research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl N,N′-[(ethyne-1,2-di­yl)bis­­(1,4-phenyl­enecarbon­yl)]bis­­(L-alaninate)

CROSSMARK_Color_square_no_text.svg

aTU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 14 November 2018; accepted 28 April 2019; online 10 May 2019)

The di­phenyl­ethyne unit of the title mol­ecule, C24H24N2O6, deviates slightly from planarity. The L-alanine moieties adopt distorted helical conformations of opposite winding direction. Infinite ribbons of N—H⋯O=C-connected mol­ecules represent the basic supra­molecular entities of the crystal structure. These aggregates are linked by C—H⋯O hydrogen bonds involving the oxygen atoms of the methyl carboxyl­ate units. The crystal studied was refined as an inversion twin.

1. Chemical context

Currently, the design of solid porous framework materials has developed into a very significant aspect of supra­molecular crystal engineering (Desiraju et al., 2011[Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.]). In connection with it, mol­ecules frequently featuring a linear rigid structure and having coordinating or otherwise binding active functions as terminal groups are a desired structural unit in building such systems (Lin et al., 2006[Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, G. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358-7364.]; Hausdorf et al., 2009[Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107-1113.]; Zheng et al., 2010[Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405-3409.]). For this reason, the corresponding structural units are called `linker mol­ecules'. A particular type of linker mol­ecule consisting of a rod-like central unit and peptide terminal groups are promising in the assembly of bio-inspired framework materials including the subject chirality. Examples are the coordination polymers put together by N,N′-terephthalatoylbis(glycinate) (Eissmann et al., 2010[Eissmann, F. & Weber, E. (2010). Struct. Chem. Commun. 1, 72-74.]) and CuII (Kostakis et al., 2005[Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859-3861.]) or equivalent bis­(L-phenyl­alaninate) and CuII (Wisser et al., 2008[Wisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461-464.]). In view of this applicability, the structural extension of this compound type is probably a future-oriented design. Precursor substances concerning this project have been prepared and structurally described in considerable numbers (Eissmann & Weber, 2011a[Eissmann, F. & Weber, E. (2011a). J. Mol. Struct. 994, 392-402.],b[Eissmann, F. & Weber, E. (2011b). J. Mol. Struct. 1005, 121-128.]). Here, we report for the first time the synthesis and crystal structure of a corres­ponding linker mol­ecule.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic system (space group P21) with one mol­ecule in the asymmetric unit. The mol­ecular structure (Fig. 1[link]) is characterized by nearly planar trans-configured amide groups with ω1 = 169.9 (6)° and ω2 = 176.7 (6)°, which can be derived from torsion angles of −0.6 (5) and −3.3 (6)° for the atomic sequences C2—N1—C5—O1 and C22—N2—C20—O4. The least-squares planes through the amide groups are inclined at angles of 37.4 (9) and 40.1 (11)° with respect to the aromatic ring to which they are attached. The two L-alanine residues exist in distorted helical conformations of opposite winding direction with torsion angles φ1 = −70.2 (4)°, ψ1 = −19.4 (5)°, φ2 = 46.3 (5)° and ψ2 = 49.4 (4)°. The central di­phenyl­ethyne element deviates slightly from planarity, showing a dihedral angle of 6.2 (2)° between the planes of the aromatic rings.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound with the atom labeling. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.

3. Supra­molecular features

In the crystal, each mol­ecule inter­acts with two neighbors via N—H⋯O=Camide hydrogen bonding, thus generating infinite ribbons (Table 1[link], Fig. 2[link]) which extend parallel to the a axis. These mol­ecular aggregates are additionally stabilized by a C—H⋯O bond (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.]) between the ester oxygen atom O2 and the methine hydrogen of the stereogenic center C22. As shown in Fig. 2[link], within the tape structure the N—H⋯O bonds take part in two ring motifs that can be described by the graph sets R22(30) and R22(10) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1955-1973.]). The ester groups participate to a different degree in mol­ecular association along the stacking direction (c axis) of the mol­ecular tapes. With the exception of O6, all ester oxygen atoms are involved in C—H⋯O inter­actions with meth­oxy hydrogen atoms acting as donors. The analysis of these inter­tape inter­actions reveals another two ring motifs of graph set R22(8) and R44(26) (Fig. 3[link]). According to the given pattern of hydrogen bonding, the crystal structure is composed of two-dimensional hydrogen-bonded layers connected by the linker mol­ecules in a zigzag pattern. The presence of the bulky headgroups prevents arene⋯arene inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (1) 2.11 (2) 2.982 (4) 168 (3)
N2—H2⋯O4ii 0.89 (1) 1.93 (2) 2.799 (4) 165 (5)
C1—H1C⋯O2i 0.98 2.58 3.532 (6) 164
C4—H4B⋯O2iii 0.98 2.36 3.340 (5) 176
C21—H21B⋯O6iii 0.98 2.53 3.315 (5) 137
C22—H22⋯O5ii 1.00 2.38 3.380 (5) 174
C24—H24B⋯O5iv 0.98 2.46 3.394 (5) 158
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y, z-1; (iv) x, y, z+1.
[Figure 2]
Figure 2
Structure of the mol­ecular ribbon including the mode of inter­molecular bonding in the crystal of the title compound. Dashed lines represent hydrogen bonds (Table 1[link]). Ring motifs [graph sets R22(30),R22(10)] are marked by colour highlighting.
[Figure 3]
Figure 3
Packing diagram of the title compound. The inter­molecular contacts are shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed six hits for crystal structures of methyl N-benzoyl-L-alaninate and its para-substituted derivatives. Of particular inter­est are the structures of methyl N-(4-bromo­lbenzo­yl)-L-alaninate (IVOKIO; Eissmann & Weber, 2011a[Eissmann, F. & Weber, E. (2011a). J. Mol. Struct. 994, 392-402.]) and methyl N-(4-ethynylbenzo­yl)-L-alaninate (PAHMIN; Eissmann & Weber, 2011b[Eissmann, F. & Weber, E. (2011b). J. Mol. Struct. 1005, 121-128.]). Their crystal packings are composed of structurally similar strands of N—H⋯O=C-bonded mol­ecules in which the amide N—H group acts as a donor and the amide O atom as an acceptor site. Unlike in the title compound, this inter­action is assisted by a C—H⋯O contact involving the L-alanine Cα methyl group as a donor and the sp3-hybridized ester oxygen atom as an acceptor. In contrast, the crystal structure of methyl N-benzoyl-L-alaninate (XAZZON; Coghlan et al., 2000[Coghlan, D. R., Easton, C. J. & Tiekink, E. R. T. (2000). Aust. J. Chem. 53, 551-556.]) is composed of zigzag strands of N—H⋯O=C-bonded mol­ecules. The ester group of the mol­ecule participates in inter­stand association via C—H⋯C=O-type hydrogen bonds, giving rise to two-dimensional supra­molecular networks.

5. Synthesis and crystallization

The title compound was prepared from methyl N-(4-bromo­benzo­yl)-L-alaninate (component-1) (Eissmann & Weber, 2011a[Eissmann, F. & Weber, E. (2011a). J. Mol. Struct. 994, 392-402.]) and methyl N-(4-ethynylbenzo­yl)-L-alaninate (component-2) (Eissmann & Weber, 2011b[Eissmann, F. & Weber, E. (2011b). J. Mol. Struct. 1005, 121-128.]) via a Sonogashira–Hagihara cross-coupling reaction (Sonogashira et al. 1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]) as follows. Component-1 (1.72 g, 6.0 mmol) and component-2 (1.39 g, 6.0 mmol) were dissolved in a degassed mixture of dry tri­methyl­amine (15 ml) and ethyl acetate (25 ml). To this solution, the catalyst being composed of tri­phenyl­phosphine (31.5 mg, 0.12 mmol), copper(I) iodide (22.9 mg, 0.12 mmol) and trans-di­chloro­bis­(tri­phenyl­phosphine)palladium(II) (42.1 mg, 0.06 mmol) was added. The mixture was stirred at room temperature away from light for 16 h. The precipitate which was formed was separated, washed three times with ethyl acetate (20 ml each) and suspended in an aqueous NH4Cl solution (100 ml). In this sequence, the isolated solid was washed with water (2 × 50 ml) and diethyl ether (4 × 25 ml). After drying in air, the product was obtained as a beige powder (1.39 g, 53%; m.p. 510–511 K; [α]D20 +61.4, 0.01 M, DMSO). 1H NMR (CDCl3): δH 1.42 (6H, d, 3JHH 7.30, CH—CH3), 3.66 (6H, s, O—CH3), 4.51 (2H, qui, 3JHH 7.15, CH), 7.71 (4H, d, 3JHH 8.35, ArH), 7.96 (4H, d, 3JHH 8.40, ArH), 8.93 (2H, d, 3JHH 6.90, NH). 13C NMR (DMSO-d6): δC 16.77 (CHCH3), 48.42 (CH), 51.99 (OCH3), 90.76 (CC), 124.95, 127.94, 131.49, 131.88, 133.76 (ArC), 165.49 [ArC(O)NH], 173.14 [C(O)OCH3]. IR (KBr): νmax. 3288 (NH), 1733 (C=O, ester), 1638 (C=O, amide), 1606, 1537 (Ar). MS (APCI): calculated for C24H24N2O6 (436.16), found 435.1 [M − H]. Analysis calculated for C24H24N2O6: C, 66.04; H, 5.54; N, 6.42; found: C, 66.23; H, 5.58; N, 6.45%. Colorless crystals suitable for X-ray diffraction were obtained from a solution of DMSO upon slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms. The crystal studied was refined as an inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C24H24N2O6
Mr 436.45
Crystal system, space group Monoclinic, P21
Temperature (K) 153
a, b, c (Å) 4.9409 (4), 39.015 (3), 5.8447 (4)
β (°) 100.905 (3)
V3) 1106.34 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.977, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 10506, 5192, 3859
Rint 0.034
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.125, 1.00
No. of reflections 5192
No. of parameters 302
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.23
Absolute structure Refined as an inversion twin
Computer programs: APEX2 and, SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N'-[(Ethyne-1,2-diyl)bis(1,4-phenylenecarbonyl)]bis(L-alaninate) top
Crystal data top
C24H24N2O6F(000) = 460
Mr = 436.45Dx = 1.310 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.9409 (4) ÅCell parameters from 2881 reflections
b = 39.015 (3) Åθ = 3.6–26.5°
c = 5.8447 (4) ŵ = 0.10 mm1
β = 100.905 (3)°T = 153 K
V = 1106.34 (14) Å3Irregular, colourless
Z = 20.25 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3859 reflections with I > 2σ(I)
Radiation source: sealed x-ray tubeRint = 0.034
φ and ω scansθmax = 28.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 46
Tmin = 0.977, Tmax = 0.988k = 5249
10506 measured reflectionsl = 77
5192 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3338P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.16 e Å3
5192 reflectionsΔρmin = 0.23 e Å3
302 parametersAbsolute structure: Refined as an inversion twin
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3228 (6)0.27103 (7)1.3737 (5)0.0359 (7)
O20.1565 (8)0.36026 (8)1.6451 (5)0.0492 (9)
O30.0032 (6)0.34262 (6)1.3334 (5)0.0351 (7)
O40.6614 (6)0.01503 (7)0.0365 (6)0.0438 (8)
O50.5951 (6)0.06167 (7)0.1874 (5)0.0332 (6)
O60.4374 (6)0.05575 (7)0.1439 (5)0.0372 (7)
N10.1280 (7)0.27972 (8)1.5074 (6)0.0262 (7)
H10.301 (4)0.2773 (9)1.489 (6)0.016 (9)*
N20.2024 (7)0.00595 (8)0.0317 (6)0.0275 (7)
H20.039 (5)0.0127 (12)0.002 (8)0.044 (13)*
C10.3251 (9)0.31396 (11)1.8526 (7)0.0395 (10)
H1A0.38660.29311.94010.059*
H1B0.27910.33141.95940.059*
H1C0.47280.32251.77710.059*
C20.0727 (8)0.30608 (9)1.6691 (7)0.0279 (8)
H2A0.07080.29681.75200.034*
C30.0422 (8)0.33900 (9)1.5482 (7)0.0283 (8)
C40.1041 (10)0.37401 (11)1.2158 (7)0.0420 (11)
H4A0.28690.37891.25010.063*
H4B0.11820.37131.04730.063*
H4C0.02060.39311.27080.063*
C50.0835 (8)0.26402 (9)1.3680 (7)0.0251 (8)
C60.0077 (8)0.23641 (9)1.2131 (7)0.0272 (9)
C70.2173 (9)0.21521 (9)1.2828 (7)0.0299 (9)
H70.33110.21831.43160.036*
C80.2781 (8)0.18931 (10)1.1366 (7)0.0312 (9)
H80.43100.17461.18780.037*
C90.1184 (8)0.18472 (9)0.9175 (7)0.0293 (8)
C100.1098 (9)0.20622 (10)0.8463 (8)0.0356 (10)
H100.22110.20350.69600.043*
C110.1735 (9)0.23150 (10)0.9951 (7)0.0320 (9)
H110.33130.24550.94770.038*
C120.1832 (9)0.15849 (9)0.7647 (7)0.0309 (9)
C130.2348 (9)0.13652 (10)0.6362 (7)0.0327 (9)
C140.2895 (9)0.10953 (10)0.4845 (7)0.0308 (9)
C150.5208 (9)0.08859 (11)0.5503 (8)0.0402 (11)
H150.64650.09280.69180.048*
C160.5651 (9)0.06161 (11)0.4073 (8)0.0414 (11)
H160.72460.04770.45060.050*
C170.3828 (8)0.05450 (9)0.2040 (7)0.0275 (8)
C180.1575 (9)0.07580 (10)0.1360 (8)0.0353 (10)
H180.03350.07160.00650.042*
C190.1123 (9)0.10325 (10)0.2755 (8)0.0366 (10)
H190.04170.11790.22690.044*
C200.4274 (8)0.02379 (9)0.0616 (7)0.0287 (9)
C210.2291 (10)0.01405 (12)0.4265 (7)0.0432 (11)
H21A0.07300.00080.49020.065*
H21B0.22310.03480.52220.065*
H21C0.40190.00180.42720.065*
C220.2127 (8)0.02395 (9)0.1792 (6)0.0266 (8)
H220.03490.03650.18660.032*
C230.4398 (8)0.04847 (9)0.0795 (6)0.0260 (8)
C240.6460 (10)0.07959 (11)0.2541 (7)0.0441 (11)
H24A0.60930.10230.18310.066*
H24B0.64220.08100.42090.066*
H24C0.82780.07160.23300.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (15)0.0326 (15)0.0523 (18)0.0022 (12)0.0120 (13)0.0084 (13)
O20.077 (2)0.0366 (17)0.0371 (17)0.0282 (16)0.0196 (17)0.0017 (13)
O30.0475 (18)0.0253 (14)0.0347 (16)0.0060 (13)0.0135 (13)0.0029 (12)
O40.0220 (16)0.0335 (16)0.080 (2)0.0023 (12)0.0185 (15)0.0213 (15)
O50.0339 (16)0.0292 (14)0.0390 (15)0.0031 (12)0.0135 (12)0.0066 (12)
O60.0442 (18)0.0350 (16)0.0353 (16)0.0093 (13)0.0149 (13)0.0002 (12)
N10.0209 (17)0.0217 (16)0.0377 (18)0.0026 (13)0.0095 (14)0.0032 (13)
N20.0225 (17)0.0262 (16)0.0347 (18)0.0016 (14)0.0077 (14)0.0056 (14)
C10.035 (2)0.042 (2)0.039 (2)0.011 (2)0.0006 (19)0.0103 (19)
C20.030 (2)0.0208 (17)0.036 (2)0.0049 (16)0.0149 (17)0.0025 (16)
C30.031 (2)0.0214 (18)0.033 (2)0.0027 (16)0.0076 (17)0.0020 (16)
C40.063 (3)0.027 (2)0.035 (2)0.008 (2)0.008 (2)0.0057 (18)
C50.025 (2)0.0184 (16)0.033 (2)0.0008 (15)0.0086 (16)0.0001 (15)
C60.030 (2)0.0154 (17)0.037 (2)0.0006 (15)0.0098 (18)0.0013 (15)
C70.032 (2)0.0203 (19)0.036 (2)0.0031 (16)0.0037 (17)0.0041 (16)
C80.034 (2)0.0200 (18)0.039 (2)0.0081 (17)0.0074 (17)0.0035 (17)
C90.038 (2)0.0143 (17)0.037 (2)0.0024 (16)0.0117 (17)0.0010 (15)
C100.038 (2)0.030 (2)0.037 (2)0.0063 (18)0.0044 (18)0.0042 (17)
C110.030 (2)0.028 (2)0.037 (2)0.0093 (18)0.0031 (18)0.0013 (17)
C120.039 (2)0.0193 (18)0.034 (2)0.0031 (16)0.0066 (17)0.0016 (16)
C130.037 (2)0.0241 (19)0.039 (2)0.0021 (18)0.0112 (18)0.0001 (18)
C140.036 (2)0.0209 (18)0.037 (2)0.0002 (16)0.0104 (18)0.0053 (16)
C150.039 (3)0.032 (2)0.046 (3)0.0033 (19)0.003 (2)0.0124 (19)
C160.031 (2)0.033 (2)0.056 (3)0.0105 (19)0.002 (2)0.015 (2)
C170.024 (2)0.0231 (18)0.038 (2)0.0027 (15)0.0127 (17)0.0030 (16)
C180.040 (3)0.028 (2)0.037 (2)0.0070 (18)0.0044 (19)0.0044 (17)
C190.038 (3)0.029 (2)0.042 (2)0.0114 (18)0.005 (2)0.0021 (18)
C200.023 (2)0.0228 (18)0.042 (2)0.0019 (16)0.0107 (17)0.0037 (16)
C210.053 (3)0.047 (3)0.030 (2)0.016 (2)0.009 (2)0.0023 (19)
C220.026 (2)0.0246 (19)0.030 (2)0.0004 (15)0.0079 (16)0.0058 (15)
C230.028 (2)0.0220 (18)0.0293 (19)0.0055 (16)0.0091 (16)0.0061 (15)
C240.056 (3)0.037 (2)0.037 (2)0.018 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C51.220 (5)C8—H80.9500
O2—C31.203 (5)C9—C101.404 (6)
O3—C31.324 (5)C9—C121.433 (5)
O3—C41.455 (5)C10—C111.390 (5)
O4—C201.241 (5)C10—H100.9500
O5—C231.198 (4)C11—H110.9500
O6—C231.338 (4)C12—C131.198 (5)
O6—C241.446 (5)C13—C141.435 (5)
N1—C51.345 (5)C14—C191.384 (6)
N1—C21.457 (4)C14—C151.398 (6)
N1—H10.886 (14)C15—C161.387 (6)
N2—C201.337 (5)C15—H150.9500
N2—C221.457 (5)C16—C171.377 (6)
N2—H20.894 (14)C16—H160.9500
C1—C21.514 (6)C17—C181.386 (6)
C1—H1A0.9800C17—C201.499 (5)
C1—H1B0.9800C18—C191.390 (6)
C1—H1C0.9800C18—H180.9500
C2—C31.523 (5)C19—H190.9500
C2—H2A1.0000C21—C221.513 (6)
C4—H4A0.9800C21—H21A0.9800
C4—H4B0.9800C21—H21B0.9800
C4—H4C0.9800C21—H21C0.9800
C5—C61.499 (5)C22—C231.505 (5)
C6—C71.384 (5)C22—H221.0000
C6—C111.392 (6)C24—H24A0.9800
C7—C81.393 (5)C24—H24B0.9800
C7—H70.9500C24—H24C0.9800
C8—C91.383 (6)
C3—O3—C4115.2 (3)C10—C11—C6120.5 (4)
C23—O6—C24115.7 (3)C10—C11—H11119.8
C5—N1—C2119.7 (3)C6—C11—H11119.8
C5—N1—H1122 (2)C13—C12—C9179.4 (5)
C2—N1—H1117 (2)C12—C13—C14178.1 (4)
C20—N2—C22122.6 (3)C19—C14—C15119.2 (4)
C20—N2—H2119 (3)C19—C14—C13120.9 (4)
C22—N2—H2119 (3)C15—C14—C13119.9 (4)
C2—C1—H1A109.5C16—C15—C14119.4 (4)
C2—C1—H1B109.5C16—C15—H15120.3
H1A—C1—H1B109.5C14—C15—H15120.3
C2—C1—H1C109.5C17—C16—C15121.4 (4)
H1A—C1—H1C109.5C17—C16—H16119.3
H1B—C1—H1C109.5C15—C16—H16119.3
N1—C2—C1111.9 (3)C16—C17—C18119.1 (4)
N1—C2—C3113.2 (3)C16—C17—C20120.0 (4)
C1—C2—C3110.0 (3)C18—C17—C20121.0 (4)
N1—C2—H2A107.2C17—C18—C19120.2 (4)
C1—C2—H2A107.2C17—C18—H18119.9
C3—C2—H2A107.2C19—C18—H18119.9
O2—C3—O3123.5 (4)C14—C19—C18120.6 (4)
O2—C3—C2122.0 (3)C14—C19—H19119.7
O3—C3—C2114.5 (3)C18—C19—H19119.7
O3—C4—H4A109.5O4—C20—N2122.0 (3)
O3—C4—H4B109.5O4—C20—C17121.6 (3)
H4A—C4—H4B109.5N2—C20—C17116.4 (3)
O3—C4—H4C109.5C22—C21—H21A109.5
H4A—C4—H4C109.5C22—C21—H21B109.5
H4B—C4—H4C109.5H21A—C21—H21B109.5
O1—C5—N1121.8 (3)C22—C21—H21C109.5
O1—C5—C6122.1 (4)H21A—C21—H21C109.5
N1—C5—C6116.0 (3)H21B—C21—H21C109.5
C7—C6—C11119.2 (3)N2—C22—C23112.7 (3)
C7—C6—C5122.0 (4)N2—C22—C21112.0 (3)
C11—C6—C5118.7 (3)C23—C22—C21111.2 (3)
C6—C7—C8120.5 (4)N2—C22—H22106.8
C6—C7—H7119.7C23—C22—H22106.8
C8—C7—H7119.7C21—C22—H22106.8
C9—C8—C7120.7 (4)O5—C23—O6123.2 (4)
C9—C8—H8119.6O5—C23—C22125.0 (3)
C7—C8—H8119.6O6—C23—C22111.6 (3)
C8—C9—C10118.9 (4)O6—C24—H24A109.5
C8—C9—C12120.9 (4)O6—C24—H24B109.5
C10—C9—C12120.2 (4)H24A—C24—H24B109.5
C11—C10—C9120.2 (4)O6—C24—H24C109.5
C11—C10—H10119.9H24A—C24—H24C109.5
C9—C10—H10119.9H24B—C24—H24C109.5
C5—N1—C2—C1164.9 (3)C19—C14—C15—C161.2 (7)
C5—N1—C2—C370.2 (4)C13—C14—C15—C16177.1 (4)
C4—O3—C3—O22.1 (6)C14—C15—C16—C171.4 (7)
C4—O3—C3—C2179.7 (3)C15—C16—C17—C183.1 (7)
N1—C2—C3—O2162.9 (4)C15—C16—C17—C20176.0 (4)
C1—C2—C3—O271.1 (5)C16—C17—C18—C192.1 (6)
N1—C2—C3—O319.4 (5)C20—C17—C18—C19177.0 (4)
C1—C2—C3—O3106.5 (4)C15—C14—C19—C182.2 (7)
C2—N1—C5—O10.6 (5)C13—C14—C19—C18176.1 (4)
C2—N1—C5—C6178.0 (3)C17—C18—C19—C140.6 (7)
O1—C5—C6—C7142.9 (4)C22—N2—C20—O43.3 (6)
N1—C5—C6—C734.5 (5)C22—N2—C20—C17178.3 (3)
O1—C5—C6—C1135.5 (6)C16—C17—C20—O438.6 (6)
N1—C5—C6—C11147.1 (4)C18—C17—C20—O4142.3 (4)
C11—C6—C7—C80.2 (6)C16—C17—C20—N2139.8 (4)
C5—C6—C7—C8178.5 (3)C18—C17—C20—N239.3 (5)
C6—C7—C8—C91.3 (6)C20—N2—C22—C2346.3 (5)
C7—C8—C9—C101.2 (6)C20—N2—C22—C2180.0 (5)
C7—C8—C9—C12178.9 (4)C24—O6—C23—O53.1 (5)
C8—C9—C10—C110.3 (6)C24—O6—C23—C22179.1 (3)
C12—C9—C10—C11179.6 (4)N2—C22—C23—O5134.7 (4)
C9—C10—C11—C61.8 (6)C21—C22—C23—O57.9 (5)
C7—C6—C11—C101.8 (6)N2—C22—C23—O649.4 (4)
C5—C6—C11—C10179.8 (4)C21—C22—C23—O6176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (1)2.11 (2)2.982 (4)168 (3)
N2—H2···O4ii0.89 (1)1.93 (2)2.799 (4)165 (5)
C1—H1C···O2i0.982.583.532 (6)164
C4—H4B···O2iii0.982.363.340 (5)176
C21—H21B···O6iii0.982.533.315 (5)137
C22—H22···O5ii1.002.383.380 (5)174
C24—H24B···O5iv0.982.463.394 (5)158
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z1; (iv) x, y, z+1.
 

Funding information

We acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG) under the Priority Program SPP 1362/1 (`Porous Metal-Organic Frameworks').

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1955–1973.  CrossRef Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoghlan, D. R., Easton, C. J. & Tiekink, E. R. T. (2000). Aust. J. Chem. 53, 551–556.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.  Google Scholar
First citationDesiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.  Google Scholar
First citationEissmann, F. & Weber, E. (2010). Struct. Chem. Commun. 1, 72–74.  Google Scholar
First citationEissmann, F. & Weber, E. (2011a). J. Mol. Struct. 994, 392–402.  CAS Google Scholar
First citationEissmann, F. & Weber, E. (2011b). J. Mol. Struct. 1005, 121–128.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113.  Web of Science CSD CrossRef Google Scholar
First citationKostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. pp. 3859–3861.  Web of Science CSD CrossRef Google Scholar
First citationLin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, G. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationWisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds