research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-(2-chloro­phenyl­carbamo­thio­yl)-4-fluoro­benzamide and N-(4-bromo­phenyl­carbamo­thio­yl)-4-fluoro­benzamide

aH.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 February 2019; accepted 16 June 2019; online 21 June 2019)

The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intra­molecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intra­molecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S inter­action links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.

1. Chemical context

Thio­urea and its derivatives show a broad range of biological activities (Solmaz et al., 2018[Solmaz, U., Gumus, I., Binzet, G., Celik, O., Balci, G. K., Dogen, A. & Arslan, H. (2018). J. Coord. Chem. 71, 200-218.]; Saeed et al., 2018[Saeed, A., Mustafa, M. N., Zain-ul-Abideen, M., Shabir, G., Erben, M. F. & Flörke, U. (2018). J. Sulfur Chem. pp. 1-39.]; Pandey et al., 2019[Pandey, S. K., Pratap, S., Tiwari, M. K., Marverti, G. & Jasinski, J. P. (2019). J. Mol. Struct. 1175, 963-970.]). The crystal structures of many thio­urea derivatives and their metal complexes have been reported (Lai et al.,2018[Lai, L. C., Rahman, C. N. B. C. A., Tahir, M. I. M., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 256-260.]; Contreras Aguilar et al., 2018[Contreras Aguilar, E., Echeverría, G., Piro, O., Ulic, S., Jios, J., Tuttolomondo, M. & Pérez, H. (2018). Mol. Phys. 116, 399-413.]; Fakhar et al., 2018[Fakhar, I., Hussien, N. J., Sapari, S., Bloh, A. H., Yusoff, S. F. M., Hasbullah, S. A., Yamin, B. M., Mutalib, S. A., Shihab, M. S. & Yousif, E. (2018). J. Mol. Struct. 1159, 96-102.]; Mitoraj et al., 2018[Mitoraj, M. P., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M., Robeyns, K., Garcia, Y. & Safin, D. A. (2018). Cryst. Growth Des. 18, 5385-5397.]; Pervez et al., 2018[Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N. & Naseer, M. M. (2018). Heterocycl. Commun. 24, 51-58.]; Hashim et al., 2017[Hashim, S. N. M., Jumal, J. & Kassim, K. (2017). Adv. Sci. Lett. 23, 4523-4527.] Ghazal et al., 2019[Ghazal, K., Shoaib, S., Khan, M., Khan, S., Rauf, M. K., Khan, N., Badshah, A., Tahir, M. N. & Ali, I. (2019). J. Mol. Struct. 1177, 12-130.]; Zhang et al., 2019[Zhang, Y., Zhang, X., Qiao, L., Ding, Z., Hang, X., Qin, B., Song, J. & Huang, J. (2019). J. Mol. Struct. 1176, 335-345.]). As part of our studies in this area, we now describe the syntheses, crystal structures and Hirshfeld surface analyses of the thio­urea derivatives N-(2-chloro­phenyl­carbamo­thio­yl)-4-fluoro­benzamide (C14H10ClFN2OS, 1) and N-(4-bromo­phenyl­carbamo­thio­yl)-4-fluoro­benzamide (C14H10BrFN2OS, 2). The biological activities of these compounds were previously reported by Khan et al. (2018[Khan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354-362.]).

[Scheme 1]

2. Structural commentary

Compound 1 (Fig. 1[link]) is composed of a para-fluoro-substituted [C—F = 1.3579 (16) Å] benzoyl ring linked to a ortho-chloro-substituted phenyl ring [C—Cl = 1.7387 (14) Å] in while in 2 (Fig. 2[link]), a para-fluoro-substituted [C—F = 1.350 (2) Å] benzoyl ring is linked to a para-bromo-substituted phenyl ring [C—Br = 1.8991 (17) Å] via a thio­urea (S1/N1/N2/C8) linkage. The benzoyl (O1/C1–C7) and phenyl rings (C9–C14) are arranged about the thio­urea moiety in an anti fashion having torsion angles C8—N1—C7—C6 = −170.22 (13) and C9—N2—C8—S1 = 4.5 (2)° in compound 1, with corresponding values of −176.01 (16) and 3.8 (3)°, respectively, in compound 2. The dihedral angles between the phenyl rings are 31.99 (3) and 9.17 (5)° in 1 and 2, respectively. Compound 1 features an intra­moleclar bifurcated N—H⋯(O,Cl) hydrogen bond (Table 1[link]) due to the presence of the ortho-Cl atom whereas 2 has an intra­molecular N—H⋯O link (Table 2[link]). Both structures feature an intra­molecular C—H⋯S bond, which closes an S(6) ring. These intra­molecular hydrogen bonds may be responsible for the anti arrangement of the aromatic rings about the thio­urea linker.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯S1 0.95 2.57 3.1945 (14) 124
N2—H1B⋯Cl 0.87 (2) 2.482 (19) 2.9246 (12) 112.3 (14)
N2—H1B⋯O1 0.87 (2) 1.924 (19) 2.6600 (14) 141.6 (17)
N1—H1A⋯S1i 0.85 (2) 2.67 (2) 3.4031 (13) 145.2 (16)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.88 2.69 3.5081 (15) 154
N2—H1B⋯O1 0.88 1.88 2.610 (2) 139
C10—H10⋯S1 0.95 2.65 3.2319 (18) 120
C1—H1⋯S1ii 0.95 2.81 3.7312 (18) 165
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of 1 showing 50% displacement ellipsoids; the blue lines represent the intra­molecular inter­actions.
[Figure 2]
Figure 2
The mol­ecular structure of 2 showing 50% displacement ellipsoids; the blue lines represent the intra­molecular inter­actions.

3. Supra­molecular features

In the crystal of 1, inversion dimers linked by pairwise N1—H1A⋯S1 hydrogen bonds (Table 1[link]) generate [R_{2}^{2}](8) loops (Fig. 3[link]). The crystal of 2 features the same motif (Table 2[link]), but an additional weak C—H⋯S bond links the dimers into double columns propagating in the [100] direction (Fig. 4[link]).

[Figure 3]
Figure 3
Partial packing diagram for 1. Light-blue lines indicate directional inter­actions
[Figure 4]
Figure 4
Partial packing diagram for 2. Light-blue lines indicate directional inter­actions

4. Database survey

A search of Cambridge Structural Database (CSD version 5.39, update of February 2018) for compounds related to 1 and 2 yielded hits for N-{[4-chloro-3-(tri­fluoro­meth­yl)phen­yl]carbamo­thio­yl}-3-methyl­benzamide (CCDC deposition No. 1840069) and 4-chloro-N-{[4-chloro-3-(tri­fluoro­meth­yl)phen­yl]carbamo­thio­yl}benzamide (CCDC 1587395) (Zhang et al., 2019[Zhang, Y., Zhang, X., Qiao, L., Ding, Z., Hang, X., Qin, B., Song, J. & Huang, J. (2019). J. Mol. Struct. 1176, 335-345.]): these compounds have the same skeleton as the title compounds but with different substituents attached to the phenyl rings. In both compounds, pairwise N—H⋯S hydrogen bonds are responsible for the formation of inversion dimers with an [R_{2}^{2}](8) motif, as also observed in title compounds.

5. Hirshfeld surface analysis

In order to further analyse the close contacts and inter­molecular inter­actions in the crystals of 1 and 2, Hirshfeld surfaces (mapped over dnorm, curvedness and shape-index) (Fig. 5[link]) and two-dimensional fingerprint plots (Figs. 6[link] and 7[link]) were generated using CrystalExplorer3.1 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The fingerprint plot for 1 decomposed into individual contact types indicates that the the most significant contributions are from H⋯H (van der Waals) (26.6%) contacts, followed by S⋯H/H⋯S (13.8%), Cl⋯H/H⋯Cl (9.5%) O⋯H/H⋯O (6.7%), F⋯H/H⋯F (6.6%), Cl⋯F/F⋯Cl (3.7%) and F⋯C/C⋯F (3.1%) inter­actions. In compound 2, H⋯H (19.7%) (van der Waals contacts) are the most significant, followed by C⋯H/H⋯C (14.8%), S⋯H/H⋯S (12.6%), Br⋯H/H⋯Br (12.4%), C⋯C (9.9%) and O⋯N/N⋯O (7.9%) inter­actions.

[Figure 5]
Figure 5
The Hirshfeld surfaces of 1 and 2.
[Figure 6]
Figure 6
Two dimensional fingerprint plots for 1.
[Figure 7]
Figure 7
Two dimensional fingerprint plots for 2.

6. Synthesis and Crystallization

Compounds 1 and 2 were synthesized by adopting a literature procedure (Binzet et al., 2018[Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519-529.]) with slight modification: we refluxed the reactants in distilled solvents for 20 min. instead of refluxing them in anhydrous solvents for 4 h. In the first step, 4-fluoro­benzoyle chloride (1 mmol) and potassium thio­cyanate (1 mmol) were dissolved in acetone (10 ml) at room temperature with constant stirring for 20 minutes to obtain a white precipitate of 4-fluoro­phenyl iso­thio­cyanate. In the second step, 1 mmol of 2-chloro phenyl aniline (for 1) or 4-bromo­phenyl aniline (for 2) were added to the mixture and refluxed at 343 K. Hydro­chloric acid (0.5 N, 10 ml) was added and the solution was filtered to obtain the desired products: 1 in 69% yield and 2 in 80% yield. For recrystallization, compound 1 was dissolved in a mixture of di­chloro­methane and methanol (1:1) while compound 2 was dissolved in di­chloro­methane and left for slow evaporation at room temperature to obtain colourless prisms of 1 and colourless plates of 2

7. Data collection and Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms atoms were positioned with idealized geometry (C—H = 0.93–0.97 Å) and refined as riding atoms. In 1, the N-bound H atoms were located in difference-Fourier maps and their positions were freely refined; in 2, the N-bound H atoms were located in difference-Fourier maps and refined as riding atoms in their as-found relative positions. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C14H10ClFN2OS C14H10BrFN2OS
Mr 308.75 353.19
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.0785 (2), 12.4230 (3), 13.0772 (3) 3.8733 (2), 13.0776 (5), 13.2628 (6)
α, β, γ (°) 90, 90.551 (1), 90 98.817 (1), 94.714 (1), 94.727 (1)
V3) 1312.36 (5) 658.54 (5)
Z 4 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 4.15 5.83
Crystal size (mm) 0.11 × 0.07 × 0.03 0.35 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.682, 0.895 0.612, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 18686, 2362, 2269 20701, 2384, 2381
Rint 0.023 0.025
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.05 0.025, 0.110, 1.10
No. of reflections 2362 2384
No. of parameters 189 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25 0.45, −1.46
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-(2-Chlorophenylcarbamothioyl)-4-fluorobenzamide (1) top
Crystal data top
C14H10ClFN2OSF(000) = 632
Mr = 308.75Dx = 1.563 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.0785 (2) ÅCell parameters from 9977 reflections
b = 12.4230 (3) Åθ = 4.9–68.3°
c = 13.0772 (3) ŵ = 4.15 mm1
β = 90.551 (1)°T = 100 K
V = 1312.36 (5) Å3Prism, colourless
Z = 40.11 × 0.07 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2269 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
θmax = 68.3°, θmin = 4.9°
Tmin = 0.682, Tmax = 0.895h = 99
18686 measured reflectionsk = 1414
2362 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7594P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2362 reflectionsΔρmax = 0.22 e Å3
189 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73325 (5)0.47025 (3)0.56374 (3)0.02331 (12)
Cl0.83162 (5)0.03157 (3)0.58416 (3)0.02495 (11)
F10.18907 (12)0.30493 (8)0.01782 (7)0.0314 (2)
O10.54889 (12)0.15637 (8)0.42244 (7)0.0192 (2)
N10.56777 (15)0.33824 (10)0.44484 (9)0.0179 (3)
N20.70992 (14)0.25311 (9)0.57516 (9)0.0157 (2)
C10.43467 (17)0.36712 (11)0.24179 (10)0.0177 (3)
H10.4934380.4258900.2711530.021*
C20.35330 (18)0.38022 (12)0.14870 (11)0.0206 (3)
H20.3550950.4472180.1136990.025*
C30.26979 (18)0.29291 (12)0.10866 (10)0.0211 (3)
C40.26446 (18)0.19359 (12)0.15557 (11)0.0224 (3)
H40.2061520.1351580.1252430.027*
C50.34669 (18)0.18165 (11)0.24822 (11)0.0199 (3)
H50.3458110.1138810.2818600.024*
C60.43099 (16)0.26820 (11)0.29281 (10)0.0156 (3)
C70.51917 (16)0.24761 (11)0.39152 (10)0.0160 (3)
C80.67071 (16)0.34671 (11)0.53083 (10)0.0162 (3)
C90.80473 (16)0.23264 (11)0.66453 (10)0.0148 (3)
C100.83157 (17)0.30697 (11)0.74300 (10)0.0184 (3)
H100.7892980.3780330.7366000.022*
C110.91962 (17)0.27772 (12)0.83031 (11)0.0213 (3)
H110.9386250.3294270.8826420.026*
C120.98017 (18)0.17407 (12)0.84215 (11)0.0224 (3)
H121.0402890.1548490.9022140.027*
C130.95246 (18)0.09856 (12)0.76576 (11)0.0217 (3)
H130.9923980.0270570.7734320.026*
C140.86603 (17)0.12824 (11)0.67813 (10)0.0170 (3)
H1B0.672 (2)0.1970 (16)0.5432 (14)0.028 (5)*
H1A0.528 (2)0.3988 (16)0.4260 (14)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0331 (2)0.01172 (18)0.0249 (2)0.00054 (13)0.01311 (15)0.00095 (12)
Cl0.0406 (2)0.01417 (18)0.01996 (19)0.00501 (14)0.00550 (15)0.00194 (12)
F10.0374 (5)0.0388 (5)0.0178 (4)0.0005 (4)0.0147 (4)0.0016 (4)
O10.0267 (5)0.0138 (5)0.0170 (5)0.0006 (4)0.0048 (4)0.0011 (4)
N10.0248 (6)0.0126 (6)0.0161 (6)0.0039 (5)0.0079 (5)0.0007 (4)
N20.0206 (6)0.0125 (6)0.0141 (6)0.0000 (5)0.0046 (4)0.0015 (4)
C10.0208 (7)0.0165 (6)0.0158 (7)0.0002 (5)0.0008 (5)0.0019 (5)
C20.0257 (7)0.0196 (7)0.0166 (7)0.0034 (6)0.0016 (6)0.0024 (5)
C30.0209 (7)0.0304 (8)0.0119 (7)0.0041 (6)0.0042 (5)0.0015 (6)
C40.0241 (7)0.0243 (8)0.0188 (7)0.0040 (6)0.0045 (6)0.0048 (6)
C50.0240 (7)0.0170 (7)0.0187 (7)0.0012 (6)0.0017 (5)0.0007 (5)
C60.0158 (6)0.0171 (7)0.0137 (6)0.0017 (5)0.0004 (5)0.0012 (5)
C70.0171 (6)0.0152 (7)0.0158 (7)0.0000 (5)0.0002 (5)0.0011 (5)
C80.0184 (6)0.0150 (6)0.0152 (6)0.0020 (5)0.0023 (5)0.0010 (5)
C90.0139 (6)0.0169 (6)0.0135 (6)0.0009 (5)0.0008 (5)0.0022 (5)
C100.0208 (7)0.0169 (7)0.0175 (7)0.0002 (5)0.0020 (5)0.0003 (5)
C110.0221 (7)0.0250 (7)0.0167 (7)0.0030 (6)0.0034 (5)0.0019 (6)
C120.0211 (7)0.0292 (8)0.0169 (7)0.0001 (6)0.0055 (5)0.0048 (6)
C130.0226 (7)0.0211 (7)0.0215 (7)0.0039 (6)0.0024 (6)0.0053 (6)
C140.0189 (6)0.0160 (7)0.0161 (6)0.0000 (5)0.0001 (5)0.0007 (5)
Geometric parameters (Å, º) top
S1—C81.6709 (14)C4—C51.384 (2)
Cl—C141.7387 (14)C4—H40.9500
F1—C31.3579 (16)C5—C61.3972 (19)
O1—C71.2264 (17)C5—H50.9500
N1—C71.3794 (18)C6—C71.4904 (18)
N1—C81.3961 (17)C9—C101.3959 (19)
N1—H1A0.85 (2)C9—C141.3990 (19)
N2—C81.3360 (18)C10—C111.3879 (19)
N2—C91.4141 (17)C10—H100.9500
N2—H1B0.87 (2)C11—C121.385 (2)
C1—C21.3875 (19)C11—H110.9500
C1—C61.3987 (19)C12—C131.387 (2)
C1—H10.9500C12—H120.9500
C2—C31.378 (2)C13—C141.3860 (19)
C2—H20.9500C13—H130.9500
C3—C41.379 (2)
C7—N1—C8129.28 (12)O1—C7—N1122.26 (12)
C7—N1—H1A117.8 (13)O1—C7—C6122.32 (12)
C8—N1—H1A112.8 (13)N1—C7—C6115.41 (12)
C8—N2—C9129.75 (12)N2—C8—N1114.89 (12)
C8—N2—H1B114.1 (12)N2—C8—S1128.15 (10)
C9—N2—H1B116.1 (12)N1—C8—S1116.94 (10)
C2—C1—C6120.64 (13)C10—C9—C14117.87 (12)
C2—C1—H1119.7C10—C9—N2124.58 (12)
C6—C1—H1119.7C14—C9—N2117.39 (12)
C3—C2—C1117.84 (13)C11—C10—C9120.42 (13)
C3—C2—H2121.1C11—C10—H10119.8
C1—C2—H2121.1C9—C10—H10119.8
F1—C3—C2118.37 (13)C12—C11—C10120.86 (13)
F1—C3—C4118.09 (13)C12—C11—H11119.6
C2—C3—C4123.54 (13)C10—C11—H11119.6
C3—C4—C5117.94 (13)C11—C12—C13119.58 (13)
C3—C4—H4121.0C11—C12—H12120.2
C5—C4—H4121.0C13—C12—H12120.2
C4—C5—C6120.72 (13)C14—C13—C12119.47 (13)
C4—C5—H5119.6C14—C13—H13120.3
C6—C5—H5119.6C12—C13—H13120.3
C5—C6—C1119.30 (12)C13—C14—C9121.78 (13)
C5—C6—C7117.15 (12)C13—C14—Cl118.45 (11)
C1—C6—C7123.49 (12)C9—C14—Cl119.76 (10)
C6—C1—C2—C30.1 (2)C9—N2—C8—S14.5 (2)
C1—C2—C3—F1179.70 (12)C7—N1—C8—N29.6 (2)
C1—C2—C3—C40.7 (2)C7—N1—C8—S1168.84 (11)
F1—C3—C4—C5179.92 (12)C8—N2—C9—C1022.4 (2)
C2—C3—C4—C50.5 (2)C8—N2—C9—C14162.20 (13)
C3—C4—C5—C60.6 (2)C14—C9—C10—C111.4 (2)
C4—C5—C6—C11.3 (2)N2—C9—C10—C11176.73 (13)
C4—C5—C6—C7178.72 (13)C9—C10—C11—C121.1 (2)
C2—C1—C6—C51.1 (2)C10—C11—C12—C130.0 (2)
C2—C1—C6—C7178.32 (13)C11—C12—C13—C140.7 (2)
C8—N1—C7—O18.6 (2)C12—C13—C14—C90.3 (2)
C8—N1—C7—C6170.22 (13)C12—C13—C14—Cl179.45 (11)
C5—C6—C7—O115.54 (19)C10—C9—C14—C130.7 (2)
C1—C6—C7—O1161.73 (13)N2—C9—C14—C13176.39 (12)
C5—C6—C7—N1165.60 (12)C10—C9—C14—Cl178.42 (10)
C1—C6—C7—N117.14 (19)N2—C9—C14—Cl2.72 (17)
C9—N2—C8—N1177.23 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···S10.952.573.1945 (14)124
N2—H1B···Cl0.87 (2)2.482 (19)2.9246 (12)112.3 (14)
N2—H1B···O10.87 (2)1.924 (19)2.6600 (14)141.6 (17)
N1—H1A···S1i0.85 (2)2.67 (2)3.4031 (13)145.2 (16)
Symmetry code: (i) x+1, y+1, z+1.
N-(4-Bromophenylcarbamothioyl)-4-fluorobenzamide (2) top
Crystal data top
C14H10BrFN2OSZ = 2
Mr = 353.19F(000) = 348
Triclinic, P1Dx = 1.771 Mg m3
a = 3.8733 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.0776 (5) ÅCell parameters from 9945 reflections
c = 13.2628 (6) Åθ = 3.4–68.2°
α = 98.817 (1)°µ = 5.83 mm1
β = 94.714 (1)°T = 100 K
γ = 94.727 (1)°Plate, colourless
V = 658.54 (5) Å30.35 × 0.05 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2381 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
θmax = 68.2°, θmin = 3.4°
Tmin = 0.612, Tmax = 0.946h = 44
20701 measured reflectionsk = 1515
2384 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2384 reflectionsΔρmax = 0.45 e Å3
181 parametersΔρmin = 1.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39350 (4)0.11758 (2)0.46689 (2)0.01272 (16)
O10.4560 (4)0.66092 (11)0.32207 (10)0.0175 (3)
N10.3835 (4)0.58122 (12)0.15534 (11)0.0106 (3)
H1A0.4192610.5905910.0925840.013*
N20.1544 (4)0.47331 (12)0.26027 (11)0.0111 (3)
H1B0.1872740.5316450.3043080.013*
F10.9679 (3)1.04344 (9)0.12214 (9)0.0205 (3)
S10.18617 (10)0.38973 (3)0.06266 (3)0.00989 (18)
C10.5195 (4)0.78724 (14)0.09959 (14)0.0092 (4)
H10.3762900.7379190.0503590.011*
C20.6398 (5)0.88103 (14)0.07394 (14)0.0129 (4)
H20.5810120.8968190.0074600.016*
C30.8466 (5)0.95143 (15)0.14634 (15)0.0146 (4)
C40.9345 (5)0.93323 (14)0.24544 (14)0.0137 (4)
H41.0741440.9838560.2942790.016*
C50.8117 (5)0.83897 (14)0.27036 (14)0.0116 (4)
H50.8664160.8245640.3375920.014*
C60.6063 (5)0.76392 (14)0.19744 (13)0.0101 (4)
C70.4782 (5)0.66558 (14)0.23084 (14)0.0105 (4)
C90.0233 (4)0.38653 (13)0.30136 (13)0.0086 (4)
C80.2378 (4)0.48253 (14)0.16562 (13)0.0085 (4)
C100.1837 (5)0.30056 (14)0.24536 (13)0.0115 (4)
H100.2409250.2968270.1737690.014*
C110.3051 (4)0.22064 (14)0.29513 (13)0.0105 (4)
H110.4444550.1617390.2575440.013*
C120.2224 (5)0.22707 (13)0.39998 (14)0.0102 (4)
C130.0217 (5)0.31221 (13)0.45694 (13)0.0109 (4)
H130.0311800.3159980.5287230.013*
C140.0999 (5)0.39136 (15)0.40755 (14)0.0114 (4)
H140.2376330.4501440.4459160.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0169 (2)0.0096 (2)0.0125 (2)0.00227 (13)0.00215 (13)0.00588 (13)
O10.0312 (8)0.0122 (7)0.0076 (7)0.0065 (6)0.0033 (6)0.0011 (5)
N10.0154 (8)0.0108 (8)0.0057 (7)0.0005 (6)0.0007 (6)0.0022 (6)
N20.0170 (8)0.0073 (7)0.0090 (7)0.0001 (6)0.0021 (6)0.0019 (6)
F10.0328 (7)0.0078 (6)0.0213 (7)0.0054 (5)0.0078 (5)0.0051 (5)
S10.0140 (3)0.0082 (3)0.0069 (3)0.00094 (19)0.00084 (19)0.00050 (19)
C10.0092 (8)0.0080 (9)0.0102 (8)0.0004 (6)0.0023 (6)0.0005 (7)
C20.0161 (9)0.0103 (9)0.0133 (9)0.0022 (7)0.0031 (7)0.0031 (7)
C30.0197 (9)0.0068 (9)0.0194 (10)0.0022 (7)0.0119 (8)0.0033 (7)
C40.0149 (9)0.0097 (9)0.0148 (9)0.0026 (7)0.0020 (7)0.0021 (7)
C50.0144 (8)0.0095 (9)0.0093 (8)0.0016 (7)0.0006 (7)0.0012 (7)
C60.0106 (8)0.0103 (9)0.0089 (9)0.0002 (7)0.0008 (6)0.0008 (7)
C70.0118 (8)0.0104 (9)0.0098 (9)0.0013 (7)0.0013 (6)0.0037 (7)
C90.0120 (8)0.0070 (9)0.0086 (8)0.0005 (7)0.0048 (6)0.0047 (6)
C80.0103 (8)0.0086 (8)0.0071 (8)0.0020 (7)0.0002 (6)0.0026 (6)
C100.0137 (8)0.0120 (9)0.0088 (8)0.0001 (7)0.0005 (7)0.0028 (6)
C110.0116 (8)0.0092 (9)0.0097 (8)0.0028 (6)0.0007 (6)0.0004 (6)
C120.0128 (8)0.0080 (9)0.0112 (8)0.0005 (6)0.0023 (7)0.0056 (6)
C130.0138 (8)0.0132 (9)0.0067 (8)0.0003 (7)0.0018 (7)0.0048 (6)
C140.0130 (8)0.0092 (9)0.0112 (9)0.0007 (6)0.0011 (7)0.0002 (6)
Geometric parameters (Å, º) top
Br1—C121.8991 (17)C4—C51.382 (3)
O1—C71.230 (2)C4—H40.9500
N1—C71.374 (2)C5—C61.409 (2)
N1—C81.396 (2)C5—H50.9500
N1—H1A0.8800C6—C71.484 (3)
N2—C81.342 (2)C9—C101.399 (2)
N2—C91.408 (2)C9—C141.406 (3)
N2—H1B0.8800C10—C111.390 (3)
F1—C31.350 (2)C10—H100.9500
S1—C81.6687 (18)C11—C121.389 (2)
C1—C21.377 (3)C11—H110.9500
C1—C61.399 (3)C12—C131.385 (3)
C1—H10.9500C13—C141.379 (3)
C2—C31.375 (3)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.391 (3)
C7—N1—C8128.20 (16)O1—C7—N1122.08 (17)
C7—N1—H1A115.9O1—C7—C6121.00 (17)
C8—N1—H1A115.9N1—C7—C6116.92 (16)
C8—N2—C9131.19 (16)C10—C9—C14119.30 (16)
C8—N2—H1B114.4C10—C9—N2124.87 (15)
C9—N2—H1B114.4C14—C9—N2115.78 (16)
C2—C1—C6120.62 (17)N2—C8—N1114.66 (16)
C2—C1—H1119.7N2—C8—S1126.92 (15)
C6—C1—H1119.7N1—C8—S1118.43 (13)
C3—C2—C1118.79 (17)C11—C10—C9119.57 (16)
C3—C2—H2120.6C11—C10—H10120.2
C1—C2—H2120.6C9—C10—H10120.2
F1—C3—C2119.46 (18)C12—C11—C10119.85 (16)
F1—C3—C4117.55 (18)C12—C11—H11120.1
C2—C3—C4122.98 (18)C10—C11—H11120.1
C5—C4—C3117.70 (18)C13—C12—C11121.42 (16)
C5—C4—H4121.1C13—C12—Br1119.31 (13)
C3—C4—H4121.1C11—C12—Br1119.27 (13)
C4—C5—C6120.91 (18)C14—C13—C12118.76 (16)
C4—C5—H5119.5C14—C13—H13120.6
C6—C5—H5119.5C12—C13—H13120.6
C1—C6—C5118.97 (17)C13—C14—C9121.10 (17)
C1—C6—C7123.33 (17)C13—C14—H14119.5
C5—C6—C7117.62 (16)C9—C14—H14119.5
C6—C1—C2—C30.1 (3)C8—N2—C9—C1028.7 (3)
C1—C2—C3—F1179.66 (16)C8—N2—C9—C14154.04 (18)
C1—C2—C3—C41.4 (3)C9—N2—C8—N1175.93 (16)
F1—C3—C4—C5179.80 (16)C9—N2—C8—S13.8 (3)
C2—C3—C4—C51.2 (3)C7—N1—C8—N26.3 (3)
C3—C4—C5—C60.4 (3)C7—N1—C8—S1173.53 (14)
C2—C1—C6—C51.6 (3)C14—C9—C10—C111.1 (3)
C2—C1—C6—C7178.38 (16)N2—C9—C10—C11178.32 (16)
C4—C5—C6—C11.8 (3)C9—C10—C11—C120.5 (3)
C4—C5—C6—C7178.72 (16)C10—C11—C12—C130.4 (3)
C8—N1—C7—O13.4 (3)C10—C11—C12—Br1179.54 (13)
C8—N1—C7—C6176.01 (16)C11—C12—C13—C140.6 (3)
C1—C6—C7—O1154.97 (17)Br1—C12—C13—C14179.76 (13)
C5—C6—C7—O121.9 (3)C12—C13—C14—C90.0 (3)
C1—C6—C7—N124.4 (2)C10—C9—C14—C130.9 (3)
C5—C6—C7—N1158.75 (16)N2—C9—C14—C13178.36 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.693.5081 (15)154
N2—H1B···O10.881.882.610 (2)139
C10—H10···S10.952.653.2319 (18)120
C1—H1···S1ii0.952.813.7312 (18)165
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Funding information

The authors thank the Higher Education Commission of Pakistan (HEC) for financial support through research project No. 20-2830 under the National Research Program for Universities.

References

First citationBinzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519–529.  CSD CrossRef CAS Google Scholar
First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationContreras Aguilar, E., Echeverría, G., Piro, O., Ulic, S., Jios, J., Tuttolomondo, M. & Pérez, H. (2018). Mol. Phys. 116, 399–413.  CSD CrossRef CAS Google Scholar
First citationFakhar, I., Hussien, N. J., Sapari, S., Bloh, A. H., Yusoff, S. F. M., Hasbullah, S. A., Yamin, B. M., Mutalib, S. A., Shihab, M. S. & Yousif, E. (2018). J. Mol. Struct. 1159, 96–102.  CSD CrossRef CAS Google Scholar
First citationGhazal, K., Shoaib, S., Khan, M., Khan, S., Rauf, M. K., Khan, N., Badshah, A., Tahir, M. N. & Ali, I. (2019). J. Mol. Struct. 1177, 12-130.  CSD CrossRef Google Scholar
First citationHashim, S. N. M., Jumal, J. & Kassim, K. (2017). Adv. Sci. Lett. 23, 4523–4527.  CrossRef Google Scholar
First citationKhan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354–362.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, L. C., Rahman, C. N. B. C. A., Tahir, M. I. M., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 256–260.  CSD CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMitoraj, M. P., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M., Robeyns, K., Garcia, Y. & Safin, D. A. (2018). Cryst. Growth Des. 18, 5385–5397.  CSD CrossRef CAS Google Scholar
First citationPandey, S. K., Pratap, S., Tiwari, M. K., Marverti, G. & Jasinski, J. P. (2019). J. Mol. Struct. 1175, 963–970.  CSD CrossRef CAS Google Scholar
First citationPervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N. & Naseer, M. M. (2018). Heterocycl. Commun. 24, 51–58.  CrossRef CAS Google Scholar
First citationSaeed, A., Mustafa, M. N., Zain-ul-Abideen, M., Shabir, G., Erben, M. F. & Flörke, U. (2018). J. Sulfur Chem. pp. 1–39.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolmaz, U., Gumus, I., Binzet, G., Celik, O., Balci, G. K., Dogen, A. & Arslan, H. (2018). J. Coord. Chem. 71, 200–218.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Zhang, X., Qiao, L., Ding, Z., Hang, X., Qin, B., Song, J. & Huang, J. (2019). J. Mol. Struct. 1176, 335–345.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds