research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol: application as initiators for ring-opening polymerization of -caprolactone

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991, Moscow, Russian Federation, bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow, 119991, Russian Federation, cN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, and dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by L. Fabian, University of East Anglia, England (Received 14 May 2019; accepted 17 June 2019; online 21 June 2019)

Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho­rhom­bic (Pbca) and triclinic (P[\overline{1}]) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol­ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra­molecular and one inter­molecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of -caprolactone.

1. Chemical context

1,2,4-Tri­aryl­cyclo­pentane-1,2-diols are useful synthetic precursors for obtaining 1,2,4-tri­aryl­cyclo­penta-1,3-dienes (Hirsch & Bailey, 1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]; Yang et al., 2012[Yang, L., Ye, J., Xu, L., Yang, X., Gong, W., Lin, Y. & Ning, G. (2012). RSC Adv. 2, 11529-11535.]; Zhang et al., 2013[Zhang, X., Ye, J., Xu, L., Yang, L., Deng, D. & Ning, G. (2013). J. Lumin. 139, 28-34.]; Ye et al., 2016[Ye, J., Gao, Y., He, L., Tan, T., Chen, W., Liu, Y., Wang, Y. & Ning, G. (2016). Dyes Pigments, 124, 145-155.], 2017[Ye, J., Huang, X., Li, Y., Zheng, T., Ning, G., Liang, J., Liu, Y. & Wang, Y. (2017). Dyes Pigments, 147, 465-475.]). The latter compounds are currently of inter­est because of their intrinsic luminescent properties due to aggregation-induced emission enhancement (Yang et al., 2012[Yang, L., Ye, J., Xu, L., Yang, X., Gong, W., Lin, Y. & Ning, G. (2012). RSC Adv. 2, 11529-11535.]; Zhang, Ye et al., 2013[Zhang, X., Ye, J., Xu, L., Yang, L., Deng, D. & Ning, G. (2013). J. Lumin. 139, 28-34.]; Ye et al., 2016[Ye, J., Gao, Y., He, L., Tan, T., Chen, W., Liu, Y., Wang, Y. & Ning, G. (2016). Dyes Pigments, 124, 145-155.], 2017[Ye, J., Huang, X., Li, Y., Zheng, T., Ning, G., Liang, J., Liu, Y. & Wang, Y. (2017). Dyes Pigments, 147, 465-475.]). Certain 4-aryl-1,2-di­phenyl­cyclo­penta-1,3-dienes are promising cand­i­dates for the fabrication of OLED devices (Ye et al., 2017[Ye, J., Huang, X., Li, Y., Zheng, T., Ning, G., Liang, J., Liu, Y. & Wang, Y. (2017). Dyes Pigments, 147, 465-475.]). However, most tri­aryl­cyclo­penta­dienes are mainly used for the synthesis of the corresponding organometallic cyclo­penta­dienyl complexes. Up to date, the number of known tri­phenyl­cyclo­penta­dienyl complexes of d- (Davies et al., 2000[Davies, J. E., Mays, M. J., Raithby, P. R., Sarveswaran, K. & Solan, G. A. (2000). Chem. Commun. pp. 1313-1314.]; Deck et al., 2006[Deck, P. A., McCauley, B. D. & Slebodnick, C. (2006). J. Organomet. Chem. 691, 1973-1983.]; Thornberry et al., 2000[Thornberry, M. P., Slebodnick, C., Deck, P. A. & Fronczek, F. R. (2000). Organometallics, 19, 5352-5369.], 2004[Thornberry, M. P., Reynolds, N. T., Deck, P. A., Fronczek, F. R., Rheingold, A. L. & Liable-Sands, L. M. (2004). Organometallics, 23, 1333-1339.]; Wu et al., 2007[Wu, Q.-L., Su, Q., Ye, L. & Mu, Y. (2007). Acta Cryst. E63, m1160-m1161.]; Xu et al., 2006[Xu, J., Mu, X., Zhang, Y., Su, Q., Ni, J. & Mu, Y. (2006). J. Chem. Res. (S), pp. 552-554.], 2007[Xu, J., Gao, W., Zhang, Y., Li, J. & Mu, Y. (2007). J. Organomet. Chem. 692, 1505-1510.]; Zhang et al., 2000[Zhang, F., Mu, Y., Wang, J., Shi, Z., Bu, W., Hu, S., Zhang, Y. & Feng, S. (2000). Polyhedron, 19, 1941-1947.]; Zhang et al., 2003[Zhang, Y., Wang, J., Mu, Y., Shi, Z., Lü, C., Zhang, Y., Qiao, L. & Feng, S. (2003). Organometallics, 22, 3877-3883.]) and f-block metals (Visseaux et al., 2008[Visseaux, M., Zinck, P., Terrier, M., Mortreux, A. & Roussel, P. (2008). J. Alloys Compd. 451, 352-357.]; Minyaev et al., 2016[Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Borisov, R. S., Ananyev, I. V., Churakov, A. V. & Nifant'ev, I. E. (2016). J. Organomet. Chem. 818, 128-136.]; Roitershtein et al., 2012[Roitershtein, D. M., Minyaev, M. E., Mikhaylyuk, A. A., Lyssenko, K. A., Glukhov, I. V. & Belyakov, P. A. (2012). Russ. Chem. Bull. 61, 1726-1732.], 2018[Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199-10213.]) is rather limited, and they are still insufficiently studied. Various polyphenyl­cyclo­penta­dienyl Tb complexes, including 1,2,4-tri­phenyl­cyclo­penta­dienyl ones, display promising photophysical properties because of the presence of such a ligand, which serves as a π-type antenna for luminescence sensitization of lanthanides (Roitershtein et al., 2018[Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199-10213.]). Organometallic derivatives of d- and f-block metals with various tri­phenyl­cyclo­penta­dienyl ligands may also be used in the catalytic polymerization of olefins (Thornberry et al., 2004[Thornberry, M. P., Reynolds, N. T., Deck, P. A., Fronczek, F. R., Rheingold, A. L. & Liable-Sands, L. M. (2004). Organometallics, 23, 1333-1339.]; Visseaux et al., 2008[Visseaux, M., Zinck, P., Terrier, M., Mortreux, A. & Roussel, P. (2008). J. Alloys Compd. 451, 352-357.]; Minyaev et al., 2016[Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Borisov, R. S., Ananyev, I. V., Churakov, A. V. & Nifant'ev, I. E. (2016). J. Organomet. Chem. 818, 128-136.]; Xu et al., 2006[Xu, J., Mu, X., Zhang, Y., Su, Q., Ni, J. & Mu, Y. (2006). J. Chem. Res. (S), pp. 552-554.], 2007[Xu, J., Gao, W., Zhang, Y., Li, J. & Mu, Y. (2007). J. Organomet. Chem. 692, 1505-1510.]; Zhang et al., 2000[Zhang, F., Mu, Y., Wang, J., Shi, Z., Bu, W., Hu, S., Zhang, Y. & Feng, S. (2000). Polyhedron, 19, 1941-1947.]; Zhang et al., 2003[Zhang, Y., Wang, J., Mu, Y., Shi, Z., Lü, C., Zhang, Y., Qiao, L. & Feng, S. (2003). Organometallics, 22, 3877-3883.]).

[Scheme 1]

1,2-Diphenyl-4-aryl­cyclo­pentane-1,2-diols can be readily synthesized by the reductive cyclization of 1,5-diphenyl-3-aryl­pentane-1,5-diones with zinc in an acetic acid medium (Fig. 1[link]; aryl = Ph, 2-MeOC6H4). The corresponding diones are formed by condensation of aceto­phenone with benzaldehyde/2-meth­oxy­benzaldehyde under basic conditions (Hirsch & Bailey, 1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]; Minyaev et al., 2015[Minyaev, M. E., Roitershtein, D. M., Nifant'ev, I. E., Ananyev, I. V., Minyaeva, T. V. & Mikhaylyev, T. A. (2015). Acta Cryst. C71, 491-498.]). The presence of only one isomer (see §2) has been detected by 1H NMR studies in the samples of all isolated crystalline diols from repeated syntheses. However, examination of the reaction mixtures has allowed us to suppose that another minor isomer of (I) may sometimes be present (up to 20%), but it does not crystallize under the conditions used here.

[Figure 1]
Figure 1
Synthesis of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol (I) and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol (II).

It is known that complexes [Mg(BHT)(OR)(THF)n]2 (n = 0, 1; BHT = O-2,6-tBu2-4-MeC6H2 or the anion of butyl­ated hy­droxy­toluene) are active in ring-opening polymerization (ROP) of cyclic esters (Nifant'ev et al., 2016[Nifant'ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106-111.], 2017[Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017). Dalton Trans. 46, 12132-12146.]), whereas Mg(BHT)2(THF)2 is catalytically inactive, but displays relatively high catalytic activity upon activation by a primary alcohol (see, for example, Chen et al., 2012[Chen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252-5261.]). The ROP of -caprolactone (-CL) to poly(-caprolactone) (PCL) can be carried out on the precatalyst Mg(BHT)2(THF)2 activated even by various bulky alcohols (Minyaev et al., 2018[Minyaev, M. E., Nifant'ev, I. E., Shlyakhtin, A. V., Ivchenko, P. V. & Lyssenko, K. A. (2018). Acta Cryst. C74, 548-557.]). We have tested the obtained diols (I) and (II) as activators of the Mg(BHT)2(THF)2 precatalyst for polymerization of -CL (Fig. 2[link], Table 1[link]). In all cases, the qu­anti­tative conversion of -CL to PCL was observed by 1H NMR spectroscopy.

Table 1
Polymerization of -CL

Mn is the number-average molar mass; Đ is the polydispersity index defined as Đ=Mw/Mn, where Mw is the weight-average molar mass; Pn is the polymerization degree. Conditions: [-CL] = 2.5 M; THF; [-CL]/[diol]/[Mg(BHT)2] = 100:1:1 or 2; 300 K, 30 min.

Entry Diol Equiv. of Mg(BHT)2 Mn ×103a Ða Pna Mn ×103b Pnb
1 (I) 1 11.4 1.42 97 12.0 102
2 (I) 2 9.0 1.84 77 7.6 65
3 (II) 1 12.4 1.39 106 12.6 107
4 (II) 2 8.9 1.85 76 7.2 62
Notes: (a) Found by size-exclusion chromatography (SEC) measurements. (b) Determined by 1H NMR studies. Mn and Pn were calculated based on the end-group analysis.
[Figure 2]
Figure 2
Ring-opening polymerization of -caprolactone using [Mg(BHT)2(THF)2] and either (I) or (II).

In the case of the ratio [diol]/[Mg(BHT)2] = 1:1 (entries 1 and 3, Table 1[link]), the polymerization degree (the number of polymerized monomer units, Pn) found by 1H NMR spectroscopy and by size-exclusion chromatography (SEC) are very close to the calculated value (Pn calcd. = 100). However, when the ratio [diol]/[Mg(BHT)2] = 1:2, and two chains are growing at one diol, the Pn values (entries 2 and 4) are somewhat higher than expected (Pn calcd. = 50), which might be explained by a longer reaction time of the second [Mg(BHT)2(THF)2] mol­ecule with the same initiator mol­ecule with respect to the time of polymer-chain propagation. This is also supported by larger polydispersity index (Đ) values (compare entries 2 and 4 with entries 1 and 3), pointing to unequal growth of the two chains.

Therefore, catalytic tests have shown that systems based on [Mg(BHT)2(THF)2] and (I) or (II) are capable of catalysing ROP of -CL, providing 100% monomer conversion. When using the diol/Mg(BHT)2 ratio equal to 1:1, the ROP can be carried out in a more controlled manner.

2. Structural commentary

Compounds (I) and (II) crystallize in the ortho­rhom­bic Pbca and triclinic P[\overline{1}] space groups, respectively. The asymmetric units of (I) and (II) contain one and three diol mol­ecules, respectively, exhibiting an achiral configuration (1R,2S,4r) with all three phenyl groups being on one side of the cyclo­pentane ring (Figs. 3[link] and 4[link]). However, the envelope conformations of (I) and (II) differ, which might be caused by crystal-packing effects. Thus, atoms C1, C2, C3 and C5 in (I) lie nearly in one plane but atom C4 deviates by 0.6727 (19) Å from the plane (see Scheme and Fig. 3[link]). All three crystallographically independent mol­ecules in (II) (A, B and C; Fig. 4[link]) have very similar envelope conformations (with the exception of the positions of the hy­droxy H atoms), with atom C2 being out of the plane formed by atoms C1, C3, C4 and C5 by 0.644 (3), 0.666 (3) and 0.633 (3) Å in (IIA), (IIB) and (IIC), respectively (see Scheme[link] and Fig. 4[link]). A conformation which is very similar to those of mol­ecules (IIA), (IIB) and (IIC) has been found earlier for (1R,2S)-1,2-di­phenyl­cyclo­pentane-1,2-diol, having the Cambridge Structural Database (Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode ZIWVEG (Choi et al., 1995[Choi, T., Cizmeciyan, D., Khan, S. I. & Garcia-Garibay, M. A. (1995). J. Am. Chem. Soc. 117, 12893-12894.]). All C—C and C—O bond distances in (I) and (II) fall into regular ranges and can be found in the supporting information.

[Figure 3]
Figure 3
The structure of (1R,2S,4r)-1,2,4-tri­phenyl­cyclo­pentane-1,2-diol, (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only hy­droxy H atoms are labelled for clarity. The intra­molecular hydrogen bonding is not shown.
[Figure 4]
Figure 4
The structure of the three crystallographically independent mol­ecules (A, B, C) of (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol, (II). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only hy­droxy H atoms are labelled for clarity. The intra­molecular hydrogen bonding is not shown.

Diols (I) and (II) each form one intra­molecular O—H⋯O hydrogen bond: O2—H2⋯O1 for (I), O2A—H2A⋯O1A for (IIA), O1B—H1B⋯O2B for (IIB) and O2C—H2C⋯O1C for (IIC) (Figs. 5[link], 6[link]). The corresponding O—H⋯O bond angles range from 117 (2)° in (IIB) to 131.0 (19)° in (I) (Tables 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (2) 1.89 (2) 2.7509 (13) 173.2 (19)
O2—H2⋯O1 0.86 (2) 1.80 (2) 2.4510 (14) 131.0 (19)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Cii 0.85 (3) 2.08 (3) 2.8931 (19) 160 (3)
O2A—H2A⋯O1A 0.88 (3) 2.04 (3) 2.605 (2) 121 (2)
O1B—H1B⋯O2B 0.90 (3) 2.05 (3) 2.590 (2) 117 (2)
O2B—H2B⋯O2A 0.83 (2) 1.98 (2) 2.802 (2) 170 (2)
O1C—H1C⋯O1B 0.88 (3) 1.96 (3) 2.833 (2) 171 (2)
O2C—H2C⋯O1C 0.85 (3) 2.00 (3) 2.587 (2) 125 (2)
Symmetry code: (ii) x-1, y-1, z.
[Figure 5]
Figure 5
The one-dimensional chains formed by hydrogen bonding between mol­ecules of (1R,2S,4r)-1,2,4-tri­phenyl­cyclo­pentane-1,2-diol (I) parallel to the b axis. Displacement ellipsoids are drawn at the 50% probability level. Non-hy­droxy H atoms are not shown.
[Figure 6]
Figure 6
The one-dimensional chains of (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol mol­ecules (II) along the ab direction. Displacement ellipsoids are drawn at the 50% probability level. Non-hy­droxy H atoms are not shown.

3. Supra­molecular features

Regardless of some structural differences, diols (I) and (II) form similar 1D chains in their crystals via inter­molecular O—H⋯O hydrogen bonding [O1—H1⋯O2i for (I), symmetry code: (i) −x + [{1\over 2}], y − [{1\over 2}], z; and O2B—H2B⋯O2A, O1C—H1C⋯O1B, O1A—H1A⋯O2Cii for (II), symmetry code: (ii) x − 1, y − 1, z]. The inter­molecular O—H⋯O bond angles lie in the expected range of 160 (3) to 173.2 (19)°. The chains are oriented along the b-axis direction in (I) and approximately along the ab diagonal in (II). It might be also mentioned that for both the inter- and intra­molecular hydrogen bonds, the O⋯O and consequently O—H⋯O distances are slightly elongated in (II) compared to (I), likely as a result of crystal-packing effects.

4. Synthesis and crystallization

4.1. General remarks

The starting compounds 1,3,5-tri­phenyl­pentane-1,5-dione and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-dione were obtained in high yields by the previously described procedure (Hirsch & Bailey, 1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]) with certain minor modifications (Minyaev et al., 2015[Minyaev, M. E., Roitershtein, D. M., Nifant'ev, I. E., Ananyev, I. V., Minyaeva, T. V. & Mikhaylyev, T. A. (2015). Acta Cryst. C71, 491-498.]) to decrease formation of side products. They were recrystallized from hot ethanol or iso­propanol followed by vacuum drying. The complex Mg(BHT)2(THF)2 was prepared as described earlier (Nifant'ev et al., 2017[Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017). Dalton Trans. 46, 12132-12146.]). All polymerization tests and the synthesis of Mg(BHT)2(THF)2 were performed under a purified argon atmosphere in a dry box in absolute solvent media. Tetra­hydro­furan was pre-dried over NaOH and distilled from potassium/benzo­phenone ketyl. Hexane was distilled from an Na/K alloy. Toluene was distilled from sodium/benzo­phenone ketyl. -Caprolactone (-CL) was distilled from CaH2 under reduced pressure of argon. CDCl3 (Cambridge Isotope Laboratories, Inc., D 99.8%) was used as purchased. The NMR spectra were recorded on Bruker AV400 and AV600 spectrometers at 300 K; chemical shifts are reported in ppm relative to the solvent residual peak. The SEC analysis of polymer samples was performed at 323 K using an Agilent PL-GPC 220 gel permeation chromatograph equipped with a PLgel column, with DMF as eluent (1 ml min−1) and poly(ethyl­ene oxide) standards.

4.2. Synthesis and crystallization of (I)

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol, (I), was prepared as described previously (Hirsch & Bailey, 1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]) in a yield of 78%, m.p. = 415–417K. 1H NMR (400 MHz, CDCl3): δ = 2.61 (2H, dd, –CH2–, 2JHH = 13.9 Hz, 3JHH = 8.8 Hz), 2.84 (2H, dd, –CH2–, 2JHH = 13.9 Hz, 3JHH = 10.1 Hz), 3.58 (2H, s, >CPh—OH), 4.11 (1H, quintet, >CPhH), 6.97–7.12 (10H, m), 7.15–7.36 (2H, m), 7.43 (3H, d, 3JHH = 4.0 Hz).

A small portion of (I) was dissolved in a warm mixture of THF/hexane (1:10 v/v) to provide a saturated solution. Single crystals formed in two weeks.

4.3. Synthesis and crystallization of (II)

(1R,2S,4r)-4-(2-Meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol, (II), was prepared analogously to (I) but with some minor modifications. Zinc powder (20.00 g, 306 mmol) was added by small portions over 5 h to a vigorously stirred solution of 1,5-diphenyl-3-(2-meth­oxy­phen­yl)pentane-1,5-dione (27.43 g, 76.5 mmol) in 900 ml of glacial acetic acid at 363 K. The formed hot mixture was filtered. The resulting solution was cooled to room temperature and poured into 5000 ml of water. The formed yellowish precipitate was collected, washed with water (2 × 100 ml) and dried under vacuum. The solid was recrystallized from a hot mixture of petroleum ether (boiling temperature range of 343–373 K) and toluene (400 ml, 3:1 v/v). The white microcrystals were dried under dynamic vacuum. The yield was 17.42 g (48.3 mmol, 63.2%), (m.p. = 384–387 K. 1H NMR (600 MHz, CDCl3): δ = 2.56 (2H, dd, –CH2–, 2JHH = 14.3 Hz, 3JHH = 8.4 Hz), 2.81 (2H, dd, –CH2–, 2JHH = 14.3 Hz, 3JHH = 10.3 Hz), 3.46 (2H, s, >CPh—OH), 3.90 (3H, s, –OCH3), 4.27 [1H, quintet, –C(C6H4OMe)H], 6.96 (1H, d, 3JHH = 8.1 Hz), 7.02–7.07 (7H, m), 7.09–7.13 (4H, m), 7.31 (1H, t), 7.45 (1H, d, 3JHH = 7.3 Hz). 13C{1H} NMR (150.9 MHz, CDCl3): δ = 34.07, 44.21, 55.40, 85.58, 110.67, 120.52, 126.34, 126.47, 126.82, 127.34, 127.48, 132.17, 143.51, 158.26.

Single crystals of (II), suitable for X-ray diffraction analysis, were grown from a THF/hexane mixture (1:10 v/v) over two weeks.

4.4. Polymerization procedure

In a typical polymerization experiment, a solution of 0.1 mmol of a diol [33 mg of (I) or 36 mg of (II)] in 1 ml of THF was added to a stirred solution of Mg(BHT)2(THF)2 (0.1 mmol, 61 mg or 0.2 mmol, 121 mg) in 1 ml of THF. The resulting solution was stirred for 20 min. A solution of -CL (1.14 g, 10 mmol) in 1 ml of THF was then added at once to the formed catalyst solution. The solution was stirred for 30 min and then a sample was taken to determine conversion of the monomer by 1H NMR spectroscopy. A 100% conversion was established in all cases based on the absence of a resonance signal at 4.22 ppm (-CL) and the presence of a signal at 4.05 ppm (PCL), both corresponding to the –CH2O(CO)– fragment. The remaining viscous solution was poured into methanol (50 ml) containing a drop of acetic acid. The resulting precipitate was separated by centrifugation, washed with methanol (3 × 25 ml) and hexane (2 × 10 ml) and dried under vacuum. Polymer samples were further studied by SEC and 1H NMR analysis. The degree of polymerization was determined by integration of a PCL terminal group signal at 3.63 ppm (–CH2—CH2—OH).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The positions of all hydrogen atoms in (I) and the hy­droxy H atoms in (II) were found from the difference maps. These H atoms were refined independently with individual isotropic displacement parameters. The other H atoms in (II) were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methyl­ene and 1.00 Å for methine H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups. For (II), reflections [\overline{1}]10 and 221 were affected by the beam stop and were omitted from the refinement. The extinction correction in SHELXL was used for (II) (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H22O2 C24H24O3
Mr 330.40 360.43
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 150 150
a, b, c (Å) 16.9915 (6), 9.3183 (3), 22.0129 (7) 11.4136 (6), 14.0145 (7), 19.0339 (10)
α, β, γ (°) 90, 90, 90 92.3394 (18), 101.5461 (17), 105.0129 (19)
V3) 3485.3 (2) 2867.3 (3)
Z 8 6
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.40 × 0.35 × 0.20 0.50 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.869, 0.928 0.856, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 39896, 4625, 4025 31335, 11202, 8043
Rint 0.041 0.039
(sin θ/λ)max−1) 0.682 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.11 0.051, 0.136, 1.04
No. of reflections 4625 11202
No. of parameters 314 758
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.23 0.36, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al.,2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010), and Mercury (Macrae et al.,2006).

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) top
Crystal data top
C23H22O2Dx = 1.259 Mg m3
Mr = 330.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9996 reflections
a = 16.9915 (6) Åθ = 3.0–30.4°
b = 9.3183 (3) ŵ = 0.08 mm1
c = 22.0129 (7) ÅT = 150 K
V = 3485.3 (2) Å3Prism, colourless
Z = 80.40 × 0.35 × 0.20 mm
F(000) = 1408
Data collection top
Bruker SMART APEXII
diffractometer
4625 independent reflections
Radiation source: fine-focus sealed tube4025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2223
Tmin = 0.869, Tmax = 0.928k = 1212
39896 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.136All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.4502P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24602 (5)0.55215 (10)0.18770 (4)0.0209 (2)
H10.2241 (12)0.469 (2)0.1826 (9)0.037 (5)*
O20.31200 (6)0.78090 (10)0.16702 (5)0.0211 (2)
H20.2699 (13)0.731 (2)0.1629 (9)0.040 (5)*
C10.32785 (7)0.53090 (13)0.20268 (6)0.0154 (2)
C20.36409 (7)0.69000 (13)0.20090 (6)0.0156 (2)
C30.36604 (8)0.73633 (14)0.26866 (6)0.0197 (3)
H3A0.4214 (10)0.7274 (18)0.2843 (8)0.026 (4)*
H3B0.3500 (10)0.8380 (19)0.2727 (7)0.023 (4)*
C40.31240 (7)0.63121 (14)0.30256 (6)0.0182 (3)
H40.2562 (10)0.6555 (17)0.2932 (7)0.019 (4)*
C50.33277 (8)0.49036 (13)0.26981 (6)0.0185 (3)
H5A0.2978 (10)0.4132 (19)0.2798 (8)0.026 (4)*
H5B0.3860 (9)0.4584 (17)0.2823 (7)0.018 (4)*
C60.36313 (7)0.42551 (13)0.15783 (6)0.0178 (3)
C70.39703 (8)0.29720 (14)0.17635 (7)0.0233 (3)
H70.3998 (10)0.2754 (19)0.2195 (9)0.030 (5)*
C80.42672 (9)0.20104 (17)0.13381 (8)0.0327 (4)
H80.4512 (13)0.112 (2)0.1483 (9)0.045 (6)*
C90.42272 (10)0.23193 (19)0.07249 (8)0.0371 (4)
H90.4433 (12)0.164 (2)0.0424 (10)0.049 (6)*
C100.38891 (11)0.3595 (2)0.05359 (7)0.0386 (4)
H100.3878 (13)0.384 (2)0.0106 (10)0.050 (6)*
C110.35920 (9)0.45546 (17)0.09590 (7)0.0285 (3)
H110.3358 (11)0.546 (2)0.0819 (8)0.034 (5)*
C120.44573 (7)0.70012 (13)0.17266 (6)0.0163 (2)
C130.50697 (8)0.61131 (14)0.19234 (6)0.0209 (3)
H130.4978 (11)0.541 (2)0.2244 (8)0.032 (5)*
C140.58129 (8)0.62098 (15)0.16632 (7)0.0249 (3)
H140.6240 (11)0.556 (2)0.1803 (8)0.033 (5)*
C150.59666 (8)0.72139 (16)0.12135 (7)0.0259 (3)
H150.6492 (11)0.730 (2)0.1042 (8)0.030 (5)*
C160.53730 (9)0.81218 (16)0.10270 (6)0.0266 (3)
H160.5474 (11)0.887 (2)0.0723 (9)0.037 (5)*
C170.46217 (8)0.80077 (15)0.12783 (6)0.0219 (3)
H170.4216 (11)0.860 (2)0.1137 (8)0.034 (5)*
C180.32029 (7)0.62406 (15)0.37101 (6)0.0209 (3)
C190.36629 (9)0.71880 (17)0.40436 (7)0.0283 (3)
H190.3956 (11)0.791 (2)0.3842 (8)0.028 (4)*
C200.36941 (10)0.7090 (2)0.46775 (8)0.0374 (4)
H200.4009 (13)0.777 (2)0.4892 (10)0.047 (6)*
C210.32644 (10)0.6053 (2)0.49798 (7)0.0384 (4)
H210.3280 (12)0.602 (2)0.5425 (10)0.044 (5)*
C220.28124 (9)0.5092 (2)0.46516 (7)0.0333 (4)
H220.2512 (12)0.437 (2)0.4862 (9)0.040 (5)*
C230.27780 (8)0.51904 (17)0.40237 (6)0.0255 (3)
H230.2437 (11)0.4513 (19)0.3798 (8)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0128 (4)0.0168 (4)0.0331 (5)0.0001 (3)0.0051 (4)0.0042 (4)
O20.0159 (4)0.0154 (4)0.0319 (5)0.0033 (3)0.0044 (4)0.0023 (4)
C10.0123 (5)0.0119 (5)0.0220 (6)0.0001 (4)0.0030 (4)0.0014 (4)
C20.0147 (5)0.0121 (5)0.0202 (6)0.0009 (4)0.0023 (4)0.0011 (4)
C30.0210 (6)0.0169 (6)0.0211 (6)0.0026 (5)0.0004 (5)0.0044 (5)
C40.0155 (5)0.0187 (6)0.0205 (6)0.0014 (4)0.0001 (5)0.0021 (5)
C50.0196 (6)0.0151 (5)0.0207 (6)0.0005 (5)0.0005 (5)0.0006 (5)
C60.0139 (5)0.0164 (6)0.0232 (6)0.0017 (4)0.0018 (4)0.0052 (5)
C70.0215 (6)0.0177 (6)0.0307 (7)0.0018 (5)0.0010 (5)0.0026 (5)
C80.0287 (7)0.0225 (7)0.0470 (9)0.0059 (6)0.0001 (7)0.0099 (6)
C90.0317 (8)0.0394 (9)0.0402 (9)0.0042 (7)0.0004 (7)0.0231 (7)
C100.0436 (9)0.0476 (10)0.0245 (7)0.0074 (8)0.0038 (7)0.0133 (7)
C110.0334 (8)0.0286 (7)0.0236 (7)0.0053 (6)0.0064 (6)0.0052 (6)
C120.0158 (5)0.0136 (5)0.0194 (5)0.0012 (4)0.0023 (4)0.0032 (4)
C130.0174 (6)0.0165 (6)0.0288 (7)0.0004 (5)0.0020 (5)0.0025 (5)
C140.0167 (6)0.0195 (6)0.0385 (8)0.0017 (5)0.0018 (5)0.0015 (6)
C150.0192 (6)0.0267 (7)0.0317 (7)0.0038 (5)0.0050 (5)0.0056 (6)
C160.0283 (7)0.0292 (7)0.0224 (6)0.0044 (6)0.0028 (5)0.0032 (6)
C170.0210 (6)0.0216 (6)0.0230 (6)0.0005 (5)0.0024 (5)0.0019 (5)
C180.0166 (6)0.0252 (7)0.0209 (6)0.0059 (5)0.0013 (5)0.0032 (5)
C190.0264 (7)0.0326 (8)0.0260 (7)0.0002 (6)0.0008 (6)0.0065 (6)
C200.0332 (8)0.0514 (10)0.0275 (8)0.0014 (8)0.0042 (6)0.0121 (7)
C210.0321 (8)0.0627 (12)0.0202 (7)0.0069 (8)0.0008 (6)0.0020 (7)
C220.0274 (7)0.0458 (9)0.0267 (7)0.0042 (7)0.0053 (6)0.0054 (7)
C230.0204 (6)0.0311 (7)0.0250 (7)0.0025 (6)0.0020 (5)0.0006 (6)
Geometric parameters (Å, º) top
O1—C11.4426 (14)C10—C111.387 (2)
O1—H10.87 (2)C10—H100.97 (2)
O2—C21.4343 (15)C11—H110.98 (2)
O2—H20.86 (2)C12—C171.3898 (18)
C1—C61.5162 (17)C12—C131.3985 (17)
C1—C51.5274 (18)C13—C141.3895 (19)
C1—C21.6058 (17)C13—H130.978 (19)
C2—C121.5230 (17)C14—C151.387 (2)
C2—C31.5531 (18)C14—H140.995 (19)
C3—C41.5319 (18)C15—C161.379 (2)
C3—H3A1.005 (17)C15—H150.972 (19)
C3—H3B0.990 (17)C16—C171.395 (2)
C4—C181.5142 (18)C16—H160.980 (19)
C4—C51.5369 (17)C17—H170.94 (2)
C4—H41.002 (16)C18—C191.389 (2)
C5—H5A0.959 (17)C18—C231.398 (2)
C5—H5B0.990 (16)C19—C201.399 (2)
C6—C71.3883 (18)C19—H190.950 (19)
C6—C111.3930 (19)C20—C211.382 (3)
C7—C81.391 (2)C20—H200.96 (2)
C7—H70.973 (19)C21—C221.383 (3)
C8—C91.382 (3)C21—H210.98 (2)
C8—H80.98 (2)C22—C231.386 (2)
C9—C101.384 (3)C22—H220.97 (2)
C9—H90.98 (2)C23—H230.989 (18)
C1—O1—H1108.6 (13)C10—C9—H9120.1 (13)
C2—O2—H2104.6 (14)C9—C10—C11120.21 (16)
O1—C1—C6108.72 (10)C9—C10—H10120.1 (13)
O1—C1—C5107.93 (10)C11—C10—H10119.6 (13)
C6—C1—C5116.62 (10)C10—C11—C6120.70 (15)
O1—C1—C2103.73 (9)C10—C11—H11119.3 (11)
C6—C1—C2115.50 (10)C6—C11—H11120.0 (11)
C5—C1—C2103.36 (9)C17—C12—C13118.02 (12)
O2—C2—C12108.25 (10)C17—C12—C2120.98 (11)
O2—C2—C3110.39 (10)C13—C12—C2120.97 (11)
C12—C2—C3110.82 (10)C14—C13—C12120.68 (13)
O2—C2—C1108.74 (9)C14—C13—H13119.1 (11)
C12—C2—C1114.61 (10)C12—C13—H13120.2 (11)
C3—C2—C1103.96 (10)C15—C14—C13120.60 (13)
C4—C3—C2106.10 (10)C15—C14—H14119.7 (11)
C4—C3—H3A109.7 (10)C13—C14—H14119.7 (11)
C2—C3—H3A109.0 (10)C16—C15—C14119.25 (13)
C4—C3—H3B113.8 (10)C16—C15—H15120.4 (11)
C2—C3—H3B110.3 (10)C14—C15—H15120.3 (11)
H3A—C3—H3B107.9 (14)C15—C16—C17120.29 (13)
C18—C4—C3117.40 (11)C15—C16—H16120.7 (11)
C18—C4—C5114.16 (11)C17—C16—H16119.0 (11)
C3—C4—C5100.58 (10)C12—C17—C16121.12 (13)
C18—C4—H4107.3 (9)C12—C17—H17119.1 (12)
C3—C4—H4108.8 (9)C16—C17—H17119.7 (12)
C5—C4—H4108.2 (9)C19—C18—C23118.32 (13)
C1—C5—C4103.31 (10)C19—C18—C4123.22 (13)
C1—C5—H5A111.9 (10)C23—C18—C4118.45 (12)
C4—C5—H5A113.2 (10)C18—C19—C20120.45 (15)
C1—C5—H5B113.1 (9)C18—C19—H19120.0 (11)
C4—C5—H5B109.4 (9)C20—C19—H19119.5 (11)
H5A—C5—H5B106.1 (14)C21—C20—C19120.40 (16)
C7—C6—C11118.68 (12)C21—C20—H20121.6 (13)
C7—C6—C1122.04 (12)C19—C20—H20118.0 (13)
C11—C6—C1119.24 (12)C20—C21—C22119.62 (15)
C6—C7—C8120.50 (14)C20—C21—H21119.1 (12)
C6—C7—H7119.1 (11)C22—C21—H21121.3 (12)
C8—C7—H7120.4 (11)C21—C22—C23120.09 (16)
C9—C8—C7120.38 (15)C21—C22—H22119.7 (12)
C9—C8—H8120.9 (12)C23—C22—H22120.2 (12)
C7—C8—H8118.7 (12)C22—C23—C18121.12 (14)
C8—C9—C10119.54 (14)C22—C23—H23118.8 (10)
C8—C9—H9120.4 (13)C18—C23—H23120.1 (10)
O1—C1—C2—O218.78 (12)C9—C10—C11—C60.2 (3)
C6—C1—C2—O2100.08 (12)C7—C6—C11—C100.3 (2)
C5—C1—C2—O2131.34 (10)C1—C6—C11—C10178.18 (14)
O1—C1—C2—C12140.05 (10)O2—C2—C12—C178.66 (16)
C6—C1—C2—C1221.20 (15)C3—C2—C12—C17112.53 (13)
C5—C1—C2—C12107.38 (11)C1—C2—C12—C17130.20 (12)
O1—C1—C2—C398.83 (11)O2—C2—C12—C13173.27 (11)
C6—C1—C2—C3142.31 (11)C3—C2—C12—C1365.54 (15)
C5—C1—C2—C313.74 (12)C1—C2—C12—C1351.72 (16)
O2—C2—C3—C4100.69 (12)C17—C12—C13—C141.9 (2)
C12—C2—C3—C4139.38 (10)C2—C12—C13—C14179.92 (12)
C1—C2—C3—C415.77 (12)C12—C13—C14—C151.6 (2)
C2—C3—C4—C18163.45 (10)C13—C14—C15—C160.1 (2)
C2—C3—C4—C539.00 (12)C14—C15—C16—C171.5 (2)
O1—C1—C5—C471.24 (12)C13—C12—C17—C160.62 (19)
C6—C1—C5—C4166.10 (10)C2—C12—C17—C16178.74 (12)
C2—C1—C5—C438.23 (11)C15—C16—C17—C121.1 (2)
C18—C4—C5—C1174.72 (10)C3—C4—C18—C197.85 (19)
C3—C4—C5—C148.08 (12)C5—C4—C18—C19125.18 (14)
O1—C1—C6—C7121.11 (13)C3—C4—C18—C23173.66 (12)
C5—C1—C6—C71.13 (17)C5—C4—C18—C2356.33 (16)
C2—C1—C6—C7122.83 (13)C23—C18—C19—C200.3 (2)
O1—C1—C6—C1156.65 (15)C4—C18—C19—C20178.23 (14)
C5—C1—C6—C11178.89 (12)C18—C19—C20—C210.3 (3)
C2—C1—C6—C1159.41 (16)C19—C20—C21—C221.1 (3)
C11—C6—C7—C80.3 (2)C20—C21—C22—C231.4 (3)
C1—C6—C7—C8178.06 (13)C21—C22—C23—C180.8 (2)
C6—C7—C8—C90.1 (2)C19—C18—C23—C220.0 (2)
C7—C8—C9—C100.0 (3)C4—C18—C23—C22178.55 (13)
C8—C9—C10—C110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)1.89 (2)2.7509 (13)173.2 (19)
O2—H2···O10.86 (2)1.80 (2)2.4510 (14)131.0 (19)
Symmetry code: (i) x+1/2, y1/2, z.
(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) top
Crystal data top
C24H24O3Z = 6
Mr = 360.43F(000) = 1152
Triclinic, P1Dx = 1.252 Mg m3
a = 11.4136 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0145 (7) ÅCell parameters from 8113 reflections
c = 19.0339 (10) Åθ = 2.4–29.8°
α = 92.3394 (18)°µ = 0.08 mm1
β = 101.5461 (17)°T = 150 K
γ = 105.0129 (19)°Prism, colourless
V = 2867.3 (3) Å30.50 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEXII
diffractometer
11202 independent reflections
Radiation source: fine-focus sealed tube8043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.856, Tmax = 0.928k = 1617
31335 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.062P)2 + 0.7914P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
11202 reflectionsΔρmax = 0.36 e Å3
758 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2017 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.14728 (13)0.13460 (10)0.67974 (7)0.0287 (3)
H1A0.102 (3)0.079 (2)0.6584 (15)0.072 (9)*
O2A0.35980 (13)0.26985 (10)0.71380 (7)0.0295 (3)
H2A0.301 (2)0.2451 (19)0.6748 (14)0.056 (8)*
C1A0.22327 (18)0.12411 (13)0.74694 (10)0.0256 (4)
C2A0.31467 (17)0.22962 (13)0.77471 (10)0.0238 (4)
C3A0.42356 (18)0.20437 (14)0.82332 (10)0.0270 (4)
H3AA0.4026470.1840370.8695020.032*
H3AB0.4981650.2620230.8335240.032*
C4A0.44566 (19)0.11847 (15)0.78056 (11)0.0326 (5)
H4A0.4959370.1478760.7454200.039*
C5A0.31299 (19)0.06137 (15)0.73604 (12)0.0355 (5)
H5AA0.3141060.0523940.6843380.043*
H5AB0.2856610.0049180.7530570.043*
C6A0.14252 (18)0.08553 (13)0.79971 (10)0.0278 (4)
C7A0.1801 (2)0.03115 (15)0.85577 (12)0.0417 (6)
H7A0.2583360.0170610.8612850.050*
C8A0.1053 (3)0.00218 (19)0.90302 (14)0.0575 (7)
H8A0.1329810.0381950.9411670.069*
C9A0.0091 (3)0.01592 (19)0.89579 (14)0.0567 (7)
H9A0.0608950.0084000.9281340.068*
C10A0.0481 (2)0.06996 (16)0.84087 (12)0.0433 (6)
H10A0.1272210.0825280.8353620.052*
C11A0.02736 (19)0.10568 (14)0.79406 (11)0.0306 (5)
H11A0.0007470.1444470.7575410.037*
C12A0.26047 (16)0.30269 (12)0.80976 (10)0.0222 (4)
C13A0.20814 (18)0.36708 (14)0.76830 (11)0.0292 (4)
H13A0.2035990.3629330.7178380.035*
C14A0.1626 (2)0.43709 (15)0.79939 (12)0.0358 (5)
H14A0.1261960.4796050.7700070.043*
C15A0.1697 (2)0.44537 (15)0.87243 (12)0.0374 (5)
H15A0.1404230.4945050.8938290.045*
C16A0.2199 (2)0.38141 (16)0.91441 (11)0.0369 (5)
H16A0.2241580.3861250.9648410.044*
C17A0.26397 (19)0.31062 (14)0.88348 (10)0.0297 (4)
H17A0.2971820.2666360.9129600.036*
C18A0.51525 (19)0.05483 (14)0.82424 (12)0.0343 (5)
C19A0.5404 (2)0.06080 (17)0.89954 (12)0.0438 (6)
H19A0.5117020.1065840.9250910.053*
C20A0.6054 (2)0.00245 (18)0.93782 (15)0.0520 (6)
H20A0.6195490.0075990.9889170.062*
C21A0.6495 (2)0.06274 (17)0.90258 (15)0.0506 (7)
H21A0.6947260.1027280.9290140.061*
C22A0.6279 (2)0.07035 (16)0.82751 (15)0.0451 (6)
H22A0.6598410.1144130.8025200.054*
C23A0.5596 (2)0.01324 (15)0.78987 (13)0.0390 (5)
O3A0.53096 (16)0.01728 (11)0.71594 (9)0.0487 (4)
C24A0.5601 (3)0.09494 (19)0.67718 (15)0.0593 (7)
H24A0.5318660.0926880.6253010.089*
H24B0.5181300.1593990.6910130.089*
H24C0.6501530.0857710.6887650.089*
O1B0.72932 (14)0.59540 (10)0.70807 (7)0.0325 (3)
H1B0.667 (3)0.551 (2)0.6768 (16)0.075 (9)*
O2B0.54682 (14)0.44673 (10)0.71982 (7)0.0300 (3)
H2B0.496 (2)0.3930 (18)0.7227 (12)0.040 (7)*
C1B0.68651 (18)0.59658 (13)0.77392 (10)0.0248 (4)
C2B0.62450 (17)0.48732 (13)0.78901 (9)0.0239 (4)
C3B0.54589 (17)0.50509 (14)0.84122 (10)0.0253 (4)
H3BA0.5984260.5296020.8898750.030*
H3BB0.4823520.4431500.8445480.030*
C4B0.48449 (17)0.58350 (13)0.80977 (10)0.0264 (4)
H4B0.4078010.5473620.7734560.032*
C5B0.57701 (18)0.64378 (14)0.76731 (10)0.0282 (4)
H5BA0.5355200.6411220.7160630.034*
H5BB0.6074150.7140960.7877180.034*
C6B0.79924 (18)0.64960 (13)0.83207 (10)0.0279 (4)
C7B0.7894 (2)0.70761 (14)0.89084 (11)0.0330 (5)
H7B0.7107720.7161660.8942870.040*
C8B0.8941 (2)0.75301 (16)0.94442 (12)0.0463 (6)
H8B0.8866140.7924970.9841900.056*
C9B1.0082 (2)0.74091 (17)0.94001 (15)0.0530 (7)
H9B1.0795360.7720390.9765890.064*
C10B1.0188 (2)0.68325 (18)0.88210 (15)0.0515 (7)
H10B1.0975350.6744890.8792500.062*
C11B0.91550 (19)0.63821 (16)0.82828 (13)0.0389 (5)
H11B0.9239850.5992970.7885240.047*
C12B0.71105 (18)0.42414 (13)0.81557 (10)0.0255 (4)
C13B0.77772 (19)0.43761 (15)0.88672 (11)0.0319 (5)
H13B0.7700280.4880520.9189680.038*
C14B0.8550 (2)0.37885 (16)0.91130 (13)0.0419 (5)
H14B0.9005880.3897820.9598410.050*
C15B0.8658 (2)0.30442 (17)0.86533 (13)0.0450 (6)
H15B0.9180430.2635400.8821870.054*
C16B0.8005 (2)0.28981 (17)0.79511 (13)0.0436 (6)
H16B0.8077190.2385730.7633580.052*
C17B0.7242 (2)0.34933 (15)0.77018 (11)0.0338 (5)
H17B0.6802320.3387490.7213090.041*
C18B0.44390 (17)0.64346 (15)0.86390 (11)0.0317 (5)
C19B0.4625 (2)0.63124 (17)0.93707 (12)0.0405 (5)
H19B0.5069930.5856230.9552540.049*
C20B0.4182 (2)0.6835 (2)0.98427 (14)0.0542 (7)
H20B0.4305860.6727051.0338460.065*
C21B0.3564 (2)0.7507 (2)0.95862 (15)0.0593 (8)
H21B0.3262910.7870770.9908130.071*
C22B0.3371 (2)0.76666 (18)0.88654 (16)0.0520 (7)
H22B0.2955090.8145330.8693950.062*
C23B0.37916 (19)0.71186 (15)0.83939 (12)0.0375 (5)
O3B0.35836 (14)0.71818 (10)0.76626 (9)0.0427 (4)
C24B0.2835 (2)0.78050 (18)0.73784 (17)0.0621 (8)
H47D0.2781010.7806660.6858060.093*
H47E0.3209790.8482410.7611500.093*
H47F0.2000070.7554980.7469850.093*
O1C0.83623 (13)0.78847 (10)0.67276 (7)0.0293 (3)
H1C0.810 (2)0.7296 (19)0.6878 (12)0.046 (7)*
O2C1.00942 (13)0.92850 (10)0.64099 (8)0.0287 (3)
H2C0.980 (2)0.9079 (18)0.6767 (14)0.051 (8)*
C1C0.85364 (17)0.77202 (13)0.60124 (9)0.0224 (4)
C2C0.91281 (17)0.87784 (13)0.57931 (9)0.0237 (4)
C3C0.97825 (17)0.85444 (13)0.52145 (10)0.0241 (4)
H3CA1.0413970.9143120.5140560.029*
H3CB0.9179150.8293370.4751740.029*
C4C1.04010 (17)0.77404 (13)0.55018 (10)0.0235 (4)
H4C1.1223220.8091060.5821180.028*
C5C0.95607 (17)0.71870 (13)0.59948 (10)0.0246 (4)
H5CA0.9182330.6484140.5799810.029*
H5CB1.0060110.7206630.6487230.029*
C6C0.72964 (17)0.71953 (12)0.55061 (9)0.0225 (4)
C7C0.72397 (18)0.66404 (13)0.48685 (9)0.0246 (4)
H7C0.7984110.6561540.4753940.029*
C8C0.61058 (19)0.62020 (15)0.43994 (11)0.0320 (5)
H8C0.6080860.5825380.3967590.038*
C9C0.5012 (2)0.63106 (15)0.45574 (12)0.0372 (5)
H9C0.4237550.6018280.4233560.045*
C10C0.50610 (19)0.68497 (16)0.51921 (12)0.0376 (5)
H10C0.4315080.6923170.5307780.045*
C11C0.61908 (18)0.72833 (14)0.56603 (11)0.0301 (4)
H11C0.6208520.7648360.6095820.036*
C12C0.82353 (17)0.94100 (13)0.55790 (10)0.0249 (4)
C13C0.74574 (19)0.92723 (15)0.48961 (11)0.0304 (4)
H13C0.7465550.8760440.4555610.036*
C14C0.6674 (2)0.98699 (16)0.47066 (12)0.0379 (5)
H14C0.6150200.9763870.4238590.045*
C15C0.6646 (2)1.06201 (16)0.51930 (13)0.0417 (6)
H15C0.6111361.1032240.5060510.050*
C16C0.7400 (2)1.07624 (16)0.58697 (14)0.0438 (6)
H16C0.7384931.1273770.6208120.053*
C17C0.81854 (19)1.01628 (15)0.60615 (12)0.0350 (5)
H17C0.8699191.0269030.6532290.042*
C18C1.06489 (17)0.70730 (13)0.49336 (10)0.0251 (4)
C19C1.03585 (18)0.71550 (14)0.41988 (10)0.0285 (4)
H19C0.9947300.7638030.4031300.034*
C20C1.06512 (19)0.65517 (16)0.37003 (11)0.0343 (5)
H20C1.0446960.6628580.3200800.041*
C21C1.12357 (19)0.58454 (15)0.39328 (11)0.0348 (5)
H21C1.1428620.5428470.3592490.042*
C22C1.15471 (18)0.57361 (14)0.46625 (11)0.0313 (5)
H22C1.1947810.5244050.4822940.038*
C23C1.12666 (18)0.63544 (14)0.51566 (10)0.0271 (4)
O3C1.15809 (14)0.63245 (10)0.58874 (7)0.0342 (3)
C24C1.2122 (2)0.55618 (16)0.61470 (12)0.0391 (5)
H24G1.2297640.5624860.6674870.059*
H24H1.2897200.5624360.5983430.059*
H24I1.1542270.4911710.5961260.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0318 (8)0.0254 (7)0.0242 (7)0.0063 (6)0.0022 (6)0.0010 (6)
O2A0.0326 (8)0.0310 (7)0.0230 (7)0.0055 (6)0.0067 (6)0.0013 (6)
C1A0.0277 (10)0.0206 (9)0.0257 (9)0.0081 (8)0.0019 (8)0.0014 (8)
C2A0.0257 (10)0.0220 (9)0.0220 (9)0.0039 (8)0.0047 (8)0.0014 (7)
C3A0.0255 (10)0.0258 (10)0.0287 (10)0.0075 (8)0.0038 (8)0.0003 (8)
C4A0.0314 (11)0.0308 (11)0.0361 (11)0.0103 (9)0.0067 (9)0.0002 (9)
C5A0.0357 (12)0.0299 (11)0.0388 (12)0.0137 (9)0.0007 (9)0.0065 (9)
C6A0.0324 (11)0.0156 (9)0.0294 (10)0.0023 (8)0.0014 (8)0.0017 (8)
C7A0.0379 (13)0.0329 (11)0.0466 (13)0.0018 (10)0.0010 (11)0.0178 (10)
C8A0.0536 (17)0.0531 (15)0.0540 (15)0.0015 (13)0.0012 (13)0.0286 (13)
C9A0.0576 (17)0.0534 (15)0.0511 (15)0.0071 (13)0.0204 (13)0.0177 (13)
C10A0.0410 (13)0.0377 (12)0.0474 (13)0.0014 (10)0.0132 (11)0.0037 (11)
C11A0.0356 (11)0.0205 (9)0.0323 (11)0.0033 (8)0.0048 (9)0.0026 (8)
C12A0.0193 (9)0.0178 (8)0.0265 (9)0.0006 (7)0.0041 (8)0.0001 (7)
C13A0.0306 (11)0.0288 (10)0.0276 (10)0.0085 (9)0.0042 (8)0.0028 (8)
C14A0.0361 (12)0.0292 (11)0.0445 (12)0.0145 (9)0.0060 (10)0.0081 (9)
C15A0.0372 (12)0.0299 (11)0.0491 (13)0.0132 (9)0.0145 (10)0.0028 (10)
C16A0.0453 (13)0.0397 (12)0.0285 (11)0.0114 (10)0.0159 (10)0.0008 (9)
C17A0.0343 (11)0.0275 (10)0.0291 (10)0.0102 (9)0.0086 (9)0.0055 (8)
C18A0.0247 (10)0.0250 (10)0.0527 (13)0.0058 (8)0.0084 (10)0.0046 (9)
C19A0.0422 (13)0.0419 (13)0.0437 (13)0.0168 (11)0.0042 (11)0.0029 (11)
C20A0.0526 (15)0.0415 (13)0.0604 (16)0.0182 (12)0.0019 (13)0.0038 (12)
C21A0.0363 (13)0.0368 (13)0.0756 (18)0.0156 (11)0.0034 (12)0.0113 (12)
C22A0.0370 (13)0.0309 (11)0.0714 (17)0.0156 (10)0.0123 (12)0.0049 (11)
C23A0.0310 (12)0.0296 (11)0.0590 (15)0.0071 (9)0.0165 (11)0.0087 (10)
O3A0.0668 (11)0.0407 (9)0.0534 (10)0.0282 (8)0.0288 (9)0.0082 (8)
C24A0.085 (2)0.0468 (15)0.0678 (17)0.0359 (14)0.0431 (16)0.0106 (13)
O1B0.0421 (9)0.0314 (8)0.0265 (7)0.0082 (7)0.0142 (7)0.0094 (6)
O2B0.0366 (8)0.0254 (7)0.0219 (7)0.0020 (7)0.0007 (6)0.0031 (6)
C1B0.0299 (10)0.0239 (9)0.0218 (9)0.0069 (8)0.0079 (8)0.0077 (8)
C2B0.0253 (10)0.0245 (9)0.0190 (9)0.0036 (8)0.0020 (8)0.0038 (7)
C3B0.0228 (10)0.0268 (9)0.0238 (9)0.0028 (8)0.0040 (8)0.0042 (8)
C4B0.0222 (10)0.0257 (10)0.0276 (10)0.0037 (8)0.0008 (8)0.0007 (8)
C5B0.0290 (11)0.0252 (10)0.0283 (10)0.0067 (8)0.0012 (8)0.0061 (8)
C6B0.0264 (10)0.0235 (9)0.0315 (10)0.0022 (8)0.0055 (8)0.0109 (8)
C7B0.0352 (12)0.0269 (10)0.0316 (11)0.0018 (9)0.0034 (9)0.0050 (9)
C8B0.0531 (16)0.0318 (12)0.0383 (12)0.0044 (11)0.0050 (11)0.0047 (10)
C9B0.0378 (14)0.0368 (13)0.0629 (17)0.0092 (11)0.0157 (12)0.0177 (12)
C10B0.0265 (12)0.0425 (13)0.0800 (19)0.0035 (10)0.0038 (12)0.0201 (14)
C11B0.0295 (12)0.0331 (11)0.0535 (14)0.0051 (9)0.0101 (10)0.0152 (10)
C12B0.0272 (10)0.0220 (9)0.0281 (10)0.0033 (8)0.0108 (8)0.0087 (8)
C13B0.0339 (11)0.0291 (10)0.0329 (11)0.0101 (9)0.0051 (9)0.0067 (9)
C14B0.0397 (13)0.0437 (13)0.0422 (13)0.0165 (11)0.0010 (10)0.0119 (11)
C15B0.0442 (14)0.0432 (13)0.0575 (15)0.0252 (11)0.0143 (12)0.0177 (11)
C16B0.0499 (14)0.0401 (13)0.0519 (14)0.0224 (11)0.0234 (12)0.0070 (11)
C17B0.0385 (12)0.0334 (11)0.0334 (11)0.0109 (9)0.0145 (9)0.0071 (9)
C18B0.0171 (9)0.0313 (10)0.0404 (11)0.0003 (8)0.0024 (8)0.0065 (9)
C19B0.0284 (11)0.0497 (13)0.0378 (12)0.0044 (10)0.0053 (9)0.0084 (10)
C20B0.0309 (13)0.0759 (18)0.0469 (14)0.0026 (13)0.0090 (11)0.0200 (13)
C21B0.0296 (13)0.0715 (18)0.0677 (18)0.0051 (13)0.0097 (12)0.0353 (15)
C22B0.0239 (12)0.0432 (13)0.084 (2)0.0084 (10)0.0054 (12)0.0188 (13)
C23B0.0214 (10)0.0333 (11)0.0500 (13)0.0019 (9)0.0000 (9)0.0080 (10)
O3B0.0346 (8)0.0324 (8)0.0584 (10)0.0164 (7)0.0051 (7)0.0023 (7)
C24B0.0457 (15)0.0407 (13)0.091 (2)0.0219 (12)0.0171 (14)0.0009 (14)
O1C0.0412 (8)0.0262 (7)0.0194 (6)0.0047 (6)0.0095 (6)0.0031 (6)
O2C0.0288 (8)0.0240 (7)0.0265 (7)0.0002 (6)0.0001 (6)0.0013 (6)
C1C0.0286 (10)0.0207 (9)0.0166 (8)0.0040 (8)0.0055 (7)0.0028 (7)
C2C0.0254 (10)0.0200 (9)0.0219 (9)0.0009 (7)0.0034 (8)0.0001 (7)
C3C0.0254 (10)0.0220 (9)0.0253 (9)0.0044 (8)0.0087 (8)0.0074 (8)
C4C0.0237 (10)0.0222 (9)0.0238 (9)0.0050 (8)0.0044 (8)0.0046 (7)
C5C0.0275 (10)0.0226 (9)0.0219 (9)0.0052 (8)0.0028 (8)0.0052 (7)
C6C0.0267 (10)0.0170 (8)0.0238 (9)0.0034 (7)0.0079 (8)0.0055 (7)
C7C0.0280 (10)0.0232 (9)0.0233 (9)0.0072 (8)0.0068 (8)0.0039 (8)
C8C0.0363 (12)0.0303 (10)0.0258 (10)0.0071 (9)0.0016 (9)0.0019 (8)
C9C0.0270 (11)0.0364 (11)0.0399 (12)0.0019 (9)0.0020 (9)0.0014 (10)
C10C0.0250 (11)0.0389 (12)0.0487 (13)0.0054 (9)0.0124 (10)0.0034 (10)
C11C0.0321 (11)0.0276 (10)0.0306 (10)0.0052 (9)0.0112 (9)0.0003 (8)
C12C0.0243 (10)0.0189 (9)0.0300 (10)0.0008 (7)0.0089 (8)0.0041 (8)
C13C0.0346 (11)0.0303 (10)0.0298 (10)0.0126 (9)0.0100 (9)0.0046 (8)
C14C0.0363 (12)0.0428 (12)0.0394 (12)0.0174 (10)0.0090 (10)0.0123 (10)
C15C0.0364 (12)0.0345 (12)0.0629 (15)0.0186 (10)0.0178 (12)0.0114 (11)
C16C0.0375 (13)0.0321 (11)0.0625 (16)0.0106 (10)0.0140 (12)0.0091 (11)
C17C0.0307 (11)0.0310 (11)0.0402 (12)0.0035 (9)0.0087 (9)0.0063 (9)
C18C0.0217 (10)0.0245 (9)0.0277 (10)0.0028 (8)0.0062 (8)0.0052 (8)
C19C0.0265 (10)0.0297 (10)0.0297 (10)0.0070 (8)0.0074 (8)0.0066 (8)
C20C0.0331 (11)0.0415 (12)0.0275 (10)0.0072 (10)0.0090 (9)0.0035 (9)
C21C0.0340 (12)0.0366 (11)0.0339 (11)0.0082 (9)0.0115 (9)0.0051 (9)
C22C0.0267 (10)0.0274 (10)0.0408 (12)0.0090 (8)0.0080 (9)0.0039 (9)
C23C0.0249 (10)0.0263 (10)0.0287 (10)0.0046 (8)0.0056 (8)0.0042 (8)
O3C0.0447 (9)0.0330 (8)0.0287 (7)0.0206 (7)0.0034 (6)0.0059 (6)
C24C0.0460 (13)0.0355 (12)0.0407 (12)0.0205 (10)0.0065 (10)0.0121 (10)
Geometric parameters (Å, º) top
O1A—C1A1.431 (2)C11B—H11B0.9500
O1A—H1A0.85 (3)C12B—C17B1.388 (3)
O2A—C2A1.439 (2)C12B—C13B1.393 (3)
O2A—H2A0.88 (3)C13B—C14B1.385 (3)
C1A—C6A1.519 (3)C13B—H13B0.9500
C1A—C5A1.550 (3)C14B—C15B1.380 (3)
C1A—C2A1.572 (2)C14B—H14B0.9500
C2A—C12A1.521 (2)C15B—C16B1.372 (3)
C2A—C3A1.523 (3)C15B—H15B0.9500
C3A—C4A1.528 (3)C16B—C17B1.387 (3)
C3A—H3AA0.9900C16B—H16B0.9500
C3A—H3AB0.9900C17B—H17B0.9500
C4A—C18A1.510 (3)C18B—C19B1.391 (3)
C4A—C5A1.567 (3)C18B—C23B1.396 (3)
C4A—H4A1.0000C19B—C20B1.385 (3)
C5A—H5AA0.9900C19B—H19B0.9500
C5A—H5AB0.9900C20B—C21B1.367 (4)
C6A—C7A1.399 (3)C20B—H20B0.9500
C6A—C11A1.399 (3)C21B—C22B1.382 (4)
C7A—C8A1.376 (4)C21B—H21B0.9500
C7A—H7A0.9500C22B—C23B1.390 (3)
C8A—C9A1.375 (4)C22B—H22B0.9500
C8A—H8A0.9500C23B—O3B1.375 (3)
C9A—C10A1.385 (3)O3B—C24B1.423 (3)
C9A—H9A0.9500C24B—H47D0.9800
C10A—C11A1.381 (3)C24B—H47E0.9800
C10A—H10A0.9500C24B—H47F0.9800
C11A—H11A0.9500O1C—C1C1.433 (2)
C12A—C13A1.394 (3)O1C—H1C0.88 (3)
C12A—C17A1.395 (3)O2C—C2C1.451 (2)
C13A—C14A1.387 (3)O2C—H2C0.85 (3)
C13A—H13A0.9500C1C—C6C1.526 (2)
C14A—C15A1.375 (3)C1C—C5C1.547 (3)
C14A—H14A0.9500C1C—C2C1.573 (2)
C15A—C16A1.383 (3)C2C—C3C1.518 (3)
C15A—H15A0.9500C2C—C12C1.523 (3)
C16A—C17A1.383 (3)C3C—C4C1.541 (2)
C16A—H16A0.9500C3C—H3CA0.9900
C17A—H17A0.9500C3C—H3CB0.9900
C18A—C23A1.388 (3)C4C—C18C1.517 (3)
C18A—C19A1.399 (3)C4C—C5C1.561 (3)
C19A—C20A1.377 (3)C4C—H4C1.0000
C19A—H19A0.9500C5C—H5CA0.9900
C20A—C21A1.365 (3)C5C—H5CB0.9900
C20A—H20A0.9500C6C—C11C1.386 (3)
C21A—C22A1.395 (4)C6C—C7C1.395 (3)
C21A—H21A0.9500C7C—C8C1.389 (3)
C22A—C23A1.381 (3)C7C—H7C0.9500
C22A—H22A0.9500C8C—C9C1.385 (3)
C23A—O3A1.375 (3)C8C—H8C0.9500
O3A—C24A1.435 (3)C9C—C10C1.382 (3)
C24A—H24A0.9800C9C—H9C0.9500
C24A—H24B0.9800C10C—C11C1.384 (3)
C24A—H24C0.9800C10C—H10C0.9500
O1B—C1B1.434 (2)C11C—H11C0.9500
O1B—H1B0.90 (3)C12C—C17C1.390 (3)
O2B—C2B1.433 (2)C12C—C13C1.394 (3)
O2B—H2B0.83 (2)C13C—C14C1.384 (3)
C1B—C6B1.517 (3)C13C—H13C0.9500
C1B—C5B1.545 (3)C14C—C15C1.383 (3)
C1B—C2B1.576 (3)C14C—H14C0.9500
C2B—C12B1.518 (3)C15C—C16C1.373 (3)
C2B—C3B1.519 (3)C15C—H15C0.9500
C3B—C4B1.530 (3)C16C—C17C1.388 (3)
C3B—H3BA0.9900C16C—H16C0.9500
C3B—H3BB0.9900C17C—H17C0.9500
C4B—C18B1.518 (3)C18C—C19C1.388 (3)
C4B—C5B1.555 (3)C18C—C23C1.405 (3)
C4B—H4B1.0000C19C—C20C1.391 (3)
C5B—H5BA0.9900C19C—H19C0.9500
C5B—H5BB0.9900C20C—C21C1.371 (3)
C6B—C11B1.392 (3)C20C—H20C0.9500
C6B—C7B1.396 (3)C21C—C22C1.388 (3)
C7B—C8B1.392 (3)C21C—H21C0.9500
C7B—H7B0.9500C22C—C23C1.391 (3)
C8B—C9B1.374 (4)C22C—H22C0.9500
C8B—H8B0.9500C23C—O3C1.370 (2)
C9B—C10B1.383 (4)O3C—C24C1.425 (2)
C9B—H9B0.9500C24C—H24G0.9800
C10B—C11B1.384 (3)C24C—H24H0.9800
C10B—H10B0.9500C24C—H24I0.9800
C1A—O1A—H1A112.0 (19)C10B—C11B—C6B120.4 (2)
C2A—O2A—H2A107.8 (17)C10B—C11B—H11B119.8
O1A—C1A—C6A110.11 (15)C6B—C11B—H11B119.8
O1A—C1A—C5A111.34 (15)C17B—C12B—C13B117.69 (18)
C6A—C1A—C5A113.96 (16)C17B—C12B—C2B121.09 (17)
O1A—C1A—C2A106.48 (14)C13B—C12B—C2B121.20 (17)
C6A—C1A—C2A111.94 (15)C14B—C13B—C12B121.2 (2)
C5A—C1A—C2A102.56 (15)C14B—C13B—H13B119.4
O2A—C2A—C12A109.77 (14)C12B—C13B—H13B119.4
O2A—C2A—C3A106.20 (15)C15B—C14B—C13B120.0 (2)
C12A—C2A—C3A115.04 (15)C15B—C14B—H14B120.0
O2A—C2A—C1A106.81 (14)C13B—C14B—H14B120.0
C12A—C2A—C1A115.93 (15)C16B—C15B—C14B119.6 (2)
C3A—C2A—C1A102.28 (14)C16B—C15B—H15B120.2
C2A—C3A—C4A104.60 (15)C14B—C15B—H15B120.2
C2A—C3A—H3AA110.8C15B—C16B—C17B120.5 (2)
C4A—C3A—H3AA110.8C15B—C16B—H16B119.8
C2A—C3A—H3AB110.8C17B—C16B—H16B119.8
C4A—C3A—H3AB110.8C16B—C17B—C12B121.0 (2)
H3AA—C3A—H3AB108.9C16B—C17B—H17B119.5
C18A—C4A—C3A115.73 (17)C12B—C17B—H17B119.5
C18A—C4A—C5A114.89 (17)C19B—C18B—C23B117.2 (2)
C3A—C4A—C5A104.00 (16)C19B—C18B—C4B123.68 (18)
C18A—C4A—H4A107.2C23B—C18B—C4B119.02 (19)
C3A—C4A—H4A107.2C20B—C19B—C18B122.1 (2)
C5A—C4A—H4A107.2C20B—C19B—H19B119.0
C1A—C5A—C4A107.50 (15)C18B—C19B—H19B119.0
C1A—C5A—H5AA110.2C21B—C20B—C19B119.2 (3)
C4A—C5A—H5AA110.2C21B—C20B—H20B120.4
C1A—C5A—H5AB110.2C19B—C20B—H20B120.4
C4A—C5A—H5AB110.2C20B—C21B—C22B121.0 (2)
H5AA—C5A—H5AB108.5C20B—C21B—H21B119.5
C7A—C6A—C11A117.7 (2)C22B—C21B—H21B119.5
C7A—C6A—C1A122.19 (19)C21B—C22B—C23B119.3 (2)
C11A—C6A—C1A120.06 (16)C21B—C22B—H22B120.4
C8A—C7A—C6A120.8 (2)C23B—C22B—H22B120.4
C8A—C7A—H7A119.6O3B—C23B—C22B123.7 (2)
C6A—C7A—H7A119.6O3B—C23B—C18B115.09 (18)
C9A—C8A—C7A120.9 (2)C22B—C23B—C18B121.2 (2)
C9A—C8A—H8A119.6C23B—O3B—C24B117.21 (19)
C7A—C8A—H8A119.6O3B—C24B—H47D109.5
C8A—C9A—C10A119.3 (2)O3B—C24B—H47E109.5
C8A—C9A—H9A120.3H47D—C24B—H47E109.5
C10A—C9A—H9A120.3O3B—C24B—H47F109.5
C11A—C10A—C9A120.3 (2)H47D—C24B—H47F109.5
C11A—C10A—H10A119.8H47E—C24B—H47F109.5
C9A—C10A—H10A119.8C1C—O1C—H1C106.9 (15)
C10A—C11A—C6A120.88 (19)C2C—O2C—H2C103.6 (18)
C10A—C11A—H11A119.6O1C—C1C—C6C110.23 (15)
C6A—C11A—H11A119.6O1C—C1C—C5C112.18 (14)
C13A—C12A—C17A117.48 (17)C6C—C1C—C5C113.42 (14)
C13A—C12A—C2A120.01 (16)O1C—C1C—C2C105.54 (14)
C17A—C12A—C2A122.47 (16)C6C—C1C—C2C112.39 (14)
C14A—C13A—C12A121.18 (18)C5C—C1C—C2C102.62 (14)
C14A—C13A—H13A119.4O2C—C2C—C3C106.63 (15)
C12A—C13A—H13A119.4O2C—C2C—C12C109.57 (14)
C15A—C14A—C13A120.44 (19)C3C—C2C—C12C115.35 (15)
C15A—C14A—H14A119.8O2C—C2C—C1C106.13 (14)
C13A—C14A—H14A119.8C3C—C2C—C1C102.59 (14)
C14A—C15A—C16A119.29 (19)C12C—C2C—C1C115.77 (15)
C14A—C15A—H15A120.4C2C—C3C—C4C104.93 (14)
C16A—C15A—H15A120.4C2C—C3C—H3CA110.8
C15A—C16A—C17A120.44 (19)C4C—C3C—H3CA110.8
C15A—C16A—H16A119.8C2C—C3C—H3CB110.8
C17A—C16A—H16A119.8C4C—C3C—H3CB110.8
C16A—C17A—C12A121.13 (18)H3CA—C3C—H3CB108.8
C16A—C17A—H17A119.4C18C—C4C—C3C115.56 (15)
C12A—C17A—H17A119.4C18C—C4C—C5C114.86 (15)
C23A—C18A—C19A116.3 (2)C3C—C4C—C5C104.57 (14)
C23A—C18A—C4A120.1 (2)C18C—C4C—H4C107.1
C19A—C18A—C4A123.56 (19)C3C—C4C—H4C107.1
C20A—C19A—C18A122.1 (2)C5C—C4C—H4C107.1
C20A—C19A—H19A118.9C1C—C5C—C4C107.41 (14)
C18A—C19A—H19A118.9C1C—C5C—H5CA110.2
C21A—C20A—C19A120.2 (3)C4C—C5C—H5CA110.2
C21A—C20A—H20A119.9C1C—C5C—H5CB110.2
C19A—C20A—H20A119.9C4C—C5C—H5CB110.2
C20A—C21A—C22A119.7 (2)H5CA—C5C—H5CB108.5
C20A—C21A—H21A120.2C11C—C6C—C7C118.08 (17)
C22A—C21A—H21A120.2C11C—C6C—C1C120.41 (16)
C23A—C22A—C21A119.4 (2)C7C—C6C—C1C121.49 (17)
C23A—C22A—H22A120.3C8C—C7C—C6C120.68 (18)
C21A—C22A—H22A120.3C8C—C7C—H7C119.7
O3A—C23A—C22A123.7 (2)C6C—C7C—H7C119.7
O3A—C23A—C18A114.08 (19)C9C—C8C—C7C120.42 (19)
C22A—C23A—C18A122.3 (2)C9C—C8C—H8C119.8
C23A—O3A—C24A116.64 (18)C7C—C8C—H8C119.8
O3A—C24A—H24A109.5C10C—C9C—C8C119.14 (19)
O3A—C24A—H24B109.5C10C—C9C—H9C120.4
H24A—C24A—H24B109.5C8C—C9C—H9C120.4
O3A—C24A—H24C109.5C9C—C10C—C11C120.4 (2)
H24A—C24A—H24C109.5C9C—C10C—H10C119.8
H24B—C24A—H24C109.5C11C—C10C—H10C119.8
C1B—O1B—H1B104.6 (19)C10C—C11C—C6C121.27 (19)
C2B—O2B—H2B110.9 (16)C10C—C11C—H11C119.4
O1B—C1B—C6B106.18 (15)C6C—C11C—H11C119.4
O1B—C1B—C5B111.73 (14)C17C—C12C—C13C117.52 (18)
C6B—C1B—C5B113.99 (15)C17C—C12C—C2C120.56 (17)
O1B—C1B—C2B110.01 (14)C13C—C12C—C2C121.92 (16)
C6B—C1B—C2B113.17 (14)C14C—C13C—C12C121.01 (19)
C5B—C1B—C2B101.86 (15)C14C—C13C—H13C119.5
O2B—C2B—C12B111.05 (15)C12C—C13C—H13C119.5
O2B—C2B—C3B110.25 (15)C15C—C14C—C13C120.5 (2)
C12B—C2B—C3B114.29 (15)C15C—C14C—H14C119.7
O2B—C2B—C1B101.57 (14)C13C—C14C—H14C119.7
C12B—C2B—C1B117.05 (15)C16C—C15C—C14C119.24 (19)
C3B—C2B—C1B101.58 (14)C16C—C15C—H15C120.4
C2B—C3B—C4B105.00 (15)C14C—C15C—H15C120.4
C2B—C3B—H3BA110.7C15C—C16C—C17C120.3 (2)
C4B—C3B—H3BA110.7C15C—C16C—H16C119.8
C2B—C3B—H3BB110.7C17C—C16C—H16C119.8
C4B—C3B—H3BB110.7C16C—C17C—C12C121.4 (2)
H3BA—C3B—H3BB108.8C16C—C17C—H17C119.3
C18B—C4B—C3B114.93 (16)C12C—C17C—H17C119.3
C18B—C4B—C5B116.17 (16)C19C—C18C—C23C116.97 (17)
C3B—C4B—C5B104.48 (15)C19C—C18C—C4C124.14 (16)
C18B—C4B—H4B106.9C23C—C18C—C4C118.81 (16)
C3B—C4B—H4B106.9C18C—C19C—C20C122.01 (18)
C5B—C4B—H4B106.9C18C—C19C—H19C119.0
C1B—C5B—C4B107.35 (14)C20C—C19C—H19C119.0
C1B—C5B—H5BA110.2C21C—C20C—C19C119.72 (19)
C4B—C5B—H5BA110.2C21C—C20C—H20C120.1
C1B—C5B—H5BB110.2C19C—C20C—H20C120.1
C4B—C5B—H5BB110.2C20C—C21C—C22C120.40 (19)
H5BA—C5B—H5BB108.5C20C—C21C—H21C119.8
C11B—C6B—C7B118.68 (19)C22C—C21C—H21C119.8
C11B—C6B—C1B119.53 (18)C21C—C22C—C23C119.33 (18)
C7B—C6B—C1B121.76 (18)C21C—C22C—H22C120.3
C8B—C7B—C6B120.4 (2)C23C—C22C—H22C120.3
C8B—C7B—H7B119.8O3C—C23C—C22C123.31 (17)
C6B—C7B—H7B119.8O3C—C23C—C18C115.13 (16)
C9B—C8B—C7B120.2 (2)C22C—C23C—C18C121.55 (18)
C9B—C8B—H8B119.9C23C—O3C—C24C117.90 (15)
C7B—C8B—H8B119.9O3C—C24C—H24G109.5
C8B—C9B—C10B119.8 (2)O3C—C24C—H24H109.5
C8B—C9B—H9B120.1H24G—C24C—H24H109.5
C10B—C9B—H9B120.1O3C—C24C—H24I109.5
C9B—C10B—C11B120.5 (2)H24G—C24C—H24I109.5
C9B—C10B—H10B119.7H24H—C24C—H24I109.5
C11B—C10B—H10B119.7
O1A—C1A—C2A—O2A43.86 (18)C1B—C6B—C11B—C10B177.79 (18)
C6A—C1A—C2A—O2A164.24 (14)O2B—C2B—C12B—C17B11.0 (2)
C5A—C1A—C2A—O2A73.19 (17)C3B—C2B—C12B—C17B136.46 (19)
O1A—C1A—C2A—C12A78.81 (19)C1B—C2B—C12B—C17B105.0 (2)
C6A—C1A—C2A—C12A41.6 (2)O2B—C2B—C12B—C13B167.48 (17)
C5A—C1A—C2A—C12A164.14 (16)C3B—C2B—C12B—C13B42.0 (2)
O1A—C1A—C2A—C3A155.21 (15)C1B—C2B—C12B—C13B76.6 (2)
C6A—C1A—C2A—C3A84.41 (17)C17B—C12B—C13B—C14B0.3 (3)
C5A—C1A—C2A—C3A38.16 (18)C2B—C12B—C13B—C14B178.85 (19)
O2A—C2A—C3A—C4A67.63 (18)C12B—C13B—C14B—C15B0.9 (3)
C12A—C2A—C3A—C4A170.73 (16)C13B—C14B—C15B—C16B0.7 (4)
C1A—C2A—C3A—C4A44.18 (19)C14B—C15B—C16B—C17B0.1 (4)
C2A—C3A—C4A—C18A158.98 (17)C15B—C16B—C17B—C12B0.6 (3)
C2A—C3A—C4A—C5A32.0 (2)C13B—C12B—C17B—C16B0.4 (3)
O1A—C1A—C5A—C4A132.32 (17)C2B—C12B—C17B—C16B178.11 (19)
C6A—C1A—C5A—C4A102.40 (19)C3B—C4B—C18B—C19B1.4 (3)
C2A—C1A—C5A—C4A18.8 (2)C5B—C4B—C18B—C19B121.0 (2)
C18A—C4A—C5A—C1A134.97 (19)C3B—C4B—C18B—C23B175.52 (17)
C3A—C4A—C5A—C1A7.5 (2)C5B—C4B—C18B—C23B62.1 (2)
O1A—C1A—C6A—C7A153.34 (17)C23B—C18B—C19B—C20B0.6 (3)
C5A—C1A—C6A—C7A27.4 (2)C4B—C18B—C19B—C20B176.4 (2)
C2A—C1A—C6A—C7A88.4 (2)C18B—C19B—C20B—C21B1.4 (4)
O1A—C1A—C6A—C11A27.9 (2)C19B—C20B—C21B—C22B0.4 (4)
C5A—C1A—C6A—C11A153.85 (17)C20B—C21B—C22B—C23B1.3 (4)
C2A—C1A—C6A—C11A90.3 (2)C21B—C22B—C23B—O3B176.2 (2)
C11A—C6A—C7A—C8A0.8 (3)C21B—C22B—C23B—C18B2.1 (3)
C1A—C6A—C7A—C8A179.5 (2)C19B—C18B—C23B—O3B177.27 (18)
C6A—C7A—C8A—C9A0.9 (4)C4B—C18B—C23B—O3B0.1 (3)
C7A—C8A—C9A—C10A1.1 (4)C19B—C18B—C23B—C22B1.1 (3)
C8A—C9A—C10A—C11A0.3 (4)C4B—C18B—C23B—C22B178.27 (19)
C9A—C10A—C11A—C6A2.0 (3)C22B—C23B—O3B—C24B3.6 (3)
C7A—C6A—C11A—C10A2.2 (3)C18B—C23B—O3B—C24B174.72 (19)
C1A—C6A—C11A—C10A179.01 (18)O1C—C1C—C2C—O2C44.87 (18)
O2A—C2A—C12A—C13A29.2 (2)C6C—C1C—C2C—O2C165.05 (14)
C3A—C2A—C12A—C13A148.90 (18)C5C—C1C—C2C—O2C72.76 (16)
C1A—C2A—C12A—C13A91.9 (2)O1C—C1C—C2C—C3C156.57 (14)
O2A—C2A—C12A—C17A148.79 (17)C6C—C1C—C2C—C3C83.25 (17)
C3A—C2A—C12A—C17A29.1 (3)C5C—C1C—C2C—C3C38.94 (16)
C1A—C2A—C12A—C17A90.1 (2)O1C—C1C—C2C—C12C76.92 (18)
C17A—C12A—C13A—C14A0.7 (3)C6C—C1C—C2C—C12C43.3 (2)
C2A—C12A—C13A—C14A177.40 (18)C5C—C1C—C2C—C12C165.45 (15)
C12A—C13A—C14A—C15A0.9 (3)O2C—C2C—C3C—C4C69.39 (17)
C13A—C14A—C15A—C16A1.7 (3)C12C—C2C—C3C—C4C168.72 (15)
C14A—C15A—C16A—C17A0.8 (3)C1C—C2C—C3C—C4C41.95 (17)
C15A—C16A—C17A—C12A0.8 (3)C2C—C3C—C4C—C18C155.40 (15)
C13A—C12A—C17A—C16A1.6 (3)C2C—C3C—C4C—C5C28.12 (18)
C2A—C12A—C17A—C16A176.49 (18)O1C—C1C—C5C—C4C134.59 (15)
C3A—C4A—C18A—C23A168.32 (19)C6C—C1C—C5C—C4C99.72 (17)
C5A—C4A—C18A—C23A70.4 (3)C2C—C1C—C5C—C4C21.77 (17)
C3A—C4A—C18A—C19A10.8 (3)C18C—C4C—C5C—C1C130.87 (16)
C5A—C4A—C18A—C19A110.5 (2)C3C—C4C—C5C—C1C3.16 (18)
C23A—C18A—C19A—C20A0.1 (3)O1C—C1C—C6C—C11C25.1 (2)
C4A—C18A—C19A—C20A179.2 (2)C5C—C1C—C6C—C11C151.88 (17)
C18A—C19A—C20A—C21A1.1 (4)C2C—C1C—C6C—C11C92.3 (2)
C19A—C20A—C21A—C22A0.3 (4)O1C—C1C—C6C—C7C156.75 (16)
C20A—C21A—C22A—C23A1.4 (4)C5C—C1C—C6C—C7C30.0 (2)
C21A—C22A—C23A—O3A178.4 (2)C2C—C1C—C6C—C7C85.8 (2)
C21A—C22A—C23A—C18A2.5 (3)C11C—C6C—C7C—C8C0.9 (3)
C19A—C18A—C23A—O3A179.10 (19)C1C—C6C—C7C—C8C177.29 (16)
C4A—C18A—C23A—O3A1.7 (3)C6C—C7C—C8C—C9C0.1 (3)
C19A—C18A—C23A—C22A1.7 (3)C7C—C8C—C9C—C10C0.8 (3)
C4A—C18A—C23A—C22A177.4 (2)C8C—C9C—C10C—C11C0.6 (3)
C22A—C23A—O3A—C24A8.7 (3)C9C—C10C—C11C—C6C0.4 (3)
C18A—C23A—O3A—C24A172.2 (2)C7C—C6C—C11C—C10C1.1 (3)
O1B—C1B—C2B—O2B46.09 (18)C1C—C6C—C11C—C10C177.08 (18)
C6B—C1B—C2B—O2B164.67 (15)O2C—C2C—C12C—C17C18.7 (2)
C5B—C1B—C2B—O2B72.53 (16)C3C—C2C—C12C—C17C139.00 (18)
O1B—C1B—C2B—C12B75.0 (2)C1C—C2C—C12C—C17C101.2 (2)
C6B—C1B—C2B—C12B43.6 (2)O2C—C2C—C12C—C13C160.22 (17)
C5B—C1B—C2B—C12B166.40 (15)C3C—C2C—C12C—C13C39.9 (2)
O1B—C1B—C2B—C3B159.84 (14)C1C—C2C—C12C—C13C79.8 (2)
C6B—C1B—C2B—C3B81.58 (18)C17C—C12C—C13C—C14C0.5 (3)
C5B—C1B—C2B—C3B41.22 (16)C2C—C12C—C13C—C14C178.47 (19)
O2B—C2B—C3B—C4B63.58 (18)C12C—C13C—C14C—C15C0.0 (3)
C12B—C2B—C3B—C4B170.51 (15)C13C—C14C—C15C—C16C0.4 (3)
C1B—C2B—C3B—C4B43.51 (17)C14C—C15C—C16C—C17C0.3 (3)
C2B—C3B—C4B—C18B156.71 (15)C15C—C16C—C17C—C12C0.2 (3)
C2B—C3B—C4B—C5B28.22 (18)C13C—C12C—C17C—C16C0.6 (3)
O1B—C1B—C5B—C4B141.76 (15)C2C—C12C—C17C—C16C178.34 (19)
C6B—C1B—C5B—C4B97.88 (18)C3C—C4C—C18C—C19C0.2 (3)
C2B—C1B—C5B—C4B24.37 (18)C5C—C4C—C18C—C19C122.14 (19)
C18B—C4B—C5B—C1B129.23 (17)C3C—C4C—C18C—C23C176.88 (17)
C3B—C4B—C5B—C1B1.50 (19)C5C—C4C—C18C—C23C61.2 (2)
O1B—C1B—C6B—C11B34.6 (2)C23C—C18C—C19C—C20C0.5 (3)
C5B—C1B—C6B—C11B158.06 (17)C4C—C18C—C19C—C20C177.27 (18)
C2B—C1B—C6B—C11B86.1 (2)C18C—C19C—C20C—C21C0.5 (3)
O1B—C1B—C6B—C7B147.27 (17)C19C—C20C—C21C—C22C0.6 (3)
C5B—C1B—C6B—C7B23.8 (2)C20C—C21C—C22C—C23C0.4 (3)
C2B—C1B—C6B—C7B92.0 (2)C21C—C22C—C23C—O3C177.47 (19)
C11B—C6B—C7B—C8B0.0 (3)C21C—C22C—C23C—C18C1.5 (3)
C1B—C6B—C7B—C8B178.12 (18)C19C—C18C—C23C—O3C177.48 (17)
C6B—C7B—C8B—C9B0.1 (3)C4C—C18C—C23C—O3C0.6 (3)
C7B—C8B—C9B—C10B0.1 (3)C19C—C18C—C23C—C22C1.6 (3)
C8B—C9B—C10B—C11B0.5 (4)C4C—C18C—C23C—C22C178.46 (17)
C9B—C10B—C11B—C6B0.6 (3)C22C—C23C—O3C—C24C5.8 (3)
C7B—C6B—C11B—C10B0.4 (3)C18C—C23C—O3C—C24C175.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Ci0.85 (3)2.08 (3)2.8931 (19)160 (3)
O2A—H2A···O1A0.88 (3)2.04 (3)2.605 (2)121 (2)
O1B—H1B···O2B0.90 (3)2.05 (3)2.590 (2)117 (2)
O2B—H2B···O2A0.83 (2)1.98 (2)2.802 (2)170 (2)
O1C—H1C···O1B0.88 (3)1.96 (3)2.833 (2)171 (2)
O2C—H2C···O1C0.85 (3)2.00 (3)2.587 (2)125 (2)
Symmetry code: (i) x1, y1, z.
Polymerization of ε-CL top
Mn is the number-average molar mass; Đ is the polydispersity index defined as Đ=Mw/Mn, where Mw is the weight-average molar mass; Pn is the polymerization degree. Conditions: [ε-CL] = 2.5 M; THF; [ε-CL]/[diol]/[Mg(BHT)2] = 100:1:1 or 2; ~300 K, 30 min.
EntryDiolEquiv. of Mg(BHT)2Mn ×103aÐaPnaMn ×103bPnb
1(I)111.41.429712.0102
2(I)29.01.84777.665
3(II)112.41.3910612.6107
4(II)28.91.85767.262
Notes: (a) Found by size-exclusion chromatography (SEC) measurements. (b) Determined by 1H NMR studies. Mn and Pn were calculated based on the end-group analysis.
 

Acknowledgements

The equipment from the collective exploitation center `New petrochemical processes, polymer composites and adhesives' of TIPS RAS was used. The X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: the State Program of TIPS RAS .

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252–5261.  Web of Science CrossRef CAS Google Scholar
First citationChoi, T., Cizmeciyan, D., Khan, S. I. & Garcia-Garibay, M. A. (1995). J. Am. Chem. Soc. 117, 12893–12894.  CSD CrossRef CAS Google Scholar
First citationDavies, J. E., Mays, M. J., Raithby, P. R., Sarveswaran, K. & Solan, G. A. (2000). Chem. Commun. pp. 1313–1314.  CSD CrossRef Google Scholar
First citationDeck, P. A., McCauley, B. D. & Slebodnick, C. (2006). J. Organomet. Chem. 691, 1973–1983.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090–4094.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Shlyakhtin, A. V., Ivchenko, P. V. & Lyssenko, K. A. (2018). Acta Cryst. C74, 548–557.  CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Roitershtein, D. M., Nifant'ev, I. E., Ananyev, I. V., Minyaeva, T. V. & Mikhaylyev, T. A. (2015). Acta Cryst. C71, 491–498.  CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Borisov, R. S., Ananyev, I. V., Churakov, A. V. & Nifant'ev, I. E. (2016). J. Organomet. Chem. 818, 128–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationNifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017). Dalton Trans. 46, 12132–12146.  Web of Science CAS PubMed Google Scholar
First citationNifant'ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106–111.  CAS Google Scholar
First citationRoitershtein, D. M., Minyaev, M. E., Mikhaylyuk, A. A., Lyssenko, K. A., Glukhov, I. V. & Belyakov, P. A. (2012). Russ. Chem. Bull. 61, 1726–1732.  Web of Science CrossRef CAS Google Scholar
First citationRoitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). Inorg. Chem. 57, 10199–10213.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThornberry, M. P., Reynolds, N. T., Deck, P. A., Fronczek, F. R., Rheingold, A. L. & Liable-Sands, L. M. (2004). Organometallics, 23, 1333–1339.  Web of Science CSD CrossRef CAS Google Scholar
First citationThornberry, M. P., Slebodnick, C., Deck, P. A. & Fronczek, F. R. (2000). Organometallics, 19, 5352–5369.  Web of Science CSD CrossRef CAS Google Scholar
First citationVisseaux, M., Zinck, P., Terrier, M., Mortreux, A. & Roussel, P. (2008). J. Alloys Compd. 451, 352–357.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q.-L., Su, Q., Ye, L. & Mu, Y. (2007). Acta Cryst. E63, m1160–m1161.  CSD CrossRef IUCr Journals Google Scholar
First citationXu, J., Gao, W., Zhang, Y., Li, J. & Mu, Y. (2007). J. Organomet. Chem. 692, 1505–1510.  CSD CrossRef CAS Google Scholar
First citationXu, J., Mu, X., Zhang, Y., Su, Q., Ni, J. & Mu, Y. (2006). J. Chem. Res. (S), pp. 552–554.  CrossRef Google Scholar
First citationYang, L., Ye, J., Xu, L., Yang, X., Gong, W., Lin, Y. & Ning, G. (2012). RSC Adv. 2, 11529–11535.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, J., Gao, Y., He, L., Tan, T., Chen, W., Liu, Y., Wang, Y. & Ning, G. (2016). Dyes Pigments, 124, 145–155.  CSD CrossRef CAS Google Scholar
First citationYe, J., Huang, X., Li, Y., Zheng, T., Ning, G., Liang, J., Liu, Y. & Wang, Y. (2017). Dyes Pigments, 147, 465–475.  CSD CrossRef CAS Google Scholar
First citationZhang, F., Mu, Y., Wang, J., Shi, Z., Bu, W., Hu, S., Zhang, Y. & Feng, S. (2000). Polyhedron, 19, 1941–1947.  CSD CrossRef CAS Google Scholar
First citationZhang, X., Ye, J., Xu, L., Yang, L., Deng, D. & Ning, G. (2013). J. Lumin. 139, 28–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wang, J., Mu, Y., Shi, Z., Lü, C., Zhang, Y., Qiao, L. & Feng, S. (2003). Organometallics, 22, 3877–3883.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds