research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa-μ-chlorido-μ4-oxido-tetra­kis­{[1-(2-hy­dr­oxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts

aDepartment of Chemistry & Physical Sciences, Pace University, New York, NY 10038, USA, bDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and cDept. of Chemistry & Physical Sciences, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 February 2019; accepted 16 June 2019; online 25 June 2019)

The title tetra­nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O­(MET)4] [MET is 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra­hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra­hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro­gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro­gen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N inter­actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol­ecules was removed using the SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–16] in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

1. Chemical context

Metronidazole (C6H9N3O3; MET) is a medication that was discovered to be effective against both bacteria and parasites more than 50 years ago (Samuelson, 1999[Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533-1541.]). MET is currently incorporated in the World Health Organization (WHO) list of essential medicines, i.e. medications that are considered to be effective and safe to meet the most important needs in a health system (WHO, 2015[WHO (2015). Who. Tech. Rep. Ser. 994, 1-546.]). Despite the widespread use of MET as a drug, relatively little structural data concerning its inter­actions with metal ions exist, and there are few structurally characterized copper compounds of MET (Galván-Tejada et al., 2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]; Barba-Behrens et al., 1991[Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333-1341.]; Athar et al., 2005[Athar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320-1330.]; Ratajczak-Sitarz et al., 1998[Ratajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326-331.]; Bharti et al., 2002[Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Garza, M. G., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704-2712.]). Our recent work has sought to develop further metal–MET chemistry and we have reported structures containing Cu (Palmer et al., 2015[Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.]; Quinlivan & Upmacis, 2016[Quinlivan, P. J. & Upmacis, R. K. (2016). Acta Cryst. E72, 1633-1636.]), as well as Ag (Palmer & Upmacis, 2015[Palmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284-287.]) and Au (Quinlivan et al., 2015[Quinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810-812.]). Tetra­nuclear copper(II) compounds of the form [Cu4OX6L4] are relatively well known, with the first example described in 1996 (Bertrand & Kelley, 1966[Bertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746-4747.]). In this regard, although the structure of a [Cu4OX6L4] structure, where L = imidazole, has been previously described (Atria et al., 1999[Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681-5685.]), a counterpart containing L = MET has not been reported. Herein, we describe the structure of a tetra­nuclear Cu–MET complex [Cu4Cl6O(MET)4] that is obtained by the reaction of anhydrous copper(I) chloride with MET in MeOH under aerobic conditions.

[Scheme 1]

2. Structural commentary

The structure of the [Cu4Cl6O(MET)4] complex is shown in Fig. 1[link]. Four copper atoms are arranged around an oxygen atom in a tetra­hedral fashion, with Cu—O distances ranging from 1.8960 (18) to 1.913 (2) Å. The Cu—O—Cu angles range from 108.36 (10) to 110.80 (9)°, indicating a fairly uniform tetra­hedron with little distortion. In fact, the degree of distortion from a tetra­hedral arrangement can be readily quan­ti­fied by the τ4 four-coordinate geometry index that is reported and discussed elsewhere (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; Palmer et al., 2015[Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.], Brescia et al., 2018[Brescia, T. K., Mulosmani, K., Gulati, S., Athanasopoulos, D. & Upmacis, R. K. (2018). Acta Cryst. E74, 309-312.]). Briefly, τ4 is obtained from the expression, τ4 = [360 − (α +  β)]/141, where α and β represent the two largest angles; a τ4 value of 1.00 indicates an idealized tetra­hedral geometry, whereas a value of 0.00 indicates an idealized square-planar geometry. In the title complex, α = 110.80 (9)° and β = 109.55 (9)°, such that τ4 is 0.990, which indicates negligible deviation from a tetra­hedral geometry for oxygen (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Figure 1]
Figure 1
The mol­ecular structure of [Cu4Cl6O(MET)4]. For clarity, hydrogen atoms have been omitted. The eth­oxy group of the MET ligand attached to Cu3 (comprising C34, C35 and O31) is disordered over two sets of sites in a 0.515 (19):0.485 (19) ratio.

Each of the four copper atoms is linked to the other three copper atoms via three chloride bridges, with the Cu—Cl bridging distances varying from 2.3579 (10) to 2.4435 (9) Å (for Cu2—Cl6 and Cu1—Cl2, respectively). Each copper atom is also bound to a nitro­gen atom of a MET ligand. The Cu—N lengths range from 1.949 (2) to 1.972 (3) Å (for Cu1—N11 and Cu4—N41, respectively). Thus, each copper atom sits within a trigonal–bipyramidal arrangement, with the oxygen and nitro­gen atoms forming the axial coordination points, and the bridging chloride ligands occupying the equatorial plane. The trigonal–bipyramidal structure is somewhat distorted, as indicated by the fact that the O—Cu—N angles are less than 180°, ranging from 173.12 (10) to 176.91 (10)° (for O1—Cu1—N11 and O1—Cu2—N21, respectively), and the Cl—Cu—Cl angles differ significantly from 120°, ranging from 109.97 (3) to 134.02 (3)° (for Cl2—Cu2—Cl4 and Cl3—Cu1—Cl2, respectively). Furthermore, the O—Cu—Cl angles are all less than 90°, ranging from 83.33 (6) to 86.13 (6)° (for O1—Cu1—Cl2 and O1—Cu—Cl1, respectively), indicating that the equatorial chloride ligands are displaced slightly more towards the axial oxygen atom in the center of the mol­ecule, than towards the nitro­gen-containing ligand in the opposite axial position.

The τ5 geometry index is a general descriptor of five-coordinate mol­ecules and provides a way to determine the extent of distortion of a mol­ecule from trigonal bipyramidal to square pyramidal (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The τ5 geometry index is calculated by using the equation: τ5 = (β − α)/60, where β − α is the difference between the two largest angles (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]; Palmer & Parkin, 2014[Palmer, J. H. & Parkin, G. (2014). Dalton Trans. 43, 13874-13882.]). The values for τ5 are calculated to be 0.65 (Cu1), 0.74 (Cu2), 0.84 (Cu3) and 0.73 (Cu4) for the five-coordinate copper centers, giving an average τ5 value of 0.74. The τ5 values obtained indicate that the copper-centered structures are closer to an idealized trigonal–bipyramidal (1.00) than a square-pyramidal geometry (0.00).

3. Supra­molecular features

Fig. 2[link] shows the packing in the unit cell. As well as the O—H⋯O hydrogen bonds shown in Table 1[link], O11—H11A and O21—H21A probably form links to the disordered solvent mol­ecules removed with SQUEEZE (see Experimental). The most inter­esting observation is the existence of short O⋯N inter­actions between the N13/O12/O13 and N33/O32/O33 nitro groups of adjacent clusters that are oriented perpendicular to each other, as illustrated in Fig. 3[link] with O12⋯N33 = 2.775 (4) Å. This type of contact has previously been described as an ONO2π(N)NO2 inter­action (Daszkiewicz, 2013[Daszkiewicz, M. (2013). CrystEngComm, 15, 10427-10430.]); such contacts are typically shorter than 3 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H41A⋯O31i 0.89 (2) 2.13 (3) 2.738 (8) 125 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Unit-cell packing of [Cu4Cl6O(MET)4] viewed down [100].
[Figure 3]
Figure 3
Detail of the O⋯N inter­action between the nitro groups of adjacent clusters.

4. Database survey

The tetra­nuclear copper motif, L4Cu4Cl6O, where L is a nitro­gen-containing Lewis base ligand, is common. For instance, several structures have been reported in which L contains either an imidazole or substituted imidazole moiety (Clegg et al., 1988[Clegg, W., Nicholson, J. R., Collison, D. & Garner, C. D. (1988). Acta Cryst. C44, 453-461.]; Norman et al., 1989[Norman, R. E., Rose, N. J. & Stenkamp, R. E. (1989). Acta Cryst. C45, 1707-1713.] Erdonmez et al., 1990[Erdonmez, A., van Diemen, J. H., de Graaff, R. A. G. & Reedijk, J. (1990). Acta Cryst. C46, 402-404.]; Atria et al., 1999[Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681-5685.]; Cortés et al., 2006[Cortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311-m314.]; Chiarella et al., 2009[Chiarella, G. M., Melgarejo, D. Y. & Fackler Jr, J. P. (2009). Acta Cryst. C65, m228-m230.], 2010[Chiarella, G. M., Melgarejo, D. Y., Prosvirin, A. V., Dunbar, K. R. & Fackler, J. P. (2010). J. Clust Sci. 21, 551-565.]; She et al., 2010[She, G., Liu, S. Y., Wu, X. M., Guo, J. H., Wang, X. G. & Liu, Q. X. (2010). Chin. J. Inorg. Chem. 26, 515-520.]) or a benzimidazole moiety (Tosik et al., 1991[Tosik, A., Bukowska-Strzyzewska, M. & Mrozinski, J. (1991). J. Coord. Chem. 24, 113-125.] Zhang et al., 2003[Zhang, Y.-Q., Xu, D.-J. & Su, J.-R. (2003). Acta Cryst. E59, m919-m920.]; Jian et al., 2004[Jian, F. F., Zhao, P. S., Wang, H. X. & Lu, L. D. (2004). Bull. Kor. Chem. Soc. 25, 673-675.]; Li et al., 2011[Li, H., Jiang, H. & Sun, H. (2011). Acta Cryst. E67, m1372.]).

The title compound [Cu4Cl6O(MET)4] contains Cu—X distances that are similar to those in [Cu4Cl6O(imidazole)4] (Atria et al., 1999[Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681-5685.]). For example, the Cu—O distances in [Cu4Cl6O(MET)4] are 1.8960 (18)–1.913 (2) Å, compared to 1.903 (4)–1.924 (4) Å for [Cu4Cl6O(imidazole)4]. Likewise, the Cu—Cl distances in [Cu4Cl6O(MET)4] are 2.3579 (10)–2.4435 (9) Å, compared to 2.374 (2)–2.564 (2) Å for [Cu4Cl6O(imidazole)4]. Moreover, the Cu—N distances in [Cu4Cl6O(MET)4] are 1.949 (2)–1.972 (3) Å, compared to 1.934 (6)–1.961 (6) Å.

5. Synthesis and crystallization

Anhydrous copper(I) chloride (0.015 g, 0.00015 mol) was mixed with MET (0.05075 g, 0.00030 mol) in methanol (2 ml) in a glass vial, forming a dark olive-colored solution. After allowing the solution to evaporate for eight days, gold-colored plates, suitable for X-ray diffraction, were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). Atoms C34, C35 and O31 and their attached H atoms were modeled as disordered over two sets of sites in a 0.515 (19):0.485 (19) ratio. The structure contains two methanol mol­ecules and one water mol­ecule, but they are disordered and were removed by the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]); the stated crystal data (Mr, μ, etc.) only refer to the main mol­ecule.

Table 2
Experimental details

Crystal data
Chemical formula [Cu4Cl6O(C6H9N3O3)4]
Mr 1167.51
Crystal system, space group Monoclinic, C2/c
Temperature (K) 130
a, b, c (Å) 22.125 (3), 13.361 (2), 32.633 (5)
β (°) 94.752 (2)
V3) 9613 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.14
Crystal size (mm) 0.36 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.586, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 78050, 15003, 11100
Rint 0.048
(sin θ/λ)max−1) 0.720
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.03
No. of reflections 15003
No. of parameters 579
No. of restraints 120
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.55, −1.09
Computer programs: APEX2 and), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexa-µ-chlorido-µ4-oxido-tetrakis{[1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} top
Crystal data top
[Cu4Cl6O(C6H9N3O3)4]F(000) = 4688
Mr = 1167.51Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.125 (3) ÅCell parameters from 9836 reflections
b = 13.361 (2) Åθ = 2.2–29.8°
c = 32.633 (5) ŵ = 2.14 mm1
β = 94.752 (2)°T = 130 K
V = 9613 (3) Å3Plate, gold
Z = 80.36 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
11100 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 30.8°, θmin = 1.3°
Tmin = 0.586, Tmax = 0.746h = 3131
78050 measured reflectionsk = 1919
15003 independent reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0497P)2 + 31.4385P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
15003 reflectionsΔρmax = 1.55 e Å3
579 parametersΔρmin = 1.09 e Å3
120 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.80290 (2)0.01300 (3)0.39169 (2)0.02214 (8)
Cu20.70660 (2)0.01915 (3)0.31768 (2)0.02614 (8)
Cu30.66594 (2)0.02107 (3)0.40449 (2)0.03036 (9)
Cu40.71326 (2)0.19124 (3)0.38380 (2)0.02342 (8)
Cl10.81567 (3)0.18214 (5)0.41707 (2)0.02840 (14)
Cl20.81362 (3)0.00755 (7)0.31780 (2)0.03451 (17)
Cl30.75591 (3)0.09683 (6)0.43943 (2)0.03046 (16)
Cl40.67511 (3)0.19355 (6)0.31175 (2)0.03082 (15)
Cl50.63812 (3)0.13927 (7)0.42920 (2)0.03596 (17)
Cl60.63258 (5)0.09252 (9)0.33861 (3)0.0547 (3)
N110.88549 (10)0.03600 (18)0.40341 (7)0.0233 (5)
N120.96498 (10)0.13435 (19)0.39975 (9)0.0302 (5)
N131.04472 (14)0.0232 (3)0.43287 (15)0.0646 (12)
N210.68926 (12)0.0204 (2)0.26024 (8)0.0307 (5)
N220.67466 (12)0.1147 (2)0.20463 (8)0.0312 (6)
N230.62700 (16)0.0128 (3)0.15652 (10)0.0497 (9)
N310.60566 (11)0.0980 (2)0.43173 (8)0.0316 (6)
N320.51725 (10)0.15805 (18)0.44639 (7)0.0243 (5)
N330.55277 (14)0.2806 (3)0.50054 (11)0.0513 (9)
N410.70835 (10)0.33784 (19)0.38980 (7)0.0254 (5)
N420.71449 (13)0.4914 (2)0.41434 (9)0.0355 (6)
N430.71274 (19)0.5839 (3)0.34682 (11)0.0591 (10)
O10.72212 (8)0.05076 (15)0.37460 (6)0.0222 (4)
O110.9926 (2)0.1888 (4)0.31860 (12)0.0965 (15)
H11A0.991 (3)0.228 (4)0.2983 (14)0.145*
O121.05456 (14)0.0584 (3)0.44694 (19)0.125 (2)
O131.08424 (12)0.0857 (3)0.43043 (14)0.0822 (12)
O210.55815 (16)0.1846 (3)0.17440 (17)0.0943 (14)
H21A0.5252 (8)0.206 (4)0.1839 (17)0.141*
O220.59231 (17)0.0862 (2)0.15657 (10)0.0714 (11)
O230.64160 (13)0.0312 (3)0.12553 (8)0.0606 (9)
O320.59897 (13)0.3128 (3)0.52030 (10)0.0717 (11)
O330.50093 (13)0.3067 (3)0.50600 (10)0.0683 (10)
O410.81469 (16)0.5364 (3)0.47601 (15)0.0891 (14)
H41A0.8525 (9)0.5590 (19)0.479 (2)0.134*
O420.70514 (17)0.5744 (2)0.30998 (9)0.0643 (9)
O430.7238 (3)0.6628 (3)0.36399 (13)0.139 (2)
C110.90440 (12)0.1254 (2)0.39148 (9)0.0261 (6)
C120.93477 (13)0.0145 (2)0.42001 (11)0.0333 (7)
H12A0.93490.08010.43120.040*
C130.98391 (13)0.0457 (3)0.41783 (12)0.0380 (8)
C141.00057 (14)0.2241 (3)0.39029 (12)0.0403 (8)
H14A1.03020.23880.41390.048*
H14B0.97290.28220.38640.048*
C151.03387 (19)0.2108 (4)0.35240 (16)0.0627 (13)
H15A1.05630.27290.34690.075*
H15B1.06360.15570.35670.075*
C160.86509 (14)0.2053 (3)0.37248 (12)0.0369 (7)
H16A0.82290.18220.36980.055*
H16B0.87800.22130.34520.055*
H16C0.86840.26520.38990.055*
C210.69669 (14)0.1114 (3)0.24465 (9)0.0311 (6)
C220.66075 (16)0.0364 (3)0.22997 (11)0.0382 (8)
H22A0.64930.10460.23230.046*
C230.65153 (15)0.0209 (3)0.19587 (10)0.0355 (7)
C240.66535 (15)0.2064 (3)0.18002 (11)0.0398 (8)
H24A0.66920.19050.15070.048*
H24B0.69720.25570.18890.048*
C250.60375 (18)0.2517 (3)0.18455 (15)0.0514 (10)
H25A0.60140.27390.21330.062*
H25B0.59830.31130.16660.062*
C260.7245 (2)0.1984 (3)0.26728 (12)0.0515 (10)
H26A0.75100.17460.29080.077*
H26B0.69250.24070.27710.077*
H26C0.74830.23730.24890.077*
C310.54558 (12)0.0912 (2)0.42365 (9)0.0247 (5)
C320.61649 (13)0.1716 (2)0.46056 (9)0.0299 (6)
H32A0.65520.19340.47190.036*
C330.56247 (14)0.2077 (2)0.47002 (10)0.0308 (6)
C340.4518 (4)0.1791 (10)0.4409 (4)0.027 (2)0.515 (19)
H34A0.43460.15030.41450.033*0.515 (19)
H34B0.44510.25230.43990.033*0.515 (19)
C350.4205 (4)0.1352 (8)0.4754 (3)0.034 (2)0.515 (19)
H35A0.43510.16860.50140.041*0.515 (19)
H35B0.37630.14690.47060.041*0.515 (19)
O310.4317 (4)0.0314 (7)0.4788 (3)0.040 (2)0.515 (19)
H31A0.4316 (19)0.012 (3)0.5031 (8)0.060*0.515 (19)
C34A0.4496 (4)0.1552 (12)0.4507 (5)0.036 (3)0.485 (19)
H34D0.43530.22340.45680.044*0.485 (19)
H34E0.42830.13350.42430.044*0.485 (19)
C35A0.4336 (5)0.0858 (14)0.4841 (4)0.053 (4)0.485 (19)
H35D0.45230.11030.51080.063*0.485 (19)
H35E0.38900.08570.48540.063*0.485 (19)
O31A0.4535 (6)0.0129 (10)0.4775 (2)0.054 (3)0.485 (19)
H31D0.483 (6)0.012 (11)0.489 (4)0.081*0.485 (19)
C360.51388 (13)0.0216 (3)0.39382 (11)0.0357 (7)
H36A0.54280.02790.38500.053*
H36B0.49660.05940.36990.053*
H36C0.48130.01260.40680.053*
C410.71482 (13)0.3938 (2)0.42409 (9)0.0287 (6)
C420.70446 (13)0.4025 (2)0.35718 (9)0.0281 (6)
H42A0.69920.38400.32900.034*
C430.70926 (16)0.4966 (2)0.37164 (10)0.0352 (7)
C440.71595 (19)0.5751 (3)0.44430 (12)0.0480 (9)
H44A0.70000.55190.47010.058*
H44B0.68970.63020.43300.058*
C450.7785 (2)0.6121 (4)0.45304 (15)0.0602 (11)
H45A0.77810.67460.46930.072*
H45B0.79640.62690.42690.072*
C460.71969 (17)0.3551 (3)0.46674 (10)0.0393 (8)
H46A0.75830.37650.48090.059*
H46B0.68610.38130.48130.059*
H46C0.71790.28180.46620.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01369 (14)0.02604 (17)0.02712 (17)0.00543 (12)0.00426 (12)0.00550 (13)
Cu20.02511 (17)0.03088 (19)0.02237 (16)0.00373 (14)0.00162 (13)0.00551 (14)
Cu30.01595 (15)0.0409 (2)0.0351 (2)0.00491 (14)0.00700 (13)0.01941 (16)
Cu40.01913 (15)0.02818 (18)0.02352 (16)0.00774 (13)0.00518 (12)0.00593 (13)
Cl10.0216 (3)0.0303 (4)0.0323 (3)0.0077 (3)0.0032 (3)0.0011 (3)
Cl20.0254 (3)0.0527 (5)0.0265 (3)0.0088 (3)0.0084 (3)0.0048 (3)
Cl30.0178 (3)0.0377 (4)0.0364 (4)0.0069 (3)0.0055 (3)0.0146 (3)
Cl40.0320 (3)0.0325 (4)0.0270 (3)0.0100 (3)0.0035 (3)0.0038 (3)
Cl50.0238 (3)0.0510 (5)0.0351 (4)0.0049 (3)0.0145 (3)0.0015 (3)
Cl60.0554 (6)0.0713 (7)0.0395 (5)0.0348 (5)0.0163 (4)0.0098 (4)
N110.0136 (9)0.0250 (12)0.0317 (12)0.0037 (8)0.0049 (9)0.0061 (9)
N120.0161 (10)0.0266 (13)0.0485 (16)0.0053 (9)0.0071 (10)0.0078 (11)
N130.0175 (13)0.049 (2)0.127 (4)0.0027 (13)0.0002 (17)0.006 (2)
N210.0349 (13)0.0325 (14)0.0240 (12)0.0034 (11)0.0015 (10)0.0082 (10)
N220.0273 (12)0.0421 (15)0.0240 (12)0.0001 (11)0.0020 (10)0.0039 (11)
N230.0530 (19)0.051 (2)0.0406 (17)0.0300 (16)0.0228 (15)0.0193 (15)
N310.0183 (11)0.0410 (15)0.0358 (14)0.0054 (10)0.0040 (10)0.0198 (12)
N320.0215 (11)0.0276 (12)0.0237 (11)0.0048 (9)0.0007 (9)0.0023 (9)
N330.0396 (16)0.055 (2)0.057 (2)0.0174 (15)0.0098 (14)0.0336 (16)
N410.0189 (10)0.0317 (13)0.0259 (12)0.0082 (9)0.0033 (9)0.0044 (10)
N420.0404 (15)0.0300 (14)0.0340 (14)0.0092 (11)0.0094 (12)0.0012 (11)
N430.090 (3)0.0332 (17)0.050 (2)0.0034 (17)0.0176 (19)0.0105 (15)
O10.0163 (8)0.0279 (10)0.0227 (9)0.0040 (7)0.0036 (7)0.0080 (8)
O110.085 (3)0.148 (4)0.061 (2)0.048 (3)0.031 (2)0.016 (2)
O120.0294 (16)0.068 (2)0.273 (7)0.0062 (16)0.022 (3)0.061 (3)
O130.0176 (12)0.066 (2)0.161 (4)0.0098 (13)0.0059 (17)0.005 (2)
O210.0401 (18)0.073 (3)0.168 (4)0.0018 (17)0.004 (2)0.021 (3)
O220.097 (3)0.0370 (16)0.070 (2)0.0127 (16)0.0530 (19)0.0170 (14)
O230.0467 (16)0.104 (3)0.0293 (13)0.0229 (16)0.0096 (11)0.0139 (15)
O320.0461 (16)0.088 (2)0.077 (2)0.0221 (16)0.0221 (15)0.0596 (19)
O330.0407 (15)0.080 (2)0.082 (2)0.0242 (14)0.0056 (14)0.0527 (18)
O410.055 (2)0.070 (2)0.134 (4)0.0152 (17)0.038 (2)0.037 (2)
O420.108 (3)0.0457 (17)0.0396 (15)0.0042 (17)0.0097 (16)0.0170 (13)
O430.290 (7)0.045 (2)0.071 (3)0.046 (3)0.061 (4)0.0152 (19)
C110.0193 (12)0.0275 (14)0.0320 (14)0.0053 (10)0.0064 (10)0.0070 (11)
C120.0186 (13)0.0289 (15)0.053 (2)0.0019 (11)0.0050 (13)0.0024 (14)
C130.0141 (12)0.0352 (17)0.065 (2)0.0015 (11)0.0042 (13)0.0069 (16)
C140.0221 (14)0.0362 (18)0.063 (2)0.0153 (13)0.0074 (14)0.0067 (16)
C150.037 (2)0.071 (3)0.084 (3)0.022 (2)0.026 (2)0.004 (2)
C160.0244 (14)0.0344 (17)0.052 (2)0.0068 (12)0.0012 (13)0.0044 (15)
C210.0313 (15)0.0392 (17)0.0229 (14)0.0076 (13)0.0035 (11)0.0058 (12)
C220.0420 (18)0.0303 (16)0.0394 (18)0.0068 (14)0.0137 (14)0.0113 (14)
C230.0357 (16)0.0406 (18)0.0284 (15)0.0114 (14)0.0086 (12)0.0134 (13)
C240.0319 (16)0.051 (2)0.0359 (17)0.0074 (15)0.0003 (13)0.0097 (15)
C250.042 (2)0.043 (2)0.069 (3)0.0006 (17)0.0065 (19)0.0059 (19)
C260.069 (3)0.048 (2)0.0355 (19)0.025 (2)0.0065 (18)0.0030 (16)
C310.0176 (12)0.0325 (15)0.0245 (13)0.0023 (10)0.0040 (10)0.0050 (11)
C320.0244 (13)0.0346 (16)0.0305 (15)0.0031 (12)0.0001 (11)0.0095 (12)
C330.0273 (14)0.0327 (16)0.0310 (15)0.0078 (12)0.0053 (11)0.0106 (12)
C340.017 (3)0.035 (5)0.030 (5)0.010 (3)0.003 (3)0.000 (3)
C350.027 (3)0.043 (5)0.035 (4)0.001 (3)0.013 (3)0.003 (3)
O310.033 (3)0.037 (4)0.052 (4)0.004 (3)0.013 (3)0.011 (3)
C34A0.022 (4)0.045 (7)0.040 (7)0.019 (4)0.010 (4)0.005 (5)
C35A0.023 (4)0.091 (11)0.045 (5)0.001 (7)0.010 (4)0.014 (8)
O31A0.055 (6)0.065 (7)0.041 (4)0.023 (5)0.007 (3)0.020 (4)
C360.0197 (13)0.0441 (19)0.0427 (18)0.0038 (12)0.0005 (12)0.0198 (15)
C410.0229 (13)0.0331 (16)0.0294 (14)0.0129 (11)0.0008 (11)0.0043 (12)
C420.0250 (13)0.0332 (16)0.0265 (14)0.0074 (11)0.0038 (11)0.0078 (12)
C430.0394 (17)0.0300 (16)0.0348 (16)0.0058 (13)0.0052 (13)0.0074 (13)
C440.059 (2)0.039 (2)0.044 (2)0.0141 (17)0.0106 (18)0.0024 (16)
C450.060 (3)0.058 (3)0.060 (3)0.004 (2)0.009 (2)0.011 (2)
C460.049 (2)0.0420 (19)0.0265 (15)0.0144 (16)0.0005 (14)0.0057 (14)
Geometric parameters (Å, º) top
Cu1—O11.8960 (18)N31—C311.337 (3)
Cu1—N111.949 (2)N31—C321.368 (4)
Cu1—Cl12.4152 (9)N32—C311.348 (4)
Cu1—Cl32.4351 (8)N32—C331.381 (4)
Cu1—Cl22.4435 (9)N32—C341.472 (9)
Cu2—O11.908 (2)N32—C34A1.516 (10)
Cu2—N211.955 (3)N33—O331.226 (4)
Cu2—Cl62.3579 (10)N33—O321.240 (4)
Cu2—Cl22.3726 (9)N33—C331.423 (4)
Cu2—Cl42.4351 (9)N41—C411.343 (4)
Cu3—O11.9022 (19)N41—C421.368 (4)
Cu3—N311.955 (2)N42—C411.342 (4)
Cu3—Cl52.3877 (10)N42—C431.390 (4)
Cu3—Cl62.4113 (11)N42—C441.484 (5)
Cu3—Cl32.4312 (8)N43—O421.207 (4)
Cu4—O11.913 (2)N43—O431.209 (5)
Cu4—N411.972 (3)N43—C431.426 (5)
Cu4—Cl52.4186 (8)O11—C151.404 (6)
Cu4—Cl42.4314 (9)O21—C251.370 (5)
Cu4—Cl12.4332 (8)O41—C451.458 (6)
N11—C111.335 (4)C11—C161.480 (4)
N11—C121.356 (4)C12—C131.359 (4)
N12—C111.350 (4)C14—C151.501 (6)
N12—C131.373 (4)C21—C261.482 (5)
N12—C141.481 (4)C22—C231.352 (5)
N13—O121.195 (5)C24—C251.510 (5)
N13—O131.217 (4)C31—C361.480 (4)
N13—C131.426 (4)C32—C331.348 (4)
N21—C211.334 (4)C34—C351.490 (10)
N21—C221.359 (4)C35—O311.411 (9)
N22—C211.356 (4)C34A—C35A1.495 (13)
N22—C231.376 (4)C35A—O31A1.413 (13)
N22—C241.469 (4)C41—C461.480 (4)
N23—O231.236 (5)C42—C431.343 (5)
N23—O221.246 (5)C44—C451.474 (6)
N23—C231.425 (4)
O1—Cu1—N11173.12 (10)C31—N31—C32107.4 (2)
O1—Cu1—Cl186.13 (6)C31—N31—Cu3125.4 (2)
N11—Cu1—Cl199.55 (7)C32—N31—Cu3127.1 (2)
O1—Cu1—Cl384.63 (6)C31—N32—C33106.1 (2)
N11—Cu1—Cl396.61 (7)C31—N32—C34123.8 (6)
Cl1—Cu1—Cl3112.86 (3)C33—N32—C34129.5 (6)
O1—Cu1—Cl283.33 (6)C31—N32—C34A122.8 (7)
N11—Cu1—Cl291.01 (7)C33—N32—C34A129.4 (7)
Cl1—Cu1—Cl2110.37 (3)O33—N33—O32124.6 (3)
Cl3—Cu1—Cl2134.02 (3)O33—N33—C33119.6 (3)
O1—Cu2—N21176.91 (10)O32—N33—C33115.9 (3)
O1—Cu2—Cl686.06 (6)C41—N41—C42107.0 (3)
N21—Cu2—Cl691.20 (8)C41—N41—Cu4129.2 (2)
O1—Cu2—Cl285.06 (6)C42—N41—Cu4123.4 (2)
N21—Cu2—Cl295.77 (8)C41—N42—C43106.5 (3)
Cl6—Cu2—Cl2132.47 (4)C41—N42—C44125.2 (3)
O1—Cu2—Cl483.85 (6)C43—N42—C44128.2 (3)
N21—Cu2—Cl498.64 (8)O42—N43—O43124.0 (4)
Cl6—Cu2—Cl4115.31 (4)O42—N43—C43118.0 (3)
Cl2—Cu2—Cl4109.97 (3)O43—N43—C43117.9 (4)
O1—Cu3—N31176.21 (10)Cu1—O1—Cu3110.80 (9)
O1—Cu3—Cl585.31 (6)Cu1—O1—Cu2108.46 (9)
N31—Cu3—Cl596.51 (9)Cu3—O1—Cu2108.36 (10)
O1—Cu3—Cl684.68 (6)Cu1—O1—Cu4108.74 (10)
N31—Cu3—Cl691.57 (9)Cu3—O1—Cu4109.55 (9)
Cl5—Cu3—Cl6126.01 (4)Cu2—O1—Cu4110.93 (9)
O1—Cu3—Cl384.61 (6)N11—C11—N12110.5 (3)
N31—Cu3—Cl397.52 (7)N11—C11—C16125.5 (3)
Cl5—Cu3—Cl3116.05 (3)N12—C11—C16124.0 (3)
Cl6—Cu3—Cl3115.56 (4)N11—C12—C13107.8 (3)
O1—Cu4—N41175.50 (9)C12—C13—N12108.4 (3)
O1—Cu4—Cl584.21 (6)C12—C13—N13126.4 (3)
N41—Cu4—Cl5100.26 (7)N12—C13—N13125.2 (3)
O1—Cu4—Cl483.84 (6)N12—C14—C15112.4 (3)
N41—Cu4—Cl493.78 (7)O11—C15—C14109.9 (3)
Cl5—Cu4—Cl4113.26 (3)N21—C21—N22110.5 (3)
O1—Cu4—Cl185.25 (6)N21—C21—C26125.7 (3)
N41—Cu4—Cl193.57 (7)N22—C21—C26123.7 (3)
Cl5—Cu4—Cl1111.98 (3)C23—C22—N21108.1 (3)
Cl4—Cu4—Cl1131.90 (3)C22—C23—N22108.5 (3)
Cu1—Cl1—Cu479.38 (2)C22—C23—N23125.7 (3)
Cu2—Cl2—Cu179.70 (2)N22—C23—N23125.6 (3)
Cu3—Cl3—Cu179.95 (3)N22—C24—C25111.6 (3)
Cu4—Cl4—Cu280.61 (2)O21—C25—C24111.5 (4)
Cu3—Cl5—Cu480.86 (3)N31—C31—N32110.3 (2)
Cu2—Cl6—Cu380.74 (3)N31—C31—C36125.6 (3)
C11—N11—C12107.5 (2)N32—C31—C36124.2 (2)
C11—N11—Cu1123.7 (2)C33—C32—N31107.8 (3)
C12—N11—Cu1128.4 (2)C32—C33—N32108.4 (3)
C11—N12—C13105.8 (2)C32—C33—N33126.4 (3)
C11—N12—C14124.5 (3)N32—C33—N33125.1 (3)
C13—N12—C14129.7 (3)N32—C34—C35110.2 (7)
O12—N13—O13122.9 (3)O31—C35—C34110.9 (8)
O12—N13—C13117.5 (3)C35A—C34A—N32112.3 (8)
O13—N13—C13119.7 (4)O31A—C35A—C34A111.8 (9)
C21—N21—C22107.3 (3)N42—C41—N41110.2 (3)
C21—N21—Cu2126.3 (2)N42—C41—C46124.1 (3)
C22—N21—Cu2126.1 (2)N41—C41—C46125.7 (3)
C21—N22—C23105.6 (3)C43—C42—N41108.6 (3)
C21—N22—C24125.2 (3)C42—C43—N42107.6 (3)
C23—N22—C24127.8 (3)C42—C43—N43124.9 (3)
O23—N23—O22125.4 (3)N42—C43—N43127.3 (3)
O23—N23—C23118.8 (4)C45—C44—N42110.4 (3)
O22—N23—C23115.9 (4)O41—C45—C44109.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41A···O31i0.89 (2)2.13 (3)2.738 (8)125 (2)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

RKU thanks Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAthar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320–1330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAtria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681–5685.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341.  CSD CrossRef CAS Web of Science Google Scholar
First citationBertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746–4747.  CrossRef Web of Science Google Scholar
First citationBharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Garza, M. G., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704–2712.  CSD CrossRef CAS Google Scholar
First citationBrescia, T. K., Mulosmani, K., Gulati, S., Athanasopoulos, D. & Upmacis, R. K. (2018). Acta Cryst. E74, 309–312.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiarella, G. M., Melgarejo, D. Y. & Fackler Jr, J. P. (2009). Acta Cryst. C65, m228–m230.  CSD CrossRef IUCr Journals Google Scholar
First citationChiarella, G. M., Melgarejo, D. Y., Prosvirin, A. V., Dunbar, K. R. & Fackler, J. P. (2010). J. Clust Sci. 21, 551–565.  CSD CrossRef CAS Google Scholar
First citationClegg, W., Nicholson, J. R., Collison, D. & Garner, C. D. (1988). Acta Cryst. C44, 453–461.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311–m314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.  Web of Science CrossRef CAS Google Scholar
First citationErdonmez, A., van Diemen, J. H., de Graaff, R. A. G. & Reedijk, J. (1990). Acta Cryst. C46, 402–404.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Zhao, P. S., Wang, H. X. & Lu, L. D. (2004). Bull. Kor. Chem. Soc. 25, 673–675.  CAS Google Scholar
First citationLi, H., Jiang, H. & Sun, H. (2011). Acta Cryst. E67, m1372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorman, R. E., Rose, N. J. & Stenkamp, R. E. (1989). Acta Cryst. C45, 1707–1713.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalmer, J. H. & Parkin, G. (2014). Dalton Trans. 43, 13874–13882.  CSD CrossRef CAS PubMed Google Scholar
First citationPalmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284–287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuinlivan, P. J. & Upmacis, R. K. (2016). Acta Cryst. E72, 1633–1636.  CSD CrossRef IUCr Journals Google Scholar
First citationQuinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810–812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRatajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326–331.  CAS Google Scholar
First citationSamuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533–1541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShe, G., Liu, S. Y., Wu, X. M., Guo, J. H., Wang, X. G. & Liu, Q. X. (2010). Chin. J. Inorg. Chem. 26, 515–520.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTosik, A., Bukowska-Strzyzewska, M. & Mrozinski, J. (1991). J. Coord. Chem. 24, 113–125.  CSD CrossRef CAS Google Scholar
First citationWHO (2015). Who. Tech. Rep. Ser. 994, 1-546.  Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-Q., Xu, D.-J. & Su, J.-R. (2003). Acta Cryst. E59, m919–m920.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds