research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­[μ-3-carb­oxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and bInstitute of Organic Chemistry, Murmanska Street, 5, Kyiv, 02660, Ukraine
*Correspondence e-mail: senchyk.ganna@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 12 April 2019; accepted 13 May 2019; online 17 May 2019)

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2 ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.

1. Chemical context

Heterometallic hybrids incorporating a metal oxide/oxofluoride matrix are of particular inter­est as they exhibit non-trivial magnetic, luminescent (Cui et al., 2012[Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126-1162.]), optical and catalytic properties (Dolbecq et al., 2010[Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009-6048.]). Among the broad range of inorganic anions, vanadium oxofluorides (VOFs) stand out for their large number of types and structural motifs from mono- (Aldous et al., 2007[Aldous, D. W., Stephens, N. F. & Lightfoot, P. (2007). Dalton Trans. pp. 2271-2282.]; Stephens et al., 2005[Stephens, N. F., Buck, M. & Lightfoot, P. (2005). J. Mater. Chem. 15, 4298-4300.]) to polynuclear (Buchholz et al., 1988[Buchholz, N., Leimkuehler, M., Kiriazis, L. & Mattes, R. (1988). Inorg. Chem. 27, 2035-2039.]; Ninclaus et al., 1997[Ninclaus, C., Riou, D. & Férey, G. (1997). Chem. Commun. pp. 851-852.]) ones in the structure as discrete units or incorporated into coordination frameworks (Welk et al., 2007[Welk, M. E., Stern, C. L., Poeppelmeier, K. R. & Norquist, A. J. (2007). Cryst. Growth Des. 7, 956-961.]; Mahenthirarajah et al., 2008[Mahenthirarajah, T., Li, Y. & Lightfoot, P. (2008). Inorg. Chem. 47, 9097-9102.]). The AgI/VOF pair is a non-typical combination for classical coordination chemistry, but materials such as Ag4V2O6F2 (Sorensen et al., 2005[Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347-6352.]; Albrecht et al., 2009[Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017-3020.]) and Ag3VO2F4 (Chamberlain et al., 2010[Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868-4873.]) are attractive electrochemically active phases for solid-state batteries.

In the present research we introduce a new ligand [tr-ad-COOH = 1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane], whose 1,2,4-triazole and –COOH donor groups can support the formation of the Ag–V heterometallic coordination cluster. It has recently been shown (Senchyk et al., 2012[Senchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025-8033.]) that symmetrical 1,2,4-triazoles can selectively bridge these different metals. Considering a possible step-by-step mechanism, it becomes clear that after the formation of the simplest {Ag2(η2-tr)2(tr)2}2+ binuclear fragment, two N atoms remain uncoordinated and have potential for further inter­actions. In aqueous reaction media, vanadium oxofluorides exist in anionic forms with weakly coordinated water mol­ecules that are very labile toward N-donor ligand substitution. Thus, a combination of an AgI–triazole cation and VOF anions lead to the neutral tetra­nuclear {AgI2(VVO2F2)2(tr)4} unit, which was found in the structure of the title [Ag2(VO2F2)2(tr-ad-COOH)4]·4H2O complex I (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound I, showing the atomic labelling scheme [symmetry code: (i) –x, 1 – y, –z]. Displacement ellipsoids are drawn at the 30% probability level. The two symmetry-generated water molecules are omitted.

2. Structural commentary

The asymmetric unit of the title compound contains one AgI cation, one [VO2F2] anion, two organic ligands and two solvent water mol­ecules. Two silver ions, two VOF anions and four tr-ad-COOH units constitute the mol­ecular tetra­nuclear cluster, which resides across an inversion centre (Fig. 1[link]). The AgI atom adopts a distorted tetra­hedral coordination environment [AgN3O] with typical Ag—N(triazole) bond lengths [2.230 (3)–2.262 (3) Å; Table 1[link]] and an elongated Ag—O bond [2.700 (3) Å]. Two 1,2,4-triazole functional groups link two adjacent silver atoms [the Ag⋯Agi distance is 3.7488 (5) Å; symmetry code: (i) –x, −y + 1, −z], while the other two 1,2,4-triazole groups combine the Ag and V centres [Ag⋯V= 3.5376 (6) Å]. The VV atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with short V—O bonds [1.627 (2), 1.628 (2) Å], V—F bonds [1.839 (2), 1.850 (2) Å] and an elongated V—N bond [2.152 (3) Å]. The polyhedra can be more precisely described by the Reedijk's factor τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.72 (for strict square-pyramidal polyhedra τ = 0 and for trigonal–bipyramidal τ = 1).

Table 1
Selected geometric parameters (Å, °)

Ag1—N4 2.230 (3) V1—O2 1.628 (2)
Ag1—N2 2.257 (3) V1—F2 1.839 (2)
Ag1—N5i 2.262 (3) V1—F1 1.850 (2)
Ag1—O1 2.700 (3) V1—N1 2.152 (3)
V1—O1 1.627 (2)    
       
N4—Ag1—N2 121.35 (11) O1—V1—F1 122.01 (12)
N4—Ag1—N5i 115.91 (10) O2—V1—F1 122.74 (11)
N2—Ag1—N5i 120.21 (11) F2—V1—F1 86.60 (10)
N4—Ag1—O1 114.33 (9) O1—V1—N1 87.04 (11)
N2—Ag1—O1 74.30 (9) O2—V1—N1 87.42 (12)
N5i—Ag1—O1 97.45 (10) F2—V1—N1 166.19 (11)
O1—V1—O2 112.52 (13) F1—V1—N1 79.59 (10)
O1—V1—F2 100.53 (11) V1—O1—Ag1 107.06 (11)
O2—V1—F2 100.10 (12)    
Symmetry code: (i) -x, -y+1, -z.

As a result, the heterobimetallic unit {AgI2(VVO2F2)2(tr)4} is formed. A search in the Cambridge Structural Database (version 5.39, updates of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that only three crystal structures containing the AgI/tr/VV fragments are known so far (Senchyk et al., 2012[Senchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025-8033.]). While considering heterofunctional ligands, {Cu2(HL)2[Mo4O13]}·2H2O (H2L = 5-triazole isophthalic acid; Zhu et al., 2012[Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267-13270.]) is the only known structure where both COO and triazole groups support the heterometallic Cu⋯Mo connection.

3. Supra­molecular features

The structure of I is characterized by an extended hydrogen-bonding network. The carb­oxy­lic function of the tr-ad-COOH ligand remains in a neutral form, being uncoordinated. It is involved in hydrogen bonding that leads to a three-dimensional hydrogen-bonded network (Figs. 2[link] and 3[link]). The nearest environment of the mol­ecular fragment complex involved in hydrogen-bonding inter­actions is shown in Fig. 4[link]. The corres­ponding geometric parameters are given in Table 2[link]. One carb­oxy­lic group, as a hydrogen-bond donor, forms a contact with a water mol­ecule O3—H1O⋯O2Wiv = 2.650 (4) Å [symmetry code: (iv) x, 1 + y, z], while another COOH group, as a hydrogen-bond acceptor, is directed toward the F atom of a {VO2F2} anion [O5—H2O⋯F1v = 2.589 (3) Å; symmetry code: (v) 1 + x, −1 + y, z]. Two water mol­ecules are inter­bonded [O2W—H3W⋯O1W = 2.753 (4) Å] and additionally act as hydrogen-bond donors with O and F atoms from the neighboring {VO2F2} anions and as hydrogen-bond acceptor (in the case of O2W ) with the O3 atom from an adjacent carb­oxy­lic group. Some weak contacts between the triazole C—H groups and F atoms of the VOF anions are also observed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯F2ii 0.85 1.92 2.763 (4) 169
O1W—H2W⋯O2iii 0.85 2.08 2.910 (4) 166
O2W—H3W⋯O1W 0.85 2.08 2.753 (4) 136
O2W—H4W⋯O1 0.85 2.00 2.813 (4) 161
O3—H1O⋯O2Wiv 0.82 1.83 2.650 (4) 178
O5—H2O⋯F1v 0.82 1.77 2.589 (3) 178
C15—H15⋯F1i 0.93 2.19 2.966 (4) 141
C14—H14⋯F2ii 0.93 2.44 3.303 (4) 154
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) x+1, y-1, z.
[Figure 2]
Figure 2
View of the crystal packing of compound I. Vanadium oxofluoride anions are shown as polyhedra.
[Figure 3]
Figure 3
Projection on the ab plane showing the crystal packing in the structure. Vanadium oxofluoride anions are shown as polyhedra.
[Figure 4]
Figure 4
Hydrogen-bonding arrangement in the structure of the title compound. The adamantyl scaffolds are shown in a stick mode omitting the H atoms [symmetry codes: (i) −x, 1 − y, −z; (ii) 1 + x, y, z; (iii) −x, 1 − y, 1 − z; (iv) x, 1 + y, z; (v) 1 + x, −1 + y, z; (vi) x, −1 + y, z; (vii) −1 + x, y, z; (viii) −1 + x, 1 + y, z].

4. Synthesis and crystallization

1-(1,2,4-Triazol-4-yl)-3-carb­oxy­adamantane (tr-ad-COOH) was synthesized in 63% yield by refluxing 3-amino-adamantane-1-carb­oxy­lic acid (Wanka et al., 2007[Wanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007). Eur. J. Org. Chem. pp. 1474-1490.]) (3.00 g, 15.4 mmol) and di­methyl­formamide azine (5.46 g, 38.5 mmol) in the presence of toluene­sulfonic acid monohydrate (0.44 g, 2.3 mmol) as catalyst in DMF (30 ml). Complex I was prepared under hydro­thermal conditions as follows. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-ad-COOH (12.4 mg, 0.050 mmol), V2O5 (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 14.8 mg, 78%).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The non-H atoms were refined with anisotropic displacement parameters and a soft rigid-bond restraint was applied to C10—C13 in order to improve the refinement stability. C-bound hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (triazole), C—H = 0.97 Å (adamantane CH2), C—H = 0.98 Å (adamantane CH) and with Uiso(H) = 1.2Ueq(C). O-bound hydrogen atoms were located in a difference-Fourier map and then refined with O—H = 0.82 Å (carb­oxy­lic) or 0.85 Å (H2O) with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ag2V2F4O4(C13H17N3O2)4]·4H2O
Mr 1518.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.2673 (5), 12.6026 (6), 14.6757 (7)
α, β, γ (°) 77.985 (3), 86.535 (2), 83.945 (3)
V3) 1486.05 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.26 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII area-detector
Absorption correction Numerical [face indexed (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])]
Tmin, Tmax 0.682, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 25045, 7659, 4839
Rint 0.053
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.06
No. of reflections 7659
No. of parameters 397
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.70
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Tetrakis[µ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetrafluoridodi-µ2-oxido-dioxidodisilver(I)divanadium(V) tetrahydrate top
Crystal data top
[Ag2V2F4O4(C13H17N3O2)4]·4H2OZ = 1
Mr = 1518.86F(000) = 776
Triclinic, P1Dx = 1.697 Mg m3
a = 8.2673 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6026 (6) ÅCell parameters from 25045 reflections
c = 14.6757 (7) Åθ = 1.7–28.7°
α = 77.985 (3)°µ = 1.05 mm1
β = 86.535 (2)°T = 296 K
γ = 83.945 (3)°Prism, light-yellow
V = 1486.05 (14) Å30.26 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4839 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
ω scansθmax = 28.7°, θmin = 1.7°
Absorption correction: numerical
[face indexed (SADABS; Bruker, 2008)]
h = 1111
Tmin = 0.682, Tmax = 0.890k = 1617
25045 measured reflectionsl = 1919
7659 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.1791P]
where P = (Fo2 + 2Fc2)/3
7659 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.00385 (4)0.54697 (2)0.11326 (2)0.04628 (11)
V10.30899 (7)0.54308 (4)0.29331 (4)0.03150 (14)
F10.3693 (3)0.67346 (15)0.21335 (14)0.0467 (5)
F20.5052 (3)0.49964 (18)0.26987 (17)0.0604 (6)
O10.1839 (3)0.44852 (18)0.26017 (19)0.0480 (7)
O20.3264 (3)0.5279 (2)0.40630 (16)0.0465 (6)
O30.1863 (4)1.1178 (2)0.3251 (2)0.0763 (10)
H1O0.16521.18360.32100.114*
O40.2087 (4)1.1221 (2)0.4731 (2)0.0697 (9)
O50.7345 (4)0.1354 (2)0.1879 (2)0.0763 (10)
H2O0.70080.19570.19710.114*
O60.4929 (4)0.0858 (2)0.1313 (2)0.0754 (10)
N10.0998 (3)0.6295 (2)0.29829 (18)0.0340 (6)
N20.0147 (4)0.6413 (2)0.2265 (2)0.0422 (7)
N30.0900 (3)0.7190 (2)0.33460 (18)0.0324 (6)
N40.2080 (4)0.4410 (2)0.0703 (2)0.0412 (7)
N50.2061 (4)0.4050 (2)0.0112 (2)0.0444 (8)
N60.4209 (4)0.3254 (2)0.06259 (18)0.0356 (7)
C10.0521 (4)0.6773 (3)0.3618 (2)0.0374 (8)
H10.10860.68170.41780.045*
C20.1274 (5)0.6938 (3)0.2511 (2)0.0425 (9)
H20.22120.71140.21530.051*
C30.1904 (4)0.7734 (2)0.3894 (2)0.0290 (7)
C40.1587 (5)0.7283 (3)0.4921 (2)0.0385 (8)
H4A0.18190.64970.50540.046*
H4B0.04550.74570.50950.046*
C50.2693 (5)0.7795 (3)0.5474 (3)0.0496 (10)
H50.25210.75000.61410.059*
C60.4463 (5)0.7555 (3)0.5197 (3)0.0600 (12)
H6A0.51460.78760.55600.072*
H6B0.47520.67730.53220.072*
C70.4743 (4)0.8014 (3)0.4181 (3)0.0475 (10)
H70.58900.78520.40030.057*
C80.3671 (4)0.7488 (3)0.3614 (3)0.0472 (10)
H8A0.38520.77750.29540.057*
H8B0.39530.67060.37310.057*
C90.1443 (4)0.8964 (2)0.3674 (2)0.0352 (8)
H9A0.03010.91240.38370.042*
H9B0.16220.92510.30130.042*
C100.2513 (4)0.9494 (3)0.4246 (3)0.0380 (8)
C110.2249 (5)0.9011 (3)0.5283 (2)0.0461 (9)
H11A0.29150.93450.56460.055*
H11B0.11180.91650.54710.055*
C120.4305 (4)0.9237 (3)0.3956 (3)0.0415 (9)
H12A0.44750.95120.32920.050*
H12B0.49990.95900.42870.050*
C130.2125 (5)1.0721 (3)0.4106 (3)0.0514 (10)
C140.3380 (5)0.3922 (3)0.1122 (2)0.0423 (9)
H140.36910.40260.16930.051*
C150.3337 (5)0.3364 (3)0.0129 (3)0.0519 (10)
H150.36130.29930.06100.062*
C160.5697 (4)0.2489 (2)0.0852 (2)0.0328 (7)
C170.6483 (5)0.2732 (3)0.1687 (3)0.0447 (9)
H17A0.57250.26470.22230.054*
H17B0.67720.34760.15500.054*
C180.8018 (5)0.1935 (3)0.1904 (3)0.0467 (9)
H180.85330.20850.24420.056*
C190.7547 (5)0.0767 (3)0.2133 (2)0.0421 (9)
H19A0.68060.06710.26750.050*
H19B0.85110.02630.22750.050*
C200.6725 (4)0.0529 (3)0.1294 (2)0.0376 (8)
C210.5206 (4)0.1337 (2)0.1075 (2)0.0337 (7)
H21A0.46770.11920.05470.040*
H21B0.44420.12510.16070.040*
C220.6886 (5)0.2630 (3)0.0006 (3)0.0471 (9)
H22A0.71840.33730.01440.057*
H22B0.63760.24880.05280.057*
C230.8418 (5)0.1830 (3)0.0231 (3)0.0516 (10)
H230.91860.19200.03080.062*
C240.9208 (5)0.2080 (3)0.1068 (3)0.0599 (12)
H24A1.01890.15920.12090.072*
H24B0.95070.28220.09230.072*
C250.7922 (5)0.0670 (3)0.0448 (3)0.0464 (9)
H25A0.88780.01560.05780.056*
H25B0.74140.05250.00870.056*
C260.6226 (5)0.0622 (3)0.1493 (3)0.0476 (9)
O1W0.2476 (3)0.4641 (2)0.4048 (2)0.0595 (7)
H1W0.32960.47860.36820.089*
H2W0.27730.45520.46060.089*
O2W0.1186 (3)0.33128 (19)0.3067 (2)0.0564 (7)
H3W0.12610.35020.35850.085*
H4W0.02430.35400.28660.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0503 (2)0.05347 (19)0.03972 (17)0.00170 (14)0.00405 (13)0.02286 (13)
V10.0352 (3)0.0265 (3)0.0343 (3)0.0065 (2)0.0035 (2)0.0074 (2)
F10.0587 (14)0.0416 (11)0.0383 (12)0.0013 (10)0.0061 (10)0.0051 (9)
F20.0451 (14)0.0697 (15)0.0759 (17)0.0204 (11)0.0034 (12)0.0285 (13)
O10.0462 (16)0.0342 (13)0.0697 (18)0.0062 (11)0.0050 (13)0.0227 (12)
O20.0495 (17)0.0532 (15)0.0348 (14)0.0085 (12)0.0027 (12)0.0022 (12)
O30.118 (3)0.0406 (16)0.068 (2)0.0068 (17)0.011 (2)0.0057 (15)
O40.073 (2)0.0575 (18)0.091 (2)0.0061 (15)0.0108 (18)0.0400 (17)
O50.071 (2)0.0330 (15)0.122 (3)0.0048 (14)0.033 (2)0.0003 (16)
O60.087 (3)0.0415 (16)0.098 (3)0.0194 (16)0.042 (2)0.0033 (16)
N10.0354 (16)0.0372 (15)0.0336 (15)0.0097 (12)0.0004 (13)0.0142 (12)
N20.0450 (19)0.0518 (18)0.0386 (17)0.0174 (14)0.0052 (14)0.0247 (14)
N30.0341 (16)0.0340 (14)0.0333 (15)0.0084 (12)0.0039 (12)0.0151 (12)
N40.0451 (19)0.0443 (17)0.0383 (17)0.0040 (14)0.0067 (14)0.0205 (14)
N50.051 (2)0.0509 (18)0.0333 (16)0.0055 (15)0.0092 (14)0.0176 (14)
N60.0435 (18)0.0344 (15)0.0306 (15)0.0008 (13)0.0052 (13)0.0112 (12)
C10.033 (2)0.048 (2)0.0373 (19)0.0148 (16)0.0065 (15)0.0199 (16)
C20.044 (2)0.057 (2)0.0333 (19)0.0212 (18)0.0093 (16)0.0190 (17)
C30.0270 (17)0.0314 (16)0.0320 (17)0.0067 (13)0.0010 (13)0.0122 (13)
C40.045 (2)0.0367 (18)0.0353 (19)0.0130 (16)0.0025 (16)0.0052 (15)
C50.062 (3)0.056 (2)0.034 (2)0.022 (2)0.0089 (18)0.0061 (17)
C60.053 (3)0.045 (2)0.084 (3)0.0065 (19)0.035 (2)0.004 (2)
C70.026 (2)0.047 (2)0.074 (3)0.0029 (16)0.0016 (19)0.023 (2)
C80.034 (2)0.045 (2)0.071 (3)0.0073 (16)0.0059 (19)0.0302 (19)
C90.036 (2)0.0297 (17)0.041 (2)0.0064 (14)0.0068 (15)0.0066 (14)
C100.0318 (19)0.0296 (16)0.055 (2)0.0063 (14)0.0107 (16)0.0106 (16)
C110.038 (2)0.064 (2)0.047 (2)0.0129 (18)0.0019 (17)0.0321 (19)
C120.035 (2)0.047 (2)0.048 (2)0.0184 (16)0.0010 (16)0.0160 (17)
C130.047 (2)0.046 (2)0.064 (3)0.0117 (18)0.009 (2)0.013 (2)
C140.049 (2)0.045 (2)0.036 (2)0.0040 (17)0.0082 (17)0.0179 (16)
C150.059 (3)0.062 (2)0.038 (2)0.014 (2)0.0126 (19)0.0252 (19)
C160.038 (2)0.0290 (16)0.0316 (18)0.0041 (14)0.0039 (15)0.0060 (13)
C170.048 (2)0.040 (2)0.051 (2)0.0030 (17)0.0113 (18)0.0186 (17)
C180.043 (2)0.048 (2)0.054 (2)0.0046 (17)0.0159 (19)0.0179 (18)
C190.047 (2)0.043 (2)0.0346 (19)0.0016 (17)0.0086 (17)0.0043 (16)
C200.048 (2)0.0289 (17)0.0357 (19)0.0026 (15)0.0043 (16)0.0056 (14)
C210.040 (2)0.0335 (17)0.0282 (17)0.0083 (14)0.0034 (15)0.0059 (14)
C220.051 (2)0.040 (2)0.045 (2)0.0083 (17)0.0041 (19)0.0047 (17)
C230.041 (2)0.056 (2)0.051 (2)0.0020 (19)0.0122 (19)0.0001 (19)
C240.038 (2)0.051 (2)0.087 (3)0.0087 (19)0.007 (2)0.002 (2)
C250.050 (2)0.043 (2)0.044 (2)0.0071 (17)0.0032 (18)0.0120 (17)
C260.057 (3)0.040 (2)0.046 (2)0.0025 (19)0.0149 (19)0.0088 (17)
O1W0.0571 (19)0.0644 (18)0.0593 (19)0.0086 (14)0.0060 (14)0.0151 (14)
O2W0.0617 (19)0.0372 (14)0.0679 (19)0.0009 (13)0.0066 (15)0.0072 (13)
Geometric parameters (Å, º) top
Ag1—N42.230 (3)C8—H8A0.9700
Ag1—N22.257 (3)C8—H8B0.9700
Ag1—N5i2.262 (3)C9—C101.543 (4)
Ag1—O12.700 (3)C9—H9A0.9700
V1—O11.627 (2)C9—H9B0.9700
V1—O21.628 (2)C10—C131.519 (5)
V1—F21.839 (2)C10—C111.529 (5)
V1—F11.850 (2)C10—C121.536 (5)
V1—N12.152 (3)C11—H11A0.9700
O3—C131.288 (5)C11—H11B0.9700
O3—H1O0.8200C12—H12A0.9700
O4—C131.214 (5)C12—H12B0.9700
O5—C261.301 (4)C14—H140.9300
O5—H2O0.8200C15—H150.9300
O6—C261.201 (5)C16—C211.513 (4)
N1—C11.309 (4)C16—C171.521 (4)
N1—N21.368 (4)C16—C221.528 (5)
N2—C21.306 (4)C17—C181.539 (5)
N3—C21.339 (4)C17—H17A0.9700
N3—C11.342 (4)C17—H17B0.9700
N3—C31.496 (4)C18—C241.519 (6)
N4—C141.301 (4)C18—C191.526 (5)
N4—N51.367 (4)C18—H180.9800
N5—C151.293 (4)C19—C201.539 (5)
N5—Ag1i2.262 (3)C19—H19A0.9700
N6—C151.334 (4)C19—H19B0.9700
N6—C141.335 (4)C20—C261.514 (5)
N6—C161.489 (4)C20—C251.533 (5)
C1—H10.9300C20—C211.536 (5)
C2—H20.9300C21—H21A0.9700
C3—C81.512 (4)C21—H21B0.9700
C3—C41.513 (4)C22—C231.540 (5)
C3—C91.529 (4)C22—H22A0.9700
C4—C51.531 (5)C22—H22B0.9700
C4—H4A0.9700C23—C251.525 (5)
C4—H4B0.9700C23—C241.528 (6)
C5—C111.509 (5)C23—H230.9800
C5—C61.512 (6)C24—H24A0.9700
C5—H50.9800C24—H24B0.9700
C6—C71.496 (6)C25—H25A0.9700
C6—H6A0.9700C25—H25B0.9700
C6—H6B0.9700O1W—H1W0.8500
C7—C121.517 (5)O1W—H2W0.8500
C7—C81.535 (5)O2W—H3W0.8499
C7—H70.9800O2W—H4W0.8500
N4—Ag1—N2121.35 (11)C11—C10—C9109.4 (3)
N4—Ag1—N5i115.91 (10)C12—C10—C9108.4 (3)
N2—Ag1—N5i120.21 (11)C5—C11—C10110.3 (3)
N4—Ag1—O1114.33 (9)C5—C11—H11A109.6
N2—Ag1—O174.30 (9)C10—C11—H11A109.6
N5i—Ag1—O197.45 (10)C5—C11—H11B109.6
O1—V1—O2112.52 (13)C10—C11—H11B109.6
O1—V1—F2100.53 (11)H11A—C11—H11B108.1
O2—V1—F2100.10 (12)C7—C12—C10109.5 (3)
O1—V1—F1122.01 (12)C7—C12—H12A109.8
O2—V1—F1122.74 (11)C10—C12—H12A109.8
F2—V1—F186.60 (10)C7—C12—H12B109.8
O1—V1—N187.04 (11)C10—C12—H12B109.8
O2—V1—N187.42 (12)H12A—C12—H12B108.2
F2—V1—N1166.19 (11)O4—C13—O3123.5 (4)
F1—V1—N179.59 (10)O4—C13—C10123.6 (4)
V1—O1—Ag1107.06 (11)O3—C13—C10112.9 (3)
C13—O3—H1O109.5N4—C14—N6111.3 (3)
C26—O5—H2O109.5N4—C14—H14124.3
C1—N1—N2107.1 (3)N6—C14—H14124.3
C1—N1—V1131.9 (2)N5—C15—N6111.9 (3)
N2—N1—V1120.97 (19)N5—C15—H15124.0
C2—N2—N1106.5 (3)N6—C15—H15124.0
C2—N2—Ag1134.6 (2)N6—C16—C21108.4 (3)
N1—N2—Ag1117.65 (19)N6—C16—C17109.7 (3)
C2—N3—C1104.9 (3)C21—C16—C17110.0 (3)
C2—N3—C3127.8 (3)N6—C16—C22108.9 (3)
C1—N3—C3127.2 (3)C21—C16—C22109.9 (3)
C14—N4—N5106.5 (3)C17—C16—C22110.0 (3)
C14—N4—Ag1133.2 (2)C16—C17—C18108.7 (3)
N5—N4—Ag1119.9 (2)C16—C17—H17A110.0
C15—N5—N4106.3 (3)C18—C17—H17A110.0
C15—N5—Ag1i129.4 (2)C16—C17—H17B110.0
N4—N5—Ag1i124.1 (2)C18—C17—H17B110.0
C15—N6—C14103.9 (3)H17A—C17—H17B108.3
C15—N6—C16125.8 (3)C24—C18—C19109.8 (3)
C14—N6—C16130.2 (3)C24—C18—C17109.7 (3)
N1—C1—N3110.4 (3)C19—C18—C17109.5 (3)
N1—C1—H1124.8C24—C18—H18109.3
N3—C1—H1124.8C19—C18—H18109.3
N2—C2—N3111.0 (3)C17—C18—H18109.3
N2—C2—H2124.5C18—C19—C20109.5 (3)
N3—C2—H2124.5C18—C19—H19A109.8
N3—C3—C8107.8 (2)C20—C19—H19A109.8
N3—C3—C4108.5 (2)C18—C19—H19B109.8
C8—C3—C4110.8 (3)C20—C19—H19B109.8
N3—C3—C9109.8 (3)H19A—C19—H19B108.2
C8—C3—C9109.8 (3)C26—C20—C25109.0 (3)
C4—C3—C9110.1 (3)C26—C20—C21109.1 (3)
C3—C4—C5108.1 (3)C25—C20—C21109.3 (3)
C3—C4—H4A110.1C26—C20—C19111.2 (3)
C5—C4—H4A110.1C25—C20—C19109.0 (3)
C3—C4—H4B110.1C21—C20—C19109.1 (3)
C5—C4—H4B110.1C16—C21—C20109.5 (3)
H4A—C4—H4B108.4C16—C21—H21A109.8
C11—C5—C6109.7 (3)C20—C21—H21A109.8
C11—C5—C4108.6 (3)C16—C21—H21B109.8
C6—C5—C4110.9 (3)C20—C21—H21B109.8
C11—C5—H5109.2H21A—C21—H21B108.2
C6—C5—H5109.2C16—C22—C23109.2 (3)
C4—C5—H5109.2C16—C22—H22A109.8
C7—C6—C5109.6 (3)C23—C22—H22A109.8
C7—C6—H6A109.7C16—C22—H22B109.8
C5—C6—H6A109.7C23—C22—H22B109.8
C7—C6—H6B109.7H22A—C22—H22B108.3
C5—C6—H6B109.7C25—C23—C24110.7 (3)
H6A—C6—H6B108.2C25—C23—C22108.8 (3)
C6—C7—C12111.3 (3)C24—C23—C22108.8 (3)
C6—C7—C8109.2 (3)C25—C23—H23109.5
C12—C7—C8108.2 (3)C24—C23—H23109.5
C6—C7—H7109.3C22—C23—H23109.5
C12—C7—H7109.3C18—C24—C23109.4 (3)
C8—C7—H7109.3C18—C24—H24A109.8
C3—C8—C7109.2 (3)C23—C24—H24A109.8
C3—C8—H8A109.8C18—C24—H24B109.8
C7—C8—H8A109.8C23—C24—H24B109.8
C3—C8—H8B109.8H24A—C24—H24B108.2
C7—C8—H8B109.8C23—C25—C20109.5 (3)
H8A—C8—H8B108.3C23—C25—H25A109.8
C3—C9—C10108.1 (3)C20—C25—H25A109.8
C3—C9—H9A110.1C23—C25—H25B109.8
C10—C9—H9A110.1C20—C25—H25B109.8
C3—C9—H9B110.1H25A—C25—H25B108.2
C10—C9—H9B110.1O6—C26—O5122.0 (4)
H9A—C9—H9B108.4O6—C26—C20124.2 (4)
C13—C10—C11107.8 (3)O5—C26—C20113.8 (3)
C13—C10—C12109.3 (3)H1W—O1W—H2W108.4
C11—C10—C12109.1 (3)H3W—O2W—H4W108.4
C13—C10—C9112.9 (3)
O2—V1—O1—Ag1138.31 (12)C11—C10—C13—O419.2 (5)
F2—V1—O1—Ag1116.01 (11)C12—C10—C13—O499.3 (5)
F1—V1—O1—Ag123.43 (16)C9—C10—C13—O4140.1 (4)
N1—V1—O1—Ag152.34 (11)C11—C10—C13—O3161.8 (3)
C1—N1—N2—C21.2 (4)C12—C10—C13—O379.8 (4)
V1—N1—N2—C2178.1 (2)C9—C10—C13—O340.9 (5)
C1—N1—N2—Ag1170.6 (2)N5—N4—C14—N60.5 (4)
V1—N1—N2—Ag18.7 (3)Ag1—N4—C14—N6171.8 (2)
C14—N4—N5—C150.5 (4)C15—N6—C14—N40.2 (4)
Ag1—N4—N5—C15173.0 (3)C16—N6—C14—N4175.9 (3)
C14—N4—N5—Ag1i176.9 (2)N4—N5—C15—N60.4 (5)
Ag1—N4—N5—Ag1i3.4 (4)Ag1i—N5—C15—N6176.5 (2)
N2—N1—C1—N30.5 (4)C14—N6—C15—N50.1 (5)
V1—N1—C1—N3178.6 (2)C16—N6—C15—N5176.5 (3)
C2—N3—C1—N10.3 (4)C15—N6—C16—C2168.7 (4)
C3—N3—C1—N1175.8 (3)C14—N6—C16—C21106.7 (4)
N1—N2—C2—N31.4 (4)C15—N6—C16—C17171.2 (4)
Ag1—N2—C2—N3168.2 (2)C14—N6—C16—C1713.4 (5)
C1—N3—C2—N21.1 (4)C15—N6—C16—C2250.7 (5)
C3—N3—C2—N2176.5 (3)C14—N6—C16—C22133.8 (4)
C2—N3—C3—C826.6 (4)N6—C16—C17—C18179.8 (3)
C1—N3—C3—C8147.8 (3)C21—C16—C17—C1861.1 (4)
C2—N3—C3—C4146.7 (3)C22—C16—C17—C1860.0 (4)
C1—N3—C3—C427.8 (4)C16—C17—C18—C2460.2 (4)
C2—N3—C3—C992.9 (4)C16—C17—C18—C1960.4 (4)
C1—N3—C3—C992.6 (4)C24—C18—C19—C2060.6 (4)
N3—C3—C4—C5176.8 (3)C17—C18—C19—C2059.9 (4)
C8—C3—C4—C558.6 (4)C18—C19—C20—C26179.6 (3)
C9—C3—C4—C563.0 (4)C18—C19—C20—C2560.2 (4)
C3—C4—C5—C1162.2 (4)C18—C19—C20—C2159.2 (4)
C3—C4—C5—C658.4 (4)N6—C16—C21—C20179.0 (2)
C11—C5—C6—C759.7 (4)C17—C16—C21—C2061.1 (4)
C4—C5—C6—C760.2 (4)C22—C16—C21—C2060.1 (4)
C5—C6—C7—C1259.4 (4)C26—C20—C21—C16178.7 (3)
C5—C6—C7—C860.1 (4)C25—C20—C21—C1659.6 (3)
N3—C3—C8—C7178.7 (3)C19—C20—C21—C1659.6 (4)
C4—C3—C8—C760.1 (4)N6—C16—C22—C23179.2 (3)
C9—C3—C8—C761.7 (4)C21—C16—C22—C2360.6 (4)
C6—C7—C8—C360.1 (4)C17—C16—C22—C2360.5 (4)
C12—C7—C8—C361.3 (4)C16—C22—C23—C2560.5 (4)
N3—C3—C9—C10179.6 (3)C16—C22—C23—C2460.2 (4)
C8—C3—C9—C1061.2 (4)C19—C18—C24—C2359.4 (4)
C4—C3—C9—C1061.0 (3)C17—C18—C24—C2361.0 (4)
C3—C9—C10—C13178.2 (3)C25—C23—C24—C1858.8 (4)
C3—C9—C10—C1158.2 (3)C22—C23—C24—C1860.7 (4)
C3—C9—C10—C1260.6 (3)C24—C23—C25—C2059.0 (4)
C6—C5—C11—C1060.2 (4)C22—C23—C25—C2060.6 (4)
C4—C5—C11—C1061.2 (4)C26—C20—C25—C23179.3 (3)
C13—C10—C11—C5177.3 (3)C21—C20—C25—C2360.1 (4)
C12—C10—C11—C558.8 (4)C19—C20—C25—C2359.1 (4)
C9—C10—C11—C559.6 (4)C25—C20—C26—O6104.9 (5)
C6—C7—C12—C1058.3 (4)C21—C20—C26—O614.5 (5)
C8—C7—C12—C1061.7 (4)C19—C20—C26—O6134.9 (4)
C13—C10—C12—C7174.6 (3)C25—C20—C26—O574.7 (4)
C11—C10—C12—C757.0 (4)C21—C20—C26—O5166.0 (3)
C9—C10—C12—C762.0 (4)C19—C20—C26—O545.5 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···F2ii0.851.922.763 (4)169
O1W—H2W···O2iii0.852.082.910 (4)166
O2W—H3W···O1W0.852.082.753 (4)136
O2W—H4W···O10.852.002.813 (4)161
O3—H1O···O2Wiv0.821.832.650 (4)178
O5—H2O···F1v0.821.772.589 (3)178
C15—H15···F1i0.932.192.966 (4)141
C14—H14···F2ii0.932.443.303 (4)154
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y1, z.
 

Funding information

Funding for this research was provided by: the Ministry of Education and Science of Ukraine (grant No. 19BF037-05).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlbrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017–3020.  Web of Science CrossRef CAS Google Scholar
First citationAldous, D. W., Stephens, N. F. & Lightfoot, P. (2007). Dalton Trans. pp. 2271–2282.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchholz, N., Leimkuehler, M., Kiriazis, L. & Mattes, R. (1988). Inorg. Chem. 27, 2035–2039.  CSD CrossRef CAS Web of Science Google Scholar
First citationChamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868–4873.  Web of Science CrossRef ICSD CAS Google Scholar
First citationCui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMahenthirarajah, T., Li, Y. & Lightfoot, P. (2008). Inorg. Chem. 47, 9097–9102.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNinclaus, C., Riou, D. & Férey, G. (1997). Chem. Commun. pp. 851–852.  CSD CrossRef Web of Science Google Scholar
First citationSenchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025–8033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationStephens, N. F., Buck, M. & Lightfoot, P. (2005). J. Mater. Chem. 15, 4298–4300.  Web of Science CSD CrossRef CAS Google Scholar
First citationWanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007). Eur. J. Org. Chem. pp. 1474–1490.  Web of Science CSD CrossRef Google Scholar
First citationWelk, M. E., Stern, C. L., Poeppelmeier, K. R. & Norquist, A. J. (2007). Cryst. Growth Des. 7, 956–961.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds