research communications
N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide
and Hirshfeld surface analysis ofaH.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com
The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intramolecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intramolecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S interaction links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.
Keywords: Thiourea; benzamide derivative; crystal structure; Hirshfeld surface.
1. Chemical context
Thiourea and its derivatives show a broad range of biological activities (Solmaz et al., 2018; Saeed et al., 2018; Pandey et al., 2019). The crystal structures of many thiourea derivatives and their metal complexes have been reported (Lai et al.,2018; Contreras Aguilar et al., 2018; Fakhar et al., 2018; Mitoraj et al., 2018; Pervez et al., 2018; Hashim et al., 2017 Ghazal et al., 2019; Zhang et al., 2019). As part of our studies in this area, we now describe the syntheses, crystal structures and Hirshfeld surface analyses of the thiourea derivatives N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide (C14H10ClFN2OS, 1) and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide (C14H10BrFN2OS, 2). The biological activities of these compounds were previously reported by Khan et al. (2018).
2. Structural commentary
Compound 1 (Fig. 1) is composed of a para-fluoro-substituted [C—F = 1.3579 (16) Å] benzoyl ring linked to a ortho-chloro-substituted phenyl ring [C—Cl = 1.7387 (14) Å] in while in 2 (Fig. 2), a para-fluoro-substituted [C—F = 1.350 (2) Å] benzoyl ring is linked to a para-bromo-substituted phenyl ring [C—Br = 1.8991 (17) Å] via a thiourea (S1/N1/N2/C8) linkage. The benzoyl (O1/C1–C7) and phenyl rings (C9–C14) are arranged about the thiourea moiety in an anti fashion having torsion angles C8—N1—C7—C6 = −170.22 (13) and C9—N2—C8—S1 = 4.5 (2)° in compound 1, with corresponding values of −176.01 (16) and 3.8 (3)°, respectively, in compound 2. The dihedral angles between the phenyl rings are 31.99 (3) and 9.17 (5)° in 1 and 2, respectively. Compound 1 features an intramoleclar bifurcated N—H⋯(O,Cl) hydrogen bond (Table 1) due to the presence of the ortho-Cl atom whereas 2 has an intramolecular N—H⋯O link (Table 2). Both structures feature an intramolecular C—H⋯S bond, which closes an S(6) ring. These intramolecular hydrogen bonds may be responsible for the anti arrangement of the aromatic rings about the thiourea linker.
3. Supramolecular features
In the crystal of 1, inversion dimers linked by pairwise N1—H1A⋯S1 hydrogen bonds (Table 1) generate (8) loops (Fig. 3). The crystal of 2 features the same motif (Table 2), but an additional weak C—H⋯S bond links the dimers into double columns propagating in the [100] direction (Fig. 4).
4. Database survey
A search of Cambridge Structural Database (CSD version 5.39, update of February 2018) for compounds related to 1 and 2 yielded hits for N-{[4-chloro-3-(trifluoromethyl)phenyl]carbamothioyl}-3-methylbenzamide (CCDC deposition No. 1840069) and 4-chloro-N-{[4-chloro-3-(trifluoromethyl)phenyl]carbamothioyl}benzamide (CCDC 1587395) (Zhang et al., 2019): these compounds have the same skeleton as the title compounds but with different substituents attached to the phenyl rings. In both compounds, pairwise N—H⋯S hydrogen bonds are responsible for the formation of inversion dimers with an (8) motif, as also observed in title compounds.
5. Hirshfeld surface analysis
In order to further analyse the close contacts and intermolecular interactions in the crystals of 1 and 2, Hirshfeld surfaces (mapped over dnorm, curvedness and shape-index) (Fig. 5) and two-dimensional fingerprint plots (Figs. 6 and 7) were generated using CrystalExplorer3.1 (Mackenzie et al., 2017). The fingerprint plot for 1 decomposed into individual contact types indicates that the the most significant contributions are from H⋯H (van der Waals) (26.6%) contacts, followed by S⋯H/H⋯S (13.8%), Cl⋯H/H⋯Cl (9.5%) O⋯H/H⋯O (6.7%), F⋯H/H⋯F (6.6%), Cl⋯F/F⋯Cl (3.7%) and F⋯C/C⋯F (3.1%) interactions. In compound 2, H⋯H (19.7%) (van der Waals contacts) are the most significant, followed by C⋯H/H⋯C (14.8%), S⋯H/H⋯S (12.6%), Br⋯H/H⋯Br (12.4%), C⋯C (9.9%) and O⋯N/N⋯O (7.9%) interactions.
6. Synthesis and Crystallization
Compounds 1 and 2 were synthesized by adopting a literature procedure (Binzet et al., 2018) with slight modification: we refluxed the reactants in distilled solvents for 20 min. instead of refluxing them in anhydrous solvents for 4 h. In the first step, 4-fluorobenzoyle chloride (1 mmol) and potassium thiocyanate (1 mmol) were dissolved in acetone (10 ml) at room temperature with constant stirring for 20 minutes to obtain a white precipitate of 4-fluorophenyl isothiocyanate. In the second step, 1 mmol of 2-chloro phenyl aniline (for 1) or 4-bromophenyl aniline (for 2) were added to the mixture and refluxed at 343 K. Hydrochloric acid (0.5 N, 10 ml) was added and the solution was filtered to obtain the desired products: 1 in 69% yield and 2 in 80% yield. For recrystallization, compound 1 was dissolved in a mixture of dichloromethane and methanol (1:1) while compound 2 was dissolved in dichloromethane and left for slow evaporation at room temperature to obtain colourless prisms of 1 and colourless plates of 2
7. Data collection and Refinement
Crystal data, data collection and structure . The C-bound H atoms atoms were positioned with idealized geometry (C—H = 0.93–0.97 Å) and refined as riding atoms. In 1, the N-bound H atoms were located in difference-Fourier maps and their positions were freely refined; in 2, the N-bound H atoms were located in difference-Fourier maps and refined as riding atoms in their as-found relative positions. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019008569/hb7804sup1.cif
contains datablocks global, 1, 2. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019008569/hb78042sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008569/hb78041sup4.cml
Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019008569/hb78041sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008569/hb78042sup5.cml
For both structures, data collection: APEX2 (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10ClFN2OS | F(000) = 632 |
Mr = 308.75 | Dx = 1.563 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 8.0785 (2) Å | Cell parameters from 9977 reflections |
b = 12.4230 (3) Å | θ = 4.9–68.3° |
c = 13.0772 (3) Å | µ = 4.15 mm−1 |
β = 90.551 (1)° | T = 100 K |
V = 1312.36 (5) Å3 | Prism, colourless |
Z = 4 | 0.11 × 0.07 × 0.03 mm |
Bruker APEXII CCD diffractometer | 2269 reflections with I > 2σ(I) |
ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | θmax = 68.3°, θmin = 4.9° |
Tmin = 0.682, Tmax = 0.895 | h = −9→9 |
18686 measured reflections | k = −14→14 |
2362 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7594P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2362 reflections | Δρmax = 0.22 e Å−3 |
189 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.73325 (5) | 0.47025 (3) | 0.56374 (3) | 0.02331 (12) | |
Cl | 0.83162 (5) | 0.03157 (3) | 0.58416 (3) | 0.02495 (11) | |
F1 | 0.18907 (12) | 0.30493 (8) | 0.01782 (7) | 0.0314 (2) | |
O1 | 0.54889 (12) | 0.15637 (8) | 0.42244 (7) | 0.0192 (2) | |
N1 | 0.56777 (15) | 0.33824 (10) | 0.44484 (9) | 0.0179 (3) | |
N2 | 0.70992 (14) | 0.25311 (9) | 0.57516 (9) | 0.0157 (2) | |
C1 | 0.43467 (17) | 0.36712 (11) | 0.24179 (10) | 0.0177 (3) | |
H1 | 0.493438 | 0.425890 | 0.271153 | 0.021* | |
C2 | 0.35330 (18) | 0.38022 (12) | 0.14870 (11) | 0.0206 (3) | |
H2 | 0.355095 | 0.447218 | 0.113699 | 0.025* | |
C3 | 0.26979 (18) | 0.29291 (12) | 0.10866 (10) | 0.0211 (3) | |
C4 | 0.26446 (18) | 0.19359 (12) | 0.15557 (11) | 0.0224 (3) | |
H4 | 0.206152 | 0.135158 | 0.125243 | 0.027* | |
C5 | 0.34669 (18) | 0.18165 (11) | 0.24822 (11) | 0.0199 (3) | |
H5 | 0.345811 | 0.113881 | 0.281860 | 0.024* | |
C6 | 0.43099 (16) | 0.26820 (11) | 0.29281 (10) | 0.0156 (3) | |
C7 | 0.51917 (16) | 0.24761 (11) | 0.39152 (10) | 0.0160 (3) | |
C8 | 0.67071 (16) | 0.34671 (11) | 0.53083 (10) | 0.0162 (3) | |
C9 | 0.80473 (16) | 0.23264 (11) | 0.66453 (10) | 0.0148 (3) | |
C10 | 0.83157 (17) | 0.30697 (11) | 0.74300 (10) | 0.0184 (3) | |
H10 | 0.789298 | 0.378033 | 0.736600 | 0.022* | |
C11 | 0.91962 (17) | 0.27772 (12) | 0.83031 (11) | 0.0213 (3) | |
H11 | 0.938625 | 0.329427 | 0.882642 | 0.026* | |
C12 | 0.98017 (18) | 0.17407 (12) | 0.84215 (11) | 0.0224 (3) | |
H12 | 1.040289 | 0.154849 | 0.902214 | 0.027* | |
C13 | 0.95246 (18) | 0.09856 (12) | 0.76576 (11) | 0.0217 (3) | |
H13 | 0.992398 | 0.027057 | 0.773432 | 0.026* | |
C14 | 0.86603 (17) | 0.12824 (11) | 0.67813 (10) | 0.0170 (3) | |
H1B | 0.672 (2) | 0.1970 (16) | 0.5432 (14) | 0.028 (5)* | |
H1A | 0.528 (2) | 0.3988 (16) | 0.4260 (14) | 0.031 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0331 (2) | 0.01172 (18) | 0.0249 (2) | −0.00054 (13) | −0.01311 (15) | −0.00095 (12) |
Cl | 0.0406 (2) | 0.01417 (18) | 0.01996 (19) | 0.00501 (14) | −0.00550 (15) | −0.00194 (12) |
F1 | 0.0374 (5) | 0.0388 (5) | 0.0178 (4) | 0.0005 (4) | −0.0147 (4) | 0.0016 (4) |
O1 | 0.0267 (5) | 0.0138 (5) | 0.0170 (5) | −0.0006 (4) | −0.0048 (4) | 0.0011 (4) |
N1 | 0.0248 (6) | 0.0126 (6) | 0.0161 (6) | 0.0039 (5) | −0.0079 (5) | −0.0007 (4) |
N2 | 0.0206 (6) | 0.0125 (6) | 0.0141 (6) | 0.0000 (5) | −0.0046 (4) | −0.0015 (4) |
C1 | 0.0208 (7) | 0.0165 (6) | 0.0158 (7) | 0.0002 (5) | −0.0008 (5) | −0.0019 (5) |
C2 | 0.0257 (7) | 0.0196 (7) | 0.0166 (7) | 0.0034 (6) | −0.0016 (6) | 0.0024 (5) |
C3 | 0.0209 (7) | 0.0304 (8) | 0.0119 (7) | 0.0041 (6) | −0.0042 (5) | −0.0015 (6) |
C4 | 0.0241 (7) | 0.0243 (8) | 0.0188 (7) | −0.0040 (6) | −0.0045 (6) | −0.0048 (6) |
C5 | 0.0240 (7) | 0.0170 (7) | 0.0187 (7) | −0.0012 (6) | −0.0017 (5) | −0.0007 (5) |
C6 | 0.0158 (6) | 0.0171 (7) | 0.0137 (6) | 0.0017 (5) | −0.0004 (5) | −0.0012 (5) |
C7 | 0.0171 (6) | 0.0152 (7) | 0.0158 (7) | 0.0000 (5) | −0.0002 (5) | −0.0011 (5) |
C8 | 0.0184 (6) | 0.0150 (6) | 0.0152 (6) | 0.0020 (5) | −0.0023 (5) | −0.0010 (5) |
C9 | 0.0139 (6) | 0.0169 (6) | 0.0135 (6) | −0.0009 (5) | −0.0008 (5) | 0.0022 (5) |
C10 | 0.0208 (7) | 0.0169 (7) | 0.0175 (7) | −0.0002 (5) | −0.0020 (5) | −0.0003 (5) |
C11 | 0.0221 (7) | 0.0250 (7) | 0.0167 (7) | −0.0030 (6) | −0.0034 (5) | −0.0019 (6) |
C12 | 0.0211 (7) | 0.0292 (8) | 0.0169 (7) | 0.0001 (6) | −0.0055 (5) | 0.0048 (6) |
C13 | 0.0226 (7) | 0.0211 (7) | 0.0215 (7) | 0.0039 (6) | −0.0024 (6) | 0.0053 (6) |
C14 | 0.0189 (6) | 0.0160 (7) | 0.0161 (6) | 0.0000 (5) | −0.0001 (5) | −0.0007 (5) |
S1—C8 | 1.6709 (14) | C4—C5 | 1.384 (2) |
Cl—C14 | 1.7387 (14) | C4—H4 | 0.9500 |
F1—C3 | 1.3579 (16) | C5—C6 | 1.3972 (19) |
O1—C7 | 1.2264 (17) | C5—H5 | 0.9500 |
N1—C7 | 1.3794 (18) | C6—C7 | 1.4904 (18) |
N1—C8 | 1.3961 (17) | C9—C10 | 1.3959 (19) |
N1—H1A | 0.85 (2) | C9—C14 | 1.3990 (19) |
N2—C8 | 1.3360 (18) | C10—C11 | 1.3879 (19) |
N2—C9 | 1.4141 (17) | C10—H10 | 0.9500 |
N2—H1B | 0.87 (2) | C11—C12 | 1.385 (2) |
C1—C2 | 1.3875 (19) | C11—H11 | 0.9500 |
C1—C6 | 1.3987 (19) | C12—C13 | 1.387 (2) |
C1—H1 | 0.9500 | C12—H12 | 0.9500 |
C2—C3 | 1.378 (2) | C13—C14 | 1.3860 (19) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.379 (2) | ||
C7—N1—C8 | 129.28 (12) | O1—C7—N1 | 122.26 (12) |
C7—N1—H1A | 117.8 (13) | O1—C7—C6 | 122.32 (12) |
C8—N1—H1A | 112.8 (13) | N1—C7—C6 | 115.41 (12) |
C8—N2—C9 | 129.75 (12) | N2—C8—N1 | 114.89 (12) |
C8—N2—H1B | 114.1 (12) | N2—C8—S1 | 128.15 (10) |
C9—N2—H1B | 116.1 (12) | N1—C8—S1 | 116.94 (10) |
C2—C1—C6 | 120.64 (13) | C10—C9—C14 | 117.87 (12) |
C2—C1—H1 | 119.7 | C10—C9—N2 | 124.58 (12) |
C6—C1—H1 | 119.7 | C14—C9—N2 | 117.39 (12) |
C3—C2—C1 | 117.84 (13) | C11—C10—C9 | 120.42 (13) |
C3—C2—H2 | 121.1 | C11—C10—H10 | 119.8 |
C1—C2—H2 | 121.1 | C9—C10—H10 | 119.8 |
F1—C3—C2 | 118.37 (13) | C12—C11—C10 | 120.86 (13) |
F1—C3—C4 | 118.09 (13) | C12—C11—H11 | 119.6 |
C2—C3—C4 | 123.54 (13) | C10—C11—H11 | 119.6 |
C3—C4—C5 | 117.94 (13) | C11—C12—C13 | 119.58 (13) |
C3—C4—H4 | 121.0 | C11—C12—H12 | 120.2 |
C5—C4—H4 | 121.0 | C13—C12—H12 | 120.2 |
C4—C5—C6 | 120.72 (13) | C14—C13—C12 | 119.47 (13) |
C4—C5—H5 | 119.6 | C14—C13—H13 | 120.3 |
C6—C5—H5 | 119.6 | C12—C13—H13 | 120.3 |
C5—C6—C1 | 119.30 (12) | C13—C14—C9 | 121.78 (13) |
C5—C6—C7 | 117.15 (12) | C13—C14—Cl | 118.45 (11) |
C1—C6—C7 | 123.49 (12) | C9—C14—Cl | 119.76 (10) |
C6—C1—C2—C3 | −0.1 (2) | C9—N2—C8—S1 | 4.5 (2) |
C1—C2—C3—F1 | 179.70 (12) | C7—N1—C8—N2 | −9.6 (2) |
C1—C2—C3—C4 | −0.7 (2) | C7—N1—C8—S1 | 168.84 (11) |
F1—C3—C4—C5 | −179.92 (12) | C8—N2—C9—C10 | 22.4 (2) |
C2—C3—C4—C5 | 0.5 (2) | C8—N2—C9—C14 | −162.20 (13) |
C3—C4—C5—C6 | 0.6 (2) | C14—C9—C10—C11 | 1.4 (2) |
C4—C5—C6—C1 | −1.3 (2) | N2—C9—C10—C11 | 176.73 (13) |
C4—C5—C6—C7 | −178.72 (13) | C9—C10—C11—C12 | −1.1 (2) |
C2—C1—C6—C5 | 1.1 (2) | C10—C11—C12—C13 | 0.0 (2) |
C2—C1—C6—C7 | 178.32 (13) | C11—C12—C13—C14 | 0.7 (2) |
C8—N1—C7—O1 | 8.6 (2) | C12—C13—C14—C9 | −0.3 (2) |
C8—N1—C7—C6 | −170.22 (13) | C12—C13—C14—Cl | −179.45 (11) |
C5—C6—C7—O1 | 15.54 (19) | C10—C9—C14—C13 | −0.7 (2) |
C1—C6—C7—O1 | −161.73 (13) | N2—C9—C14—C13 | −176.39 (12) |
C5—C6—C7—N1 | −165.60 (12) | C10—C9—C14—Cl | 178.42 (10) |
C1—C6—C7—N1 | 17.14 (19) | N2—C9—C14—Cl | 2.72 (17) |
C9—N2—C8—N1 | −177.23 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···S1 | 0.95 | 2.57 | 3.1945 (14) | 124 |
N2—H1B···Cl | 0.87 (2) | 2.482 (19) | 2.9246 (12) | 112.3 (14) |
N2—H1B···O1 | 0.87 (2) | 1.924 (19) | 2.6600 (14) | 141.6 (17) |
N1—H1A···S1i | 0.85 (2) | 2.67 (2) | 3.4031 (13) | 145.2 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C14H10BrFN2OS | Z = 2 |
Mr = 353.19 | F(000) = 348 |
Triclinic, P1 | Dx = 1.771 Mg m−3 |
a = 3.8733 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 13.0776 (5) Å | Cell parameters from 9945 reflections |
c = 13.2628 (6) Å | θ = 3.4–68.2° |
α = 98.817 (1)° | µ = 5.83 mm−1 |
β = 94.714 (1)° | T = 100 K |
γ = 94.727 (1)° | Plate, colourless |
V = 658.54 (5) Å3 | 0.35 × 0.05 × 0.04 mm |
Bruker APEXII CCD diffractometer | 2381 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | θmax = 68.2°, θmin = 3.4° |
Tmin = 0.612, Tmax = 0.946 | h = −4→4 |
20701 measured reflections | k = −15→15 |
2384 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2384 reflections | Δρmax = 0.45 e Å−3 |
181 parameters | Δρmin = −1.46 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.39350 (4) | 0.11758 (2) | 0.46689 (2) | 0.01272 (16) | |
O1 | 0.4560 (4) | 0.66092 (11) | 0.32207 (10) | 0.0175 (3) | |
N1 | 0.3835 (4) | 0.58122 (12) | 0.15534 (11) | 0.0106 (3) | |
H1A | 0.419261 | 0.590591 | 0.092584 | 0.013* | |
N2 | 0.1544 (4) | 0.47331 (12) | 0.26027 (11) | 0.0111 (3) | |
H1B | 0.187274 | 0.531645 | 0.304308 | 0.013* | |
F1 | 0.9679 (3) | 1.04344 (9) | 0.12214 (9) | 0.0205 (3) | |
S1 | 0.18617 (10) | 0.38973 (3) | 0.06266 (3) | 0.00989 (18) | |
C1 | 0.5195 (4) | 0.78724 (14) | 0.09959 (14) | 0.0092 (4) | |
H1 | 0.376290 | 0.737919 | 0.050359 | 0.011* | |
C2 | 0.6398 (5) | 0.88103 (14) | 0.07394 (14) | 0.0129 (4) | |
H2 | 0.581012 | 0.896819 | 0.007460 | 0.016* | |
C3 | 0.8466 (5) | 0.95143 (15) | 0.14634 (15) | 0.0146 (4) | |
C4 | 0.9345 (5) | 0.93323 (14) | 0.24544 (14) | 0.0137 (4) | |
H4 | 1.074144 | 0.983856 | 0.294279 | 0.016* | |
C5 | 0.8117 (5) | 0.83897 (14) | 0.27036 (14) | 0.0116 (4) | |
H5 | 0.866416 | 0.824564 | 0.337592 | 0.014* | |
C6 | 0.6063 (5) | 0.76392 (14) | 0.19744 (13) | 0.0101 (4) | |
C7 | 0.4782 (5) | 0.66558 (14) | 0.23084 (14) | 0.0105 (4) | |
C9 | 0.0233 (4) | 0.38653 (13) | 0.30136 (13) | 0.0086 (4) | |
C8 | 0.2378 (4) | 0.48253 (14) | 0.16562 (13) | 0.0085 (4) | |
C10 | −0.1837 (5) | 0.30056 (14) | 0.24536 (13) | 0.0115 (4) | |
H10 | −0.240925 | 0.296827 | 0.173769 | 0.014* | |
C11 | −0.3051 (4) | 0.22064 (14) | 0.29513 (13) | 0.0105 (4) | |
H11 | −0.444455 | 0.161739 | 0.257544 | 0.013* | |
C12 | −0.2224 (5) | 0.22707 (13) | 0.39998 (14) | 0.0102 (4) | |
C13 | −0.0217 (5) | 0.31221 (13) | 0.45694 (13) | 0.0109 (4) | |
H13 | 0.031180 | 0.315998 | 0.528723 | 0.013* | |
C14 | 0.0999 (5) | 0.39136 (15) | 0.40755 (14) | 0.0114 (4) | |
H14 | 0.237633 | 0.450144 | 0.445916 | 0.014* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0169 (2) | 0.0096 (2) | 0.0125 (2) | −0.00227 (13) | 0.00215 (13) | 0.00588 (13) |
O1 | 0.0312 (8) | 0.0122 (7) | 0.0076 (7) | −0.0065 (6) | 0.0033 (6) | 0.0011 (5) |
N1 | 0.0154 (8) | 0.0108 (8) | 0.0057 (7) | 0.0005 (6) | 0.0007 (6) | 0.0022 (6) |
N2 | 0.0170 (8) | 0.0073 (7) | 0.0090 (7) | −0.0001 (6) | 0.0021 (6) | 0.0019 (6) |
F1 | 0.0328 (7) | 0.0078 (6) | 0.0213 (7) | −0.0054 (5) | 0.0078 (5) | 0.0051 (5) |
S1 | 0.0140 (3) | 0.0082 (3) | 0.0069 (3) | −0.00094 (19) | 0.00084 (19) | 0.00050 (19) |
C1 | 0.0092 (8) | 0.0080 (9) | 0.0102 (8) | −0.0004 (6) | 0.0023 (6) | 0.0005 (7) |
C2 | 0.0161 (9) | 0.0103 (9) | 0.0133 (9) | 0.0022 (7) | 0.0031 (7) | 0.0031 (7) |
C3 | 0.0197 (9) | 0.0068 (9) | 0.0194 (10) | 0.0022 (7) | 0.0119 (8) | 0.0033 (7) |
C4 | 0.0149 (9) | 0.0097 (9) | 0.0148 (9) | −0.0026 (7) | 0.0020 (7) | −0.0021 (7) |
C5 | 0.0144 (8) | 0.0095 (9) | 0.0093 (8) | −0.0016 (7) | −0.0006 (7) | −0.0012 (7) |
C6 | 0.0106 (8) | 0.0103 (9) | 0.0089 (9) | −0.0002 (7) | 0.0008 (6) | 0.0008 (7) |
C7 | 0.0118 (8) | 0.0104 (9) | 0.0098 (9) | −0.0013 (7) | 0.0013 (6) | 0.0037 (7) |
C9 | 0.0120 (8) | 0.0070 (9) | 0.0086 (8) | 0.0005 (7) | 0.0048 (6) | 0.0047 (6) |
C8 | 0.0103 (8) | 0.0086 (8) | 0.0071 (8) | 0.0020 (7) | −0.0002 (6) | 0.0026 (6) |
C10 | 0.0137 (8) | 0.0120 (9) | 0.0088 (8) | 0.0001 (7) | −0.0005 (7) | 0.0028 (6) |
C11 | 0.0116 (8) | 0.0092 (9) | 0.0097 (8) | −0.0028 (6) | 0.0007 (6) | 0.0004 (6) |
C12 | 0.0128 (8) | 0.0080 (9) | 0.0112 (8) | 0.0005 (6) | 0.0023 (7) | 0.0056 (6) |
C13 | 0.0138 (8) | 0.0132 (9) | 0.0067 (8) | −0.0003 (7) | 0.0018 (7) | 0.0048 (6) |
C14 | 0.0130 (8) | 0.0092 (9) | 0.0112 (9) | −0.0007 (6) | 0.0011 (7) | 0.0002 (6) |
Br1—C12 | 1.8991 (17) | C4—C5 | 1.382 (3) |
O1—C7 | 1.230 (2) | C4—H4 | 0.9500 |
N1—C7 | 1.374 (2) | C5—C6 | 1.409 (2) |
N1—C8 | 1.396 (2) | C5—H5 | 0.9500 |
N1—H1A | 0.8800 | C6—C7 | 1.484 (3) |
N2—C8 | 1.342 (2) | C9—C10 | 1.399 (2) |
N2—C9 | 1.408 (2) | C9—C14 | 1.406 (3) |
N2—H1B | 0.8800 | C10—C11 | 1.390 (3) |
F1—C3 | 1.350 (2) | C10—H10 | 0.9500 |
S1—C8 | 1.6687 (18) | C11—C12 | 1.389 (2) |
C1—C2 | 1.377 (3) | C11—H11 | 0.9500 |
C1—C6 | 1.399 (3) | C12—C13 | 1.385 (3) |
C1—H1 | 0.9500 | C13—C14 | 1.379 (3) |
C2—C3 | 1.375 (3) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.391 (3) | ||
C7—N1—C8 | 128.20 (16) | O1—C7—N1 | 122.08 (17) |
C7—N1—H1A | 115.9 | O1—C7—C6 | 121.00 (17) |
C8—N1—H1A | 115.9 | N1—C7—C6 | 116.92 (16) |
C8—N2—C9 | 131.19 (16) | C10—C9—C14 | 119.30 (16) |
C8—N2—H1B | 114.4 | C10—C9—N2 | 124.87 (15) |
C9—N2—H1B | 114.4 | C14—C9—N2 | 115.78 (16) |
C2—C1—C6 | 120.62 (17) | N2—C8—N1 | 114.66 (16) |
C2—C1—H1 | 119.7 | N2—C8—S1 | 126.92 (15) |
C6—C1—H1 | 119.7 | N1—C8—S1 | 118.43 (13) |
C3—C2—C1 | 118.79 (17) | C11—C10—C9 | 119.57 (16) |
C3—C2—H2 | 120.6 | C11—C10—H10 | 120.2 |
C1—C2—H2 | 120.6 | C9—C10—H10 | 120.2 |
F1—C3—C2 | 119.46 (18) | C12—C11—C10 | 119.85 (16) |
F1—C3—C4 | 117.55 (18) | C12—C11—H11 | 120.1 |
C2—C3—C4 | 122.98 (18) | C10—C11—H11 | 120.1 |
C5—C4—C3 | 117.70 (18) | C13—C12—C11 | 121.42 (16) |
C5—C4—H4 | 121.1 | C13—C12—Br1 | 119.31 (13) |
C3—C4—H4 | 121.1 | C11—C12—Br1 | 119.27 (13) |
C4—C5—C6 | 120.91 (18) | C14—C13—C12 | 118.76 (16) |
C4—C5—H5 | 119.5 | C14—C13—H13 | 120.6 |
C6—C5—H5 | 119.5 | C12—C13—H13 | 120.6 |
C1—C6—C5 | 118.97 (17) | C13—C14—C9 | 121.10 (17) |
C1—C6—C7 | 123.33 (17) | C13—C14—H14 | 119.5 |
C5—C6—C7 | 117.62 (16) | C9—C14—H14 | 119.5 |
C6—C1—C2—C3 | −0.1 (3) | C8—N2—C9—C10 | −28.7 (3) |
C1—C2—C3—F1 | 179.66 (16) | C8—N2—C9—C14 | 154.04 (18) |
C1—C2—C3—C4 | −1.4 (3) | C9—N2—C8—N1 | −175.93 (16) |
F1—C3—C4—C5 | −179.80 (16) | C9—N2—C8—S1 | 3.8 (3) |
C2—C3—C4—C5 | 1.2 (3) | C7—N1—C8—N2 | 6.3 (3) |
C3—C4—C5—C6 | 0.4 (3) | C7—N1—C8—S1 | −173.53 (14) |
C2—C1—C6—C5 | 1.6 (3) | C14—C9—C10—C11 | −1.1 (3) |
C2—C1—C6—C7 | 178.38 (16) | N2—C9—C10—C11 | −178.32 (16) |
C4—C5—C6—C1 | −1.8 (3) | C9—C10—C11—C12 | 0.5 (3) |
C4—C5—C6—C7 | −178.72 (16) | C10—C11—C12—C13 | 0.4 (3) |
C8—N1—C7—O1 | 3.4 (3) | C10—C11—C12—Br1 | 179.54 (13) |
C8—N1—C7—C6 | −176.01 (16) | C11—C12—C13—C14 | −0.6 (3) |
C1—C6—C7—O1 | −154.97 (17) | Br1—C12—C13—C14 | −179.76 (13) |
C5—C6—C7—O1 | 21.9 (3) | C12—C13—C14—C9 | 0.0 (3) |
C1—C6—C7—N1 | 24.4 (2) | C10—C9—C14—C13 | 0.9 (3) |
C5—C6—C7—N1 | −158.75 (16) | N2—C9—C14—C13 | 178.36 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.88 | 2.69 | 3.5081 (15) | 154 |
N2—H1B···O1 | 0.88 | 1.88 | 2.610 (2) | 139 |
C10—H10···S1 | 0.95 | 2.65 | 3.2319 (18) | 120 |
C1—H1···S1ii | 0.95 | 2.81 | 3.7312 (18) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z. |
Funding information
The authors thank the Higher Education Commission of Pakistan (HEC) for financial support through research project No. 20-2830 under the National Research Program for Universities.
References
Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519–529. CSD CrossRef CAS Google Scholar
Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Contreras Aguilar, E., Echeverría, G., Piro, O., Ulic, S., Jios, J., Tuttolomondo, M. & Pérez, H. (2018). Mol. Phys. 116, 399–413. CSD CrossRef CAS Google Scholar
Fakhar, I., Hussien, N. J., Sapari, S., Bloh, A. H., Yusoff, S. F. M., Hasbullah, S. A., Yamin, B. M., Mutalib, S. A., Shihab, M. S. & Yousif, E. (2018). J. Mol. Struct. 1159, 96–102. CSD CrossRef CAS Google Scholar
Ghazal, K., Shoaib, S., Khan, M., Khan, S., Rauf, M. K., Khan, N., Badshah, A., Tahir, M. N. & Ali, I. (2019). J. Mol. Struct. 1177, 12-130. CSD CrossRef Google Scholar
Hashim, S. N. M., Jumal, J. & Kassim, K. (2017). Adv. Sci. Lett. 23, 4523–4527. CrossRef Google Scholar
Khan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354–362. Web of Science CSD CrossRef CAS Google Scholar
Lai, L. C., Rahman, C. N. B. C. A., Tahir, M. I. M., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 256–260. CSD CrossRef IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mitoraj, M. P., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M., Robeyns, K., Garcia, Y. & Safin, D. A. (2018). Cryst. Growth Des. 18, 5385–5397. CSD CrossRef CAS Google Scholar
Pandey, S. K., Pratap, S., Tiwari, M. K., Marverti, G. & Jasinski, J. P. (2019). J. Mol. Struct. 1175, 963–970. CSD CrossRef CAS Google Scholar
Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N. & Naseer, M. M. (2018). Heterocycl. Commun. 24, 51–58. CrossRef CAS Google Scholar
Saeed, A., Mustafa, M. N., Zain-ul-Abideen, M., Shabir, G., Erben, M. F. & Flörke, U. (2018). J. Sulfur Chem. pp. 1–39. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solmaz, U., Gumus, I., Binzet, G., Celik, O., Balci, G. K., Dogen, A. & Arslan, H. (2018). J. Coord. Chem. 71, 200–218. CSD CrossRef CAS Google Scholar
Zhang, Y., Zhang, X., Qiao, L., Ding, Z., Hang, X., Qin, B., Song, J. & Huang, J. (2019). J. Mol. Struct. 1176, 335–345. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.