H, d, 3JHH 8.40, ArH), 8.93 (2H, d, 3JHH 6.90, NH). 13C NMR (DMSO-d6): δC 16.77 (CHCH3), 48.42 (CH), 51.99 (OCH3), 90.76 (C≡C), 124.95, 127.94, 131.49, 131.88, 133.76 (ArC), 165.49 [ArC(O)NH], 173.14 [C(O)OCH3]. IR (KBr): νmax. 3288 (NH), 1733 (C=O, ester), 1638 (C=O, amide), 1606, 1537 (Ar). MS (APCI): calculated for C24H24N2O6 (436.16), found 435.1 [M − H]−. Analysis calculated for C24H24N2O6: C, 66.04; H, 5.54; N, 6.42; found: C, 66.23; H, 5.58; N, 6.45%. Colorless crystals suitable for X-ray diffraction were obtained from a solution of DMSO upon slow evaporation of the solvent at room temperature.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms. The crystal studied was refined as an inversion twin.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1912918
https://doi.org/10.1107/S2056989019005826/zp2034sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005826/zp2034Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019005826/zp2034Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H24N2O6 | F(000) = 460 |
Mr = 436.45 | Dx = 1.310 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9409 (4) Å | Cell parameters from 2881 reflections |
b = 39.015 (3) Å | θ = 3.6–26.5° |
c = 5.8447 (4) Å | µ = 0.10 mm−1 |
β = 100.905 (3)° | T = 153 K |
V = 1106.34 (14) Å3 | Irregular, colourless |
Z = 2 | 0.25 × 0.18 × 0.13 mm |
Bruker APEXII CCD area-detector diffractometer | 3859 reflections with I > 2σ(I) |
Radiation source: sealed x-ray tube | Rint = 0.034 |
φ and ω scans | θmax = 28.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −4→6 |
Tmin = 0.977, Tmax = 0.988 | k = −52→49 |
10506 measured reflections | l = −7→7 |
5192 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3338P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.125 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.16 e Å−3 |
5192 reflections | Δρmin = −0.23 e Å−3 |
302 parameters | Absolute structure: Refined as an inversion twin |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.3228 (6) | 0.27103 (7) | 1.3737 (5) | 0.0359 (7) | |
O2 | −0.1565 (8) | 0.36026 (8) | 1.6451 (5) | 0.0492 (9) | |
O3 | 0.0032 (6) | 0.34262 (6) | 1.3334 (5) | 0.0351 (7) | |
O4 | 0.6614 (6) | 0.01503 (7) | 0.0365 (6) | 0.0438 (8) | |
O5 | 0.5951 (6) | −0.06167 (7) | −0.1874 (5) | 0.0332 (6) | |
O6 | 0.4374 (6) | −0.05575 (7) | 0.1439 (5) | 0.0372 (7) | |
N1 | 0.1280 (7) | 0.27972 (8) | 1.5074 (6) | 0.0262 (7) | |
H1 | 0.301 (4) | 0.2773 (9) | 1.489 (6) | 0.016 (9)* | |
N2 | 0.2024 (7) | 0.00595 (8) | −0.0317 (6) | 0.0275 (7) | |
H2 | 0.039 (5) | 0.0127 (12) | −0.002 (8) | 0.044 (13)* | |
C1 | 0.3251 (9) | 0.31396 (11) | 1.8526 (7) | 0.0395 (10) | |
H1A | 0.3866 | 0.2931 | 1.9401 | 0.059* | |
H1B | 0.2791 | 0.3314 | 1.9594 | 0.059* | |
H1C | 0.4728 | 0.3225 | 1.7771 | 0.059* | |
C2 | 0.0727 (8) | 0.30608 (9) | 1.6691 (7) | 0.0279 (8) | |
H2A | −0.0708 | 0.2968 | 1.7520 | 0.034* | |
C3 | −0.0422 (8) | 0.33900 (9) | 1.5482 (7) | 0.0283 (8) | |
C4 | −0.1041 (10) | 0.37401 (11) | 1.2158 (7) | 0.0420 (11) | |
H4A | −0.2869 | 0.3789 | 1.2501 | 0.063* | |
H4B | −0.1182 | 0.3713 | 1.0473 | 0.063* | |
H4C | 0.0206 | 0.3931 | 1.2708 | 0.063* | |
C5 | −0.0835 (8) | 0.26402 (9) | 1.3680 (7) | 0.0251 (8) | |
C6 | −0.0077 (8) | 0.23641 (9) | 1.2131 (7) | 0.0272 (9) | |
C7 | 0.2173 (9) | 0.21521 (9) | 1.2828 (7) | 0.0299 (9) | |
H7 | 0.3311 | 0.2183 | 1.4316 | 0.036* | |
C8 | 0.2781 (8) | 0.18931 (10) | 1.1366 (7) | 0.0312 (9) | |
H8 | 0.4310 | 0.1746 | 1.1878 | 0.037* | |
C9 | 0.1184 (8) | 0.18472 (9) | 0.9175 (7) | 0.0293 (8) | |
C10 | −0.1098 (9) | 0.20622 (10) | 0.8463 (8) | 0.0356 (10) | |
H10 | −0.2211 | 0.2035 | 0.6960 | 0.043* | |
C11 | −0.1735 (9) | 0.23150 (10) | 0.9951 (7) | 0.0320 (9) | |
H11 | −0.3313 | 0.2455 | 0.9477 | 0.038* | |
C12 | 0.1832 (9) | 0.15849 (9) | 0.7647 (7) | 0.0309 (9) | |
C13 | 0.2348 (9) | 0.13652 (10) | 0.6362 (7) | 0.0327 (9) | |
C14 | 0.2895 (9) | 0.10953 (10) | 0.4845 (7) | 0.0308 (9) | |
C15 | 0.5208 (9) | 0.08859 (11) | 0.5503 (8) | 0.0402 (11) | |
H15 | 0.6465 | 0.0928 | 0.6918 | 0.048* | |
C16 | 0.5651 (9) | 0.06161 (11) | 0.4073 (8) | 0.0414 (11) | |
H16 | 0.7246 | 0.0477 | 0.4506 | 0.050* | |
C17 | 0.3828 (8) | 0.05450 (9) | 0.2040 (7) | 0.0275 (8) | |
C18 | 0.1575 (9) | 0.07580 (10) | 0.1360 (8) | 0.0353 (10) | |
H18 | 0.0335 | 0.0716 | −0.0065 | 0.042* | |
C19 | 0.1123 (9) | 0.10325 (10) | 0.2755 (8) | 0.0366 (10) | |
H19 | −0.0417 | 0.1179 | 0.2269 | 0.044* | |
C20 | 0.4274 (8) | 0.02379 (9) | 0.0616 (7) | 0.0287 (9) | |
C21 | 0.2291 (10) | −0.01405 (12) | −0.4265 (7) | 0.0432 (11) | |
H21A | 0.0730 | 0.0008 | −0.4902 | 0.065* | |
H21B | 0.2231 | −0.0348 | −0.5222 | 0.065* | |
H21C | 0.4019 | −0.0018 | −0.4272 | 0.065* | |
C22 | 0.2127 (8) | −0.02395 (9) | −0.1792 (6) | 0.0266 (8) | |
H22 | 0.0349 | −0.0365 | −0.1866 | 0.032* | |
C23 | 0.4398 (8) | −0.04847 (9) | −0.0795 (6) | 0.0260 (8) | |
C24 | 0.6460 (10) | −0.07959 (11) | 0.2541 (7) | 0.0441 (11) | |
H24A | 0.6093 | −0.1023 | 0.1831 | 0.066* | |
H24B | 0.6422 | −0.0810 | 0.4209 | 0.066* | |
H24C | 0.8278 | −0.0716 | 0.2330 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0247 (15) | 0.0326 (15) | 0.0523 (18) | 0.0022 (12) | 0.0120 (13) | −0.0084 (13) |
O2 | 0.077 (2) | 0.0366 (17) | 0.0371 (17) | 0.0282 (16) | 0.0196 (17) | 0.0017 (13) |
O3 | 0.0475 (18) | 0.0253 (14) | 0.0347 (16) | 0.0060 (13) | 0.0135 (13) | 0.0029 (12) |
O4 | 0.0220 (16) | 0.0335 (16) | 0.080 (2) | −0.0023 (12) | 0.0185 (15) | −0.0213 (15) |
O5 | 0.0339 (16) | 0.0292 (14) | 0.0390 (15) | 0.0031 (12) | 0.0135 (12) | −0.0066 (12) |
O6 | 0.0442 (18) | 0.0350 (16) | 0.0353 (16) | 0.0093 (13) | 0.0149 (13) | 0.0002 (12) |
N1 | 0.0209 (17) | 0.0217 (16) | 0.0377 (18) | 0.0026 (13) | 0.0095 (14) | −0.0032 (13) |
N2 | 0.0225 (17) | 0.0262 (16) | 0.0347 (18) | 0.0016 (14) | 0.0077 (14) | −0.0056 (14) |
C1 | 0.035 (2) | 0.042 (2) | 0.039 (2) | 0.011 (2) | −0.0006 (19) | −0.0103 (19) |
C2 | 0.030 (2) | 0.0208 (17) | 0.036 (2) | 0.0049 (16) | 0.0149 (17) | −0.0025 (16) |
C3 | 0.031 (2) | 0.0214 (18) | 0.033 (2) | 0.0027 (16) | 0.0076 (17) | −0.0020 (16) |
C4 | 0.063 (3) | 0.027 (2) | 0.035 (2) | 0.008 (2) | 0.008 (2) | 0.0057 (18) |
C5 | 0.025 (2) | 0.0184 (16) | 0.033 (2) | −0.0008 (15) | 0.0086 (16) | −0.0001 (15) |
C6 | 0.030 (2) | 0.0154 (17) | 0.037 (2) | 0.0006 (15) | 0.0098 (18) | 0.0013 (15) |
C7 | 0.032 (2) | 0.0203 (19) | 0.036 (2) | 0.0031 (16) | 0.0037 (17) | −0.0041 (16) |
C8 | 0.034 (2) | 0.0200 (18) | 0.039 (2) | 0.0081 (17) | 0.0074 (17) | −0.0035 (17) |
C9 | 0.038 (2) | 0.0143 (17) | 0.037 (2) | 0.0024 (16) | 0.0117 (17) | 0.0010 (15) |
C10 | 0.038 (2) | 0.030 (2) | 0.037 (2) | 0.0063 (18) | 0.0044 (18) | −0.0042 (17) |
C11 | 0.030 (2) | 0.028 (2) | 0.037 (2) | 0.0093 (18) | 0.0031 (18) | −0.0013 (17) |
C12 | 0.039 (2) | 0.0193 (18) | 0.034 (2) | 0.0031 (16) | 0.0066 (17) | −0.0016 (16) |
C13 | 0.037 (2) | 0.0241 (19) | 0.039 (2) | 0.0021 (18) | 0.0112 (18) | −0.0001 (18) |
C14 | 0.036 (2) | 0.0209 (18) | 0.037 (2) | −0.0002 (16) | 0.0104 (18) | −0.0053 (16) |
C15 | 0.039 (3) | 0.032 (2) | 0.046 (3) | 0.0033 (19) | −0.003 (2) | −0.0124 (19) |
C16 | 0.031 (2) | 0.033 (2) | 0.056 (3) | 0.0105 (19) | −0.002 (2) | −0.015 (2) |
C17 | 0.024 (2) | 0.0231 (18) | 0.038 (2) | −0.0027 (15) | 0.0127 (17) | −0.0030 (16) |
C18 | 0.040 (3) | 0.028 (2) | 0.037 (2) | 0.0070 (18) | 0.0044 (19) | −0.0044 (17) |
C19 | 0.038 (3) | 0.029 (2) | 0.042 (2) | 0.0114 (18) | 0.005 (2) | −0.0021 (18) |
C20 | 0.023 (2) | 0.0228 (18) | 0.042 (2) | −0.0019 (16) | 0.0107 (17) | −0.0037 (16) |
C21 | 0.053 (3) | 0.047 (3) | 0.030 (2) | 0.016 (2) | 0.009 (2) | 0.0023 (19) |
C22 | 0.026 (2) | 0.0246 (19) | 0.030 (2) | 0.0004 (15) | 0.0079 (16) | −0.0058 (15) |
C23 | 0.028 (2) | 0.0220 (18) | 0.0293 (19) | −0.0055 (16) | 0.0091 (16) | −0.0061 (15) |
C24 | 0.056 (3) | 0.037 (2) | 0.037 (2) | 0.018 (2) | 0.003 (2) | 0.001 (2) |
O1—C5 | 1.220 (5) | C8—H8 | 0.9500 |
O2—C3 | 1.203 (5) | C9—C10 | 1.404 (6) |
O3—C3 | 1.324 (5) | C9—C12 | 1.433 (5) |
O3—C4 | 1.455 (5) | C10—C11 | 1.390 (5) |
O4—C20 | 1.241 (5) | C10—H10 | 0.9500 |
O5—C23 | 1.198 (4) | C11—H11 | 0.9500 |
O6—C23 | 1.338 (4) | C12—C13 | 1.198 (5) |
O6—C24 | 1.446 (5) | C13—C14 | 1.435 (5) |
N1—C5 | 1.345 (5) | C14—C19 | 1.384 (6) |
N1—C2 | 1.457 (4) | C14—C15 | 1.398 (6) |
N1—H1 | 0.886 (14) | C15—C16 | 1.387 (6) |
N2—C20 | 1.337 (5) | C15—H15 | 0.9500 |
N2—C22 | 1.457 (5) | C16—C17 | 1.377 (6) |
N2—H2 | 0.894 (14) | C16—H16 | 0.9500 |
C1—C2 | 1.514 (6) | C17—C18 | 1.386 (6) |
C1—H1A | 0.9800 | C17—C20 | 1.499 (5) |
C1—H1B | 0.9800 | C18—C19 | 1.390 (6) |
C1—H1C | 0.9800 | C18—H18 | 0.9500 |
C2—C3 | 1.523 (5) | C19—H19 | 0.9500 |
C2—H2A | 1.0000 | C21—C22 | 1.513 (6) |
C4—H4A | 0.9800 | C21—H21A | 0.9800 |
C4—H4B | 0.9800 | C21—H21B | 0.9800 |
C4—H4C | 0.9800 | C21—H21C | 0.9800 |
C5—C6 | 1.499 (5) | C22—C23 | 1.505 (5) |
C6—C7 | 1.384 (5) | C22—H22 | 1.0000 |
C6—C11 | 1.392 (6) | C24—H24A | 0.9800 |
C7—C8 | 1.393 (5) | C24—H24B | 0.9800 |
C7—H7 | 0.9500 | C24—H24C | 0.9800 |
C8—C9 | 1.383 (6) | ||
C3—O3—C4 | 115.2 (3) | C10—C11—C6 | 120.5 (4) |
C23—O6—C24 | 115.7 (3) | C10—C11—H11 | 119.8 |
C5—N1—C2 | 119.7 (3) | C6—C11—H11 | 119.8 |
C5—N1—H1 | 122 (2) | C13—C12—C9 | 179.4 (5) |
C2—N1—H1 | 117 (2) | C12—C13—C14 | 178.1 (4) |
C20—N2—C22 | 122.6 (3) | C19—C14—C15 | 119.2 (4) |
C20—N2—H2 | 119 (3) | C19—C14—C13 | 120.9 (4) |
C22—N2—H2 | 119 (3) | C15—C14—C13 | 119.9 (4) |
C2—C1—H1A | 109.5 | C16—C15—C14 | 119.4 (4) |
C2—C1—H1B | 109.5 | C16—C15—H15 | 120.3 |
H1A—C1—H1B | 109.5 | C14—C15—H15 | 120.3 |
C2—C1—H1C | 109.5 | C17—C16—C15 | 121.4 (4) |
H1A—C1—H1C | 109.5 | C17—C16—H16 | 119.3 |
H1B—C1—H1C | 109.5 | C15—C16—H16 | 119.3 |
N1—C2—C1 | 111.9 (3) | C16—C17—C18 | 119.1 (4) |
N1—C2—C3 | 113.2 (3) | C16—C17—C20 | 120.0 (4) |
C1—C2—C3 | 110.0 (3) | C18—C17—C20 | 121.0 (4) |
N1—C2—H2A | 107.2 | C17—C18—C19 | 120.2 (4) |
C1—C2—H2A | 107.2 | C17—C18—H18 | 119.9 |
C3—C2—H2A | 107.2 | C19—C18—H18 | 119.9 |
O2—C3—O3 | 123.5 (4) | C14—C19—C18 | 120.6 (4) |
O2—C3—C2 | 122.0 (3) | C14—C19—H19 | 119.7 |
O3—C3—C2 | 114.5 (3) | C18—C19—H19 | 119.7 |
O3—C4—H4A | 109.5 | O4—C20—N2 | 122.0 (3) |
O3—C4—H4B | 109.5 | O4—C20—C17 | 121.6 (3) |
H4A—C4—H4B | 109.5 | N2—C20—C17 | 116.4 (3) |
O3—C4—H4C | 109.5 | C22—C21—H21A | 109.5 |
H4A—C4—H4C | 109.5 | C22—C21—H21B | 109.5 |
H4B—C4—H4C | 109.5 | H21A—C21—H21B | 109.5 |
O1—C5—N1 | 121.8 (3) | C22—C21—H21C | 109.5 |
O1—C5—C6 | 122.1 (4) | H21A—C21—H21C | 109.5 |
N1—C5—C6 | 116.0 (3) | H21B—C21—H21C | 109.5 |
C7—C6—C11 | 119.2 (3) | N2—C22—C23 | 112.7 (3) |
C7—C6—C5 | 122.0 (4) | N2—C22—C21 | 112.0 (3) |
C11—C6—C5 | 118.7 (3) | C23—C22—C21 | 111.2 (3) |
C6—C7—C8 | 120.5 (4) | N2—C22—H22 | 106.8 |
C6—C7—H7 | 119.7 | C23—C22—H22 | 106.8 |
C8—C7—H7 | 119.7 | C21—C22—H22 | 106.8 |
C9—C8—C7 | 120.7 (4) | O5—C23—O6 | 123.2 (4) |
C9—C8—H8 | 119.6 | O5—C23—C22 | 125.0 (3) |
C7—C8—H8 | 119.6 | O6—C23—C22 | 111.6 (3) |
C8—C9—C10 | 118.9 (4) | O6—C24—H24A | 109.5 |
C8—C9—C12 | 120.9 (4) | O6—C24—H24B | 109.5 |
C10—C9—C12 | 120.2 (4) | H24A—C24—H24B | 109.5 |
C11—C10—C9 | 120.2 (4) | O6—C24—H24C | 109.5 |
C11—C10—H10 | 119.9 | H24A—C24—H24C | 109.5 |
C9—C10—H10 | 119.9 | H24B—C24—H24C | 109.5 |
C5—N1—C2—C1 | 164.9 (3) | C19—C14—C15—C16 | −1.2 (7) |
C5—N1—C2—C3 | −70.2 (4) | C13—C14—C15—C16 | 177.1 (4) |
C4—O3—C3—O2 | −2.1 (6) | C14—C15—C16—C17 | −1.4 (7) |
C4—O3—C3—C2 | −179.7 (3) | C15—C16—C17—C18 | 3.1 (7) |
N1—C2—C3—O2 | 162.9 (4) | C15—C16—C17—C20 | −176.0 (4) |
C1—C2—C3—O2 | −71.1 (5) | C16—C17—C18—C19 | −2.1 (6) |
N1—C2—C3—O3 | −19.4 (5) | C20—C17—C18—C19 | 177.0 (4) |
C1—C2—C3—O3 | 106.5 (4) | C15—C14—C19—C18 | 2.2 (7) |
C2—N1—C5—O1 | −0.6 (5) | C13—C14—C19—C18 | −176.1 (4) |
C2—N1—C5—C6 | −178.0 (3) | C17—C18—C19—C14 | −0.6 (7) |
O1—C5—C6—C7 | −142.9 (4) | C22—N2—C20—O4 | −3.3 (6) |
N1—C5—C6—C7 | 34.5 (5) | C22—N2—C20—C17 | 178.3 (3) |
O1—C5—C6—C11 | 35.5 (6) | C16—C17—C20—O4 | −38.6 (6) |
N1—C5—C6—C11 | −147.1 (4) | C18—C17—C20—O4 | 142.3 (4) |
C11—C6—C7—C8 | 0.2 (6) | C16—C17—C20—N2 | 139.8 (4) |
C5—C6—C7—C8 | 178.5 (3) | C18—C17—C20—N2 | −39.3 (5) |
C6—C7—C8—C9 | 1.3 (6) | C20—N2—C22—C23 | 46.3 (5) |
C7—C8—C9—C10 | −1.2 (6) | C20—N2—C22—C21 | −80.0 (5) |
C7—C8—C9—C12 | 178.9 (4) | C24—O6—C23—O5 | 3.1 (5) |
C8—C9—C10—C11 | −0.3 (6) | C24—O6—C23—C22 | 179.1 (3) |
C12—C9—C10—C11 | 179.6 (4) | N2—C22—C23—O5 | −134.7 (4) |
C9—C10—C11—C6 | 1.8 (6) | C21—C22—C23—O5 | −7.9 (5) |
C7—C6—C11—C10 | −1.8 (6) | N2—C22—C23—O6 | 49.4 (4) |
C5—C6—C11—C10 | 179.8 (4) | C21—C22—C23—O6 | 176.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.89 (1) | 2.11 (2) | 2.982 (4) | 168 (3) |
N2—H2···O4ii | 0.89 (1) | 1.93 (2) | 2.799 (4) | 165 (5) |
C1—H1C···O2i | 0.98 | 2.58 | 3.532 (6) | 164 |
C4—H4B···O2iii | 0.98 | 2.36 | 3.340 (5) | 176 |
C21—H21B···O6iii | 0.98 | 2.53 | 3.315 (5) | 137 |
C22—H22···O5ii | 1.00 | 2.38 | 3.380 (5) | 174 |
C24—H24B···O5iv | 0.98 | 2.46 | 3.394 (5) | 158 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, y, z−1; (iv) x, y, z+1. |
Funding information
We acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG) under the Priority Program SPP 1362/1 (`Porous Metal-Organic Frameworks').
References
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1955–1973. CrossRef Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coghlan, D. R., Easton, C. J. & Tiekink, E. R. T. (2000). Aust. J. Chem. 53, 551–556. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press. Google Scholar
Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications. Google Scholar
Eissmann, F. & Weber, E. (2010). Struct. Chem. Commun. 1, 72–74. Google Scholar
Eissmann, F. & Weber, E. (2011a). J. Mol. Struct. 994, 392–402. CAS Google Scholar
Eissmann, F. & Weber, E. (2011b). J. Mol. Struct. 1005, 121–128. CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113. Web of Science CSD CrossRef Google Scholar
Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859–3861. Web of Science CSD CrossRef Google Scholar
Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, G. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470. CrossRef Google Scholar
Wisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–464. Web of Science CSD CrossRef CAS Google Scholar
Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.