research communications
Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)
aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net
The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (01) and (100) planes in (I) and (II), respectively.
1. Chemical context
Transition-metal complexes of the versatile macrocyclic 14-membered tetraamine ligand cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) are popular metal-containing building units for the construction of metal–organic frameworks (MOFs) possessing many promising applications (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). Such an interest is explained by the exceptionally high thermodynamic stability and kinetic inertness of these species (Melson, 1979; Yatsimirskii & Lampeka, 1985), implying a preservation of their structural features (equatorial arrangement of the macrocycle in the coordination sphere of the metal ion, availability of two trans vacant sites in the axial positions suitable for coordination of bridging ligands), thus making the architecture of MOFs more predictable. The complexes of N3,N10-disubstituted diazacyclam (diazacyclam = 1,3,5,8,10,12-hexaazacyclotetradecane), readily obtainable via template-directed Mannich condensation of bis(ethylenediamine) complexes with formaldehyde and primary (Costisor & Linert, 2000), also represent widespread systems in this kind of investigations. At the same time, the complexes of N3-substituted azacyclam (azacyclam = 1,3,5,8,12-pentaazacyclotetradecane) – a middle member of this series of ligands – have attracted considerably less attention, presumably because of the necessity of using a more sophisticated non-cyclic precursor, i.e. 3,7-diazanonane-1,9-diamine, in the Mannich condensation (Rosokha et al., 1993).
Though the isophthalate (1,3-benzenedicarboxylate) dianion is often used as bridging ligand in the construction of MOFs, a very limited number of its compounds with azamacrocyclic cations have been described to date and all they are complexes of the NiII ion.
Herein, we describe the syntheses and crystal structures of the title CuII complexes with azacyclam ligands and an isophthalate dianion, namely, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate hydrate, [Cu(L1)(H2O)2](ip)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(L2)(H2O)2](ip)·0.9(H2O), (II).
2. Structural commentary
Each CuII ion in the complex cations in the title compounds (I) and (II) is coordinated in the equatorial plane by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion, and by two O atoms from the water molecules in the axial positions, resulting in a tetragonally distorted octahedral geometry (Table 1, Fig. 1 and Fig. 2).
|
The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å for (I) and 2.015 (4) versus 2.507 (7) Å for (II)], which can be attributed to a large Jahn–Teller distortion. The CuII ions are displaced from the nearly planar (r.m.s. deviations less than 0.01 Å) mean planes of the N4 donor atoms towards the O1W water molecule by 0.024 and 0.033 Å in (I) and (II), respectively. Both coordinated macrocyclic ligands adopt the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with the five-membered chelate rings in gauche [bite angles 86.28 (1) for (I) and 86.30 (7)° for (II)] and six-membered chelate rings in chair [bite angles 93.7 (2) for (I) and 93.7 (9)° for (II)] conformations. The methylene group of the substituent at the non-coordinated nitrogen atoms N3 in the six-membered chelate rings is axially oriented and the sum of the C—N—C angles around these atoms [345.6 and 348.1° for (I) and (II), respectively] indicates their partial sp2 character (Tsymbal et al., 2019).
The isophthalate dianions in the title compounds counterbalance the charge of the complex cations. One carboxylic group of the isophthalate (O1/O2/C) is nearly coplanar with the mean plane of the aromatic fragment [dihedral angles being 2.4 (3) and 3.6 (4)° in (I) and (II), respectively], while the second (O3/O4/C) is tilted by 11.6 (3) and 21.1 (4)° in (I) and (II), respectively. The C—O bond lengths in the carboxylic groups are nearly equal, thus indicating essential electron delocalization.
Among the water molecules of crystallization, O3W in (I) is fully occupied, while that in (II) has a site occupancy of 50%. Additionally, two positions for disordered water molecules (O4W and O5W), each with 20% population, were found in (II). Because of their low partial population, these were not considered further in the analysis of the hydrogen-bonding network.
3. Supramolecular features
Three secondary amino groups of the coordinated macrocycle in (I) act as proton donors by the formation of N—H⋯O hydrogen bonds with the carboxylic groups of three different adjacent anions, while the fourth group forms hydrogen bond with the water molecule of crystallization O3W (Fig. 3, Table 2). In turn, the coordinated water molecules donate protons to the carboxylic group of the anion {bifurcated hydrogen bonding O1W—H1WB⋯[O3,O4(x, y + 1, z)] and O2W—H2WA⋯O2(−x + , y + , −z + ) and O2W—H2WB⋯O3(x − 1, y + 1, z)}, as well as to the O3W molecule [O1W—H1WA⋯O3W(−x + , y + , −z + )]. Additionally, the uncoordinated water molecule O3W acts as a proton donor by the formation of bifurcated O3W—H3WB⋯(O1,O2) and O3W—H3WA⋯O1(−x + 1, −y + 1, −z + 1) hydrogen bonds.
The hydrogen-bonded network in (II), though slightly different, has much in common with that in (I). In particular, all secondary amino groups of the macrocycle form N—H⋯O hydrogen bonds acting as proton donors with the carboxylic groups of four different adjacent anions (Fig. 4, Table 3). Each coordinated water molecule, as well as the water molecule of crystallization O3W, donates protons to two carboxylic groups of different isophthalate anions. Additionally, in the crystal of (II) there are a number of C—H⋯O and C—H⋯N contacts between the methylene and methine groups of the macrocyclic ligand and oxygen atoms of carboxylic groups, the water molecule O3W and atom N6 of the substituent in the neighbouring macrocycle (Table 3).
|
As can be seen from Figs. 3 and 4, because of the hydrogen bonding, two pairs of isophthalate anions are situated above and below the imaginary plane of the macrocyclic ligand. Each pair is further bound with symmetry-related partners via hydrogen bonding with the water molecule of crystallization, O3W, thus forming layers of anions lying parallel to the (01) and (100) planes in (I) and (II), respectively (Figs. 5 and 6), which thus are pillared with macrocyclic cations.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016) indicated that only three CuII–perchlorate complexes of azacyclam macrocycles bearing N-alkyl groups decorated with aromatic rings have been reported (Tsymbal et al., 2010). In addition, four related dicopper(II) complexes with a p-xylylene-bridged bis(azacyclam) ligand and terephthalate anion have been described, none of which includes the diaqua CuII azacyclam cation (Park & Suh, 2012). At the same time, four complexes containing macrocyclic cations and an isophthalate dianion have been reported, all of them being formed by an NiII ion coordinated to a C-methyl-substituted cyclam. Thus, the title compounds (I) and (II) are the first examples of diaqua CuII azacyclam cations described so far.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The starting complexes, [Cu(L1)](ClO4)2 and [Cu(L2)](ClO4)2, were prepared by a method reported in the literature (Tsymbal et al., 2010) using benzylamine or 3-picolylamine, respectively, as locking reagents.
Compound (I) was prepared as follows: To a hot solution of [Cu(L1)](ClO4)2 (138 mg, 0.25 mmol) in 8 ml of DMF were added 3 ml of an aqueous solution of Na2ip (84 mg, 40 mmol). A violet precipitate formed in 24 h; this was filtered off, washed with diethyl ether and dried in air. Yield: 27 mg (19%). Analysis calculated for C24H39N5CuO7: C 50.29, H 6.86, N 12.22%. Found: C 50.42, H 6.96, N 12.02%.
Compound (II) was prepared analogously starting from [Cu(L2)](ClO4)2. Yield: 30 mg (21%). Analysis calculated for C23H37.8N6CuO6.9: C 48.12, H 6.67, N 14.64%. Found: C 48.31, H 6.84, N 14.32%. Violet plates of (I) and violet needles of (II) suitable for X-ray were selected from the samples resulting from the syntheses.
Safety note: perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . All H atoms in (I) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) or 0.97 Å (open-chain H atoms), an N—H distance of 0.98 Å, and aqua O—H distances of 0.84–0.87 Å with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. Water H atoms in (II) were positioned geometrically (O—H = 0.71–0.85 Å) and refined as riding with Uiso(H) = 1.5Ueq(O). All other H atoms were freely refined.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989019008387/hb7828sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008387/hb7828Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019008387/hb7828IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C16H29N5)(H2O)2](C8H4O4)·H2O | F(000) = 1212 |
Mr = 573.14 | Dx = 1.392 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2625 (3) Å | Cell parameters from 6434 reflections |
b = 17.8132 (7) Å | θ = 2.9–24.8° |
c = 21.1511 (9) Å | µ = 0.85 mm−1 |
β = 92.159 (3)° | T = 296 K |
V = 2734.34 (19) Å3 | Plate, violet |
Z = 4 | 0.30 × 0.25 × 0.04 mm |
Bruker X8 APEXII CCD diffractometer | 4193 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.070 |
φ and ω scans | θmax = 26.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.785, Tmax = 0.967 | k = −22→22 |
137978 measured reflections | l = −26→26 |
5555 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0366P)2 + 1.2028P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5555 reflections | Δρmax = 0.25 e Å−3 |
334 parameters | Δρmin = −0.24 e Å−3 |
9 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.37585 (3) | 1.01815 (2) | 0.78932 (2) | 0.03694 (9) | |
O1 | 0.5450 (3) | 0.40229 (9) | 0.54740 (8) | 0.0648 (5) | |
O2 | 0.6548 (2) | 0.39430 (8) | 0.64621 (7) | 0.0487 (4) | |
O3 | 0.8446 (2) | 0.05140 (8) | 0.67653 (8) | 0.0532 (4) | |
O4 | 0.9001 (2) | 0.15648 (9) | 0.73008 (7) | 0.0498 (4) | |
O3W | 0.5996 (3) | 0.55120 (10) | 0.56962 (8) | 0.0648 (5) | |
H3WA | 0.5628 | 0.5751 | 0.5349 | 0.097* | |
H3WB | 0.5787 | 0.5037 | 0.5639 | 0.097* | |
N1 | 0.2874 (2) | 1.12200 (10) | 0.76576 (8) | 0.0401 (4) | |
H1 | 0.1526 | 1.1199 | 0.7621 | 0.048* | |
N2 | 0.4363 (2) | 1.00637 (9) | 0.69696 (8) | 0.0375 (4) | |
H2 | 0.5687 | 1.0154 | 0.6936 | 0.045* | |
N3 | 0.4758 (2) | 0.86889 (10) | 0.70197 (9) | 0.0429 (4) | |
N4 | 0.4561 (2) | 0.91310 (9) | 0.81190 (8) | 0.0374 (4) | |
H4 | 0.5906 | 0.9132 | 0.8175 | 0.045* | |
N5 | 0.3123 (2) | 1.02892 (11) | 0.88106 (8) | 0.0432 (4) | |
H5 | 0.1787 | 1.0222 | 0.8828 | 0.052* | |
C1 | 0.3531 (3) | 1.13819 (13) | 0.70214 (11) | 0.0502 (6) | |
H1A | 0.4803 | 1.1548 | 0.7051 | 0.060* | |
H1B | 0.2794 | 1.1778 | 0.6825 | 0.060* | |
C2 | 0.3377 (3) | 1.06781 (13) | 0.66276 (10) | 0.0478 (6) | |
H2A | 0.2091 | 1.0545 | 0.6555 | 0.057* | |
H2B | 0.3916 | 1.0760 | 0.6221 | 0.057* | |
C3 | 0.3946 (3) | 0.93131 (12) | 0.66827 (10) | 0.0441 (5) | |
H3A | 0.2620 | 0.9245 | 0.6658 | 0.053* | |
H3B | 0.4374 | 0.9309 | 0.6254 | 0.053* | |
C4 | 0.4046 (3) | 0.85523 (12) | 0.76317 (11) | 0.0446 (5) | |
H4A | 0.4487 | 0.8067 | 0.7781 | 0.054* | |
H4B | 0.2713 | 0.8525 | 0.7590 | 0.054* | |
C5 | 0.3781 (3) | 0.89603 (13) | 0.87395 (10) | 0.0473 (6) | |
H5A | 0.4432 | 0.8541 | 0.8936 | 0.057* | |
H5B | 0.2491 | 0.8826 | 0.8684 | 0.057* | |
C6 | 0.3982 (3) | 0.96466 (14) | 0.91516 (10) | 0.0478 (6) | |
H6A | 0.3382 | 0.9565 | 0.9548 | 0.057* | |
H6B | 0.5276 | 0.9749 | 0.9245 | 0.057* | |
C7 | 0.3557 (4) | 1.10175 (14) | 0.91163 (11) | 0.0547 (6) | |
H7A | 0.4882 | 1.1091 | 0.9133 | 0.066* | |
H7B | 0.3146 | 1.1009 | 0.9547 | 0.066* | |
C8 | 0.2646 (4) | 1.16677 (15) | 0.87651 (12) | 0.0619 (7) | |
H8A | 0.1334 | 1.1569 | 0.8722 | 0.074* | |
H8B | 0.2807 | 1.2117 | 0.9020 | 0.074* | |
C9 | 0.3361 (3) | 1.18222 (13) | 0.81163 (12) | 0.0533 (6) | |
H9A | 0.2854 | 1.2294 | 0.7961 | 0.064* | |
H9B | 0.4691 | 1.1873 | 0.8149 | 0.064* | |
C10 | 0.6775 (3) | 0.86203 (15) | 0.69872 (11) | 0.0517 (6) | |
H10A | 0.7207 | 0.8244 | 0.7290 | 0.062* | |
H10B | 0.7337 | 0.9095 | 0.7109 | 0.062* | |
C11 | 0.7397 (3) | 0.84076 (13) | 0.63423 (12) | 0.0471 (6) | |
C12 | 0.7251 (3) | 0.76725 (14) | 0.61308 (14) | 0.0579 (7) | |
H12 | 0.6735 | 0.7310 | 0.6387 | 0.069* | |
C13 | 0.7863 (4) | 0.74730 (17) | 0.55453 (16) | 0.0745 (9) | |
H13 | 0.7773 | 0.6977 | 0.5412 | 0.089* | |
C14 | 0.8599 (5) | 0.7999 (2) | 0.51605 (17) | 0.0875 (10) | |
H14 | 0.9000 | 0.7864 | 0.4764 | 0.105* | |
C15 | 0.8740 (5) | 0.8718 (2) | 0.53593 (17) | 0.0938 (11) | |
H15 | 0.9238 | 0.9077 | 0.5097 | 0.113* | |
C16 | 0.8155 (4) | 0.89255 (16) | 0.59478 (14) | 0.0696 (8) | |
H16 | 0.8276 | 0.9422 | 0.6079 | 0.084* | |
C17 | 0.6606 (3) | 0.28470 (11) | 0.58309 (9) | 0.0336 (4) | |
C18 | 0.6232 (3) | 0.25013 (13) | 0.52558 (10) | 0.0467 (6) | |
H18 | 0.5736 | 0.2779 | 0.4918 | 0.056* | |
C19 | 0.6587 (4) | 0.17463 (14) | 0.51781 (11) | 0.0573 (7) | |
H19 | 0.6332 | 0.1519 | 0.4789 | 0.069* | |
C20 | 0.7320 (3) | 0.13288 (12) | 0.56760 (10) | 0.0473 (5) | |
H20 | 0.7542 | 0.0819 | 0.5623 | 0.057* | |
C21 | 0.7726 (3) | 0.16653 (11) | 0.62556 (9) | 0.0333 (4) | |
C22 | 0.7357 (3) | 0.24223 (11) | 0.63274 (9) | 0.0321 (4) | |
H22 | 0.7617 | 0.2651 | 0.6716 | 0.039* | |
C23 | 0.6174 (3) | 0.36688 (12) | 0.59299 (10) | 0.0391 (5) | |
C24 | 0.8464 (3) | 0.12152 (12) | 0.68160 (10) | 0.0372 (5) | |
O2W | 0.05598 (19) | 0.97303 (9) | 0.76801 (8) | 0.0524 (4) | |
H2WA | −0.0020 | 0.9507 | 0.7957 | 0.079* | |
H2WB | −0.0090 | 0.9958 | 0.7401 | 0.079* | |
O1W | 0.6919 (2) | 1.06796 (10) | 0.81644 (7) | 0.0537 (4) | |
H1WA | 0.7519 | 1.0591 | 0.8508 | 0.081* | |
H1WB | 0.7511 | 1.0939 | 0.7887 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03746 (15) | 0.03986 (14) | 0.03343 (14) | 0.00188 (11) | 0.00046 (10) | 0.00340 (11) |
O1 | 0.0916 (14) | 0.0464 (9) | 0.0544 (10) | 0.0095 (9) | −0.0229 (10) | 0.0123 (8) |
O2 | 0.0523 (10) | 0.0434 (8) | 0.0498 (9) | 0.0096 (7) | −0.0069 (8) | −0.0060 (7) |
O3 | 0.0622 (11) | 0.0351 (8) | 0.0616 (10) | 0.0028 (7) | −0.0075 (8) | 0.0095 (8) |
O4 | 0.0569 (10) | 0.0465 (9) | 0.0449 (9) | 0.0043 (7) | −0.0150 (8) | 0.0056 (7) |
O3W | 0.0889 (14) | 0.0498 (10) | 0.0538 (10) | 0.0027 (9) | −0.0241 (10) | 0.0014 (8) |
N1 | 0.0305 (9) | 0.0447 (10) | 0.0450 (10) | 0.0021 (8) | 0.0004 (8) | 0.0029 (8) |
N2 | 0.0298 (9) | 0.0452 (10) | 0.0374 (9) | 0.0005 (7) | 0.0000 (7) | 0.0046 (8) |
N3 | 0.0361 (10) | 0.0463 (10) | 0.0461 (10) | 0.0027 (8) | −0.0019 (8) | −0.0040 (8) |
N4 | 0.0302 (9) | 0.0430 (10) | 0.0388 (9) | 0.0005 (7) | −0.0001 (7) | 0.0053 (8) |
N5 | 0.0323 (10) | 0.0586 (12) | 0.0386 (10) | 0.0044 (8) | 0.0018 (8) | 0.0006 (9) |
C1 | 0.0470 (14) | 0.0473 (13) | 0.0569 (15) | 0.0057 (11) | 0.0096 (11) | 0.0173 (11) |
C2 | 0.0450 (13) | 0.0606 (15) | 0.0380 (12) | 0.0058 (11) | 0.0027 (10) | 0.0151 (11) |
C3 | 0.0384 (12) | 0.0541 (13) | 0.0394 (12) | −0.0003 (10) | −0.0054 (10) | −0.0062 (10) |
C4 | 0.0380 (12) | 0.0415 (12) | 0.0542 (14) | −0.0048 (10) | 0.0008 (10) | 0.0006 (10) |
C5 | 0.0426 (13) | 0.0539 (14) | 0.0455 (13) | 0.0003 (11) | 0.0051 (10) | 0.0159 (11) |
C6 | 0.0404 (13) | 0.0688 (16) | 0.0343 (11) | 0.0036 (11) | 0.0019 (10) | 0.0103 (11) |
C7 | 0.0524 (15) | 0.0682 (16) | 0.0436 (13) | 0.0079 (12) | 0.0010 (11) | −0.0132 (12) |
C8 | 0.0598 (17) | 0.0633 (16) | 0.0624 (16) | 0.0155 (13) | 0.0003 (13) | −0.0174 (13) |
C9 | 0.0513 (15) | 0.0437 (13) | 0.0643 (16) | 0.0066 (11) | −0.0051 (12) | −0.0030 (12) |
C10 | 0.0400 (13) | 0.0639 (15) | 0.0507 (14) | 0.0025 (11) | −0.0046 (11) | −0.0016 (12) |
C11 | 0.0353 (12) | 0.0454 (13) | 0.0602 (15) | 0.0056 (10) | −0.0024 (11) | −0.0046 (11) |
C12 | 0.0420 (14) | 0.0463 (13) | 0.0846 (19) | 0.0036 (11) | −0.0067 (13) | −0.0028 (13) |
C13 | 0.0559 (18) | 0.0638 (18) | 0.103 (2) | 0.0145 (14) | −0.0066 (17) | −0.0377 (18) |
C14 | 0.077 (2) | 0.103 (3) | 0.083 (2) | 0.005 (2) | 0.0206 (18) | −0.037 (2) |
C15 | 0.108 (3) | 0.088 (2) | 0.088 (2) | −0.008 (2) | 0.044 (2) | −0.007 (2) |
C16 | 0.079 (2) | 0.0523 (15) | 0.079 (2) | −0.0034 (14) | 0.0246 (16) | −0.0112 (14) |
C17 | 0.0288 (10) | 0.0382 (11) | 0.0336 (10) | −0.0040 (8) | −0.0005 (8) | 0.0051 (8) |
C18 | 0.0556 (15) | 0.0505 (13) | 0.0333 (11) | −0.0019 (11) | −0.0086 (10) | 0.0068 (10) |
C19 | 0.0835 (19) | 0.0545 (14) | 0.0330 (12) | −0.0011 (13) | −0.0084 (12) | −0.0083 (11) |
C20 | 0.0591 (15) | 0.0392 (12) | 0.0437 (13) | 0.0008 (11) | 0.0013 (11) | −0.0041 (10) |
C21 | 0.0292 (11) | 0.0360 (10) | 0.0349 (10) | −0.0020 (8) | 0.0025 (8) | 0.0041 (8) |
C22 | 0.0288 (10) | 0.0375 (10) | 0.0299 (10) | −0.0036 (8) | −0.0005 (8) | 0.0007 (8) |
C23 | 0.0341 (12) | 0.0401 (11) | 0.0430 (12) | −0.0015 (9) | −0.0011 (9) | 0.0060 (10) |
C24 | 0.0277 (11) | 0.0413 (12) | 0.0428 (12) | 0.0004 (9) | 0.0026 (9) | 0.0069 (10) |
O2W | 0.0305 (8) | 0.0620 (10) | 0.0642 (10) | −0.0010 (7) | −0.0034 (7) | 0.0196 (8) |
O1W | 0.0393 (9) | 0.0735 (11) | 0.0481 (9) | −0.0017 (8) | −0.0029 (7) | 0.0129 (8) |
Cu1—N4 | 2.0119 (17) | C7—C8 | 1.515 (3) |
Cu1—N1 | 2.0146 (17) | C7—H7A | 0.9700 |
Cu1—N5 | 2.0206 (17) | C7—H7B | 0.9700 |
Cu1—N2 | 2.0290 (17) | C8—C9 | 1.511 (4) |
O1—C23 | 1.251 (2) | C8—H8A | 0.9700 |
O2—C23 | 1.247 (2) | C8—H8B | 0.9700 |
O3—C24 | 1.254 (3) | C9—H9A | 0.9700 |
O4—C24 | 1.249 (3) | C9—H9B | 0.9700 |
O3W—H3WA | 0.8814 | C10—C11 | 1.502 (3) |
O3W—H3WB | 0.8671 | C10—H10A | 0.9700 |
N1—C1 | 1.473 (3) | C10—H10B | 0.9700 |
N1—C9 | 1.480 (3) | C11—C16 | 1.373 (4) |
N1—H1 | 0.9800 | C11—C12 | 1.386 (3) |
N2—C2 | 1.481 (3) | C12—C13 | 1.378 (4) |
N2—C3 | 1.495 (3) | C12—H12 | 0.9300 |
N2—H2 | 0.9800 | C13—C14 | 1.364 (5) |
N3—C4 | 1.433 (3) | C13—H13 | 0.9300 |
N3—C3 | 1.435 (3) | C14—C15 | 1.350 (5) |
N3—C10 | 1.474 (3) | C14—H14 | 0.9300 |
N4—C5 | 1.480 (3) | C15—C16 | 1.381 (4) |
N4—C4 | 1.495 (3) | C15—H15 | 0.9300 |
N4—H4 | 0.9800 | C16—H16 | 0.9300 |
N5—C6 | 1.478 (3) | C17—C18 | 1.381 (3) |
N5—C7 | 1.478 (3) | C17—C22 | 1.389 (3) |
N5—H5 | 0.9800 | C17—C23 | 1.513 (3) |
C1—C2 | 1.507 (3) | C18—C19 | 1.380 (3) |
C1—H1A | 0.9700 | C18—H18 | 0.9300 |
C1—H1B | 0.9700 | C19—C20 | 1.380 (3) |
C2—H2A | 0.9700 | C19—H19 | 0.9300 |
C2—H2B | 0.9700 | C20—C21 | 1.386 (3) |
C3—H3A | 0.9700 | C20—H20 | 0.9300 |
C3—H3B | 0.9700 | C21—C22 | 1.384 (3) |
C4—H4A | 0.9700 | C21—C24 | 1.513 (3) |
C4—H4B | 0.9700 | C22—H22 | 0.9300 |
C5—C6 | 1.505 (3) | O2W—H2WA | 0.8360 |
C5—H5A | 0.9700 | O2W—H2WB | 0.8450 |
C5—H5B | 0.9700 | O1W—H1WA | 0.8473 |
C6—H6A | 0.9700 | O1W—H1WB | 0.8730 |
C6—H6B | 0.9700 | ||
N4—Cu1—N1 | 178.13 (7) | H6A—C6—H6B | 108.4 |
N4—Cu1—N5 | 86.27 (7) | N5—C7—C8 | 112.00 (19) |
N1—Cu1—N5 | 93.91 (7) | N5—C7—H7A | 109.2 |
N4—Cu1—N2 | 93.51 (7) | C8—C7—H7A | 109.2 |
N1—Cu1—N2 | 86.29 (7) | N5—C7—H7B | 109.2 |
N5—Cu1—N2 | 179.15 (8) | C8—C7—H7B | 109.2 |
H3WA—O3W—H3WB | 108.0 | H7A—C7—H7B | 107.9 |
C1—N1—C9 | 112.30 (18) | C9—C8—C7 | 115.2 (2) |
C1—N1—Cu1 | 107.13 (13) | C9—C8—H8A | 108.5 |
C9—N1—Cu1 | 115.94 (13) | C7—C8—H8A | 108.5 |
C1—N1—H1 | 107.0 | C9—C8—H8B | 108.5 |
C9—N1—H1 | 107.0 | C7—C8—H8B | 108.5 |
Cu1—N1—H1 | 107.0 | H8A—C8—H8B | 107.5 |
C2—N2—C3 | 112.08 (17) | N1—C9—C8 | 112.4 (2) |
C2—N2—Cu1 | 106.01 (13) | N1—C9—H9A | 109.1 |
C3—N2—Cu1 | 115.82 (13) | C8—C9—H9A | 109.1 |
C2—N2—H2 | 107.5 | N1—C9—H9B | 109.1 |
C3—N2—H2 | 107.5 | C8—C9—H9B | 109.1 |
Cu1—N2—H2 | 107.5 | H9A—C9—H9B | 107.8 |
C4—N3—C3 | 115.14 (18) | N3—C10—C11 | 113.38 (18) |
C4—N3—C10 | 114.89 (18) | N3—C10—H10A | 108.9 |
C3—N3—C10 | 115.56 (19) | C11—C10—H10A | 108.9 |
C5—N4—C4 | 112.06 (17) | N3—C10—H10B | 108.9 |
C5—N4—Cu1 | 106.53 (13) | C11—C10—H10B | 108.9 |
C4—N4—Cu1 | 114.52 (13) | H10A—C10—H10B | 107.7 |
C5—N4—H4 | 107.8 | C16—C11—C12 | 117.8 (2) |
C4—N4—H4 | 107.8 | C16—C11—C10 | 121.6 (2) |
Cu1—N4—H4 | 107.8 | C12—C11—C10 | 120.6 (2) |
C6—N5—C7 | 112.77 (18) | C13—C12—C11 | 120.7 (3) |
C6—N5—Cu1 | 106.72 (13) | C13—C12—H12 | 119.7 |
C7—N5—Cu1 | 116.79 (15) | C11—C12—H12 | 119.7 |
C6—N5—H5 | 106.7 | C14—C13—C12 | 120.4 (3) |
C7—N5—H5 | 106.7 | C14—C13—H13 | 119.8 |
Cu1—N5—H5 | 106.7 | C12—C13—H13 | 119.8 |
N1—C1—C2 | 108.80 (18) | C15—C14—C13 | 119.5 (3) |
N1—C1—H1A | 109.9 | C15—C14—H14 | 120.2 |
C2—C1—H1A | 109.9 | C13—C14—H14 | 120.2 |
N1—C1—H1B | 109.9 | C14—C15—C16 | 120.8 (3) |
C2—C1—H1B | 109.9 | C14—C15—H15 | 119.6 |
H1A—C1—H1B | 108.3 | C16—C15—H15 | 119.6 |
N2—C2—C1 | 108.68 (18) | C11—C16—C15 | 120.8 (3) |
N2—C2—H2A | 110.0 | C11—C16—H16 | 119.6 |
C1—C2—H2A | 110.0 | C15—C16—H16 | 119.6 |
N2—C2—H2B | 110.0 | C18—C17—C22 | 118.79 (19) |
C1—C2—H2B | 110.0 | C18—C17—C23 | 121.21 (18) |
H2A—C2—H2B | 108.3 | C22—C17—C23 | 119.98 (18) |
N3—C3—N2 | 114.72 (17) | C19—C18—C17 | 120.5 (2) |
N3—C3—H3A | 108.6 | C19—C18—H18 | 119.7 |
N2—C3—H3A | 108.6 | C17—C18—H18 | 119.7 |
N3—C3—H3B | 108.6 | C20—C19—C18 | 120.2 (2) |
N2—C3—H3B | 108.6 | C20—C19—H19 | 119.9 |
H3A—C3—H3B | 107.6 | C18—C19—H19 | 119.9 |
N3—C4—N4 | 114.61 (17) | C19—C20—C21 | 120.3 (2) |
N3—C4—H4A | 108.6 | C19—C20—H20 | 119.8 |
N4—C4—H4A | 108.6 | C21—C20—H20 | 119.8 |
N3—C4—H4B | 108.6 | C22—C21—C20 | 118.86 (19) |
N4—C4—H4B | 108.6 | C22—C21—C24 | 119.66 (18) |
H4A—C4—H4B | 107.6 | C20—C21—C24 | 121.41 (18) |
N4—C5—C6 | 108.34 (18) | C21—C22—C17 | 121.31 (18) |
N4—C5—H5A | 110.0 | C21—C22—H22 | 119.3 |
C6—C5—H5A | 110.0 | C17—C22—H22 | 119.3 |
N4—C5—H5B | 110.0 | O2—C23—O1 | 124.7 (2) |
C6—C5—H5B | 110.0 | O2—C23—C17 | 117.66 (18) |
H5A—C5—H5B | 108.4 | O1—C23—C17 | 117.66 (19) |
N5—C6—C5 | 108.45 (17) | O4—C24—O3 | 124.7 (2) |
N5—C6—H6A | 110.0 | O4—C24—C21 | 118.00 (18) |
C5—C6—H6A | 110.0 | O3—C24—C21 | 117.30 (19) |
N5—C6—H6B | 110.0 | H2WA—O2W—H2WB | 115.8 |
C5—C6—H6B | 110.0 | H1WA—O1W—H1WB | 115.1 |
C9—N1—C1—C2 | 167.12 (18) | N3—C10—C11—C12 | −77.4 (3) |
Cu1—N1—C1—C2 | 38.7 (2) | C16—C11—C12—C13 | 0.4 (4) |
C3—N2—C2—C1 | 167.77 (18) | C10—C11—C12—C13 | −178.4 (2) |
Cu1—N2—C2—C1 | 40.5 (2) | C11—C12—C13—C14 | −0.9 (4) |
N1—C1—C2—N2 | −54.0 (2) | C12—C13—C14—C15 | 0.6 (5) |
C4—N3—C3—N2 | 67.2 (2) | C13—C14—C15—C16 | 0.2 (6) |
C10—N3—C3—N2 | −70.5 (2) | C12—C11—C16—C15 | 0.3 (4) |
C2—N2—C3—N3 | −175.81 (18) | C10—C11—C16—C15 | 179.2 (3) |
Cu1—N2—C3—N3 | −54.0 (2) | C14—C15—C16—C11 | −0.7 (6) |
C3—N3—C4—N4 | −70.0 (2) | C22—C17—C18—C19 | 0.4 (3) |
C10—N3—C4—N4 | 68.0 (2) | C23—C17—C18—C19 | −178.2 (2) |
C5—N4—C4—N3 | 179.82 (18) | C17—C18—C19—C20 | 0.1 (4) |
Cu1—N4—C4—N3 | 58.3 (2) | C18—C19—C20—C21 | −0.8 (4) |
C4—N4—C5—C6 | −166.99 (17) | C19—C20—C21—C22 | 1.0 (3) |
Cu1—N4—C5—C6 | −41.01 (19) | C19—C20—C21—C24 | 177.7 (2) |
C7—N5—C6—C5 | −168.77 (19) | C20—C21—C22—C17 | −0.5 (3) |
Cu1—N5—C6—C5 | −39.2 (2) | C24—C21—C22—C17 | −177.30 (18) |
N4—C5—C6—N5 | 54.5 (2) | C18—C17—C22—C21 | −0.2 (3) |
C6—N5—C7—C8 | −179.3 (2) | C23—C17—C22—C21 | 178.41 (18) |
Cu1—N5—C7—C8 | 56.6 (2) | C18—C17—C23—O2 | 179.9 (2) |
N5—C7—C8—C9 | −67.4 (3) | C22—C17—C23—O2 | 1.3 (3) |
C1—N1—C9—C8 | 178.50 (19) | C18—C17—C23—O1 | 0.6 (3) |
Cu1—N1—C9—C8 | −57.9 (2) | C22—C17—C23—O1 | −178.0 (2) |
C7—C8—C9—N1 | 68.5 (3) | C22—C21—C24—O4 | −11.4 (3) |
C4—N3—C10—C11 | 153.0 (2) | C20—C21—C24—O4 | 171.9 (2) |
C3—N3—C10—C11 | −69.1 (3) | C22—C21—C24—O3 | 166.69 (19) |
N3—C10—C11—C16 | 103.8 (3) | C20—C21—C24—O3 | −10.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.98 | 2.04 | 2.950 (2) | 154 |
N2—H2···O3ii | 0.98 | 2.15 | 3.118 (2) | 170 |
N4—H4···O2iii | 0.98 | 2.00 | 2.949 (2) | 161 |
N5—H5···O3Wiv | 0.98 | 2.35 | 3.230 (3) | 149 |
O1W—H1WB···O4ii | 0.87 | 2.01 | 2.884 (2) | 176 |
O1W—H1WB···O3ii | 0.87 | 2.60 | 3.213 (2) | 128 |
O1W—H1WA···O3Wiii | 0.85 | 1.97 | 2.813 (2) | 173 |
O2W—H2WA···O2iv | 0.84 | 1.96 | 2.795 (2) | 174 |
O2W—H2WB···O3i | 0.85 | 1.95 | 2.798 (2) | 178 |
O3W—H3WA···O1v | 0.88 | 1.92 | 2.779 (2) | 163 |
O3W—H3WB···O1 | 0.87 | 1.85 | 2.720 (2) | 176 |
O3W—H3WB···O2 | 0.87 | 2.66 | 3.248 (2) | 126 |
Symmetry codes: (i) x−1, y+1, z; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+1. |
[Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O | F(000) = 1208 |
Mr = 572.33 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1955 (3) Å | Cell parameters from 6756 reflections |
b = 19.0463 (8) Å | θ = 3.5–24.1° |
c = 19.4426 (8) Å | µ = 0.88 mm−1 |
β = 94.276 (2)° | T = 296 K |
V = 2657.15 (19) Å3 | Needle, violet |
Z = 4 | 0.16 × 0.04 × 0.04 mm |
Bruker X8 APEXII CCD diffractometer | 2834 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.106 |
φ and ω scans | θmax = 24.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.873, Tmax = 0.966 | k = −22→22 |
76082 measured reflections | l = −22→22 |
4532 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0305P)2 + 2.3396P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
4532 reflections | Δρmax = 0.29 e Å−3 |
439 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.43303 (5) | 0.24763 (2) | 0.48049 (2) | 0.03543 (14) | |
O1W | 0.7535 (3) | 0.29360 (13) | 0.51575 (12) | 0.0526 (7) | |
H1WA | 0.8135 | 0.3174 | 0.4879 | 0.079* | |
H1WB | 0.8207 | 0.2732 | 0.5405 | 0.079* | |
O2W | 0.1108 (3) | 0.20190 (13) | 0.45250 (12) | 0.0489 (7) | |
H2WA | 0.0608 | 0.1826 | 0.4762 | 0.073* | |
H2WB | 0.0448 | 0.2250 | 0.4244 | 0.073* | |
O2 | −0.0118 (3) | 0.28246 (13) | 0.11247 (12) | 0.0458 (6) | |
O1 | −0.0810 (4) | 0.37745 (13) | 0.05000 (12) | 0.0514 (7) | |
O3 | −0.1053 (3) | 0.27854 (13) | 0.35932 (12) | 0.0477 (6) | |
O4 | −0.0716 (4) | 0.37804 (13) | 0.41829 (12) | 0.0520 (7) | |
O3W | 0.8843 (8) | −0.0087 (3) | 0.4939 (3) | 0.090 (2) | 0.5 |
H3WA | 0.8940 | 0.0323 | 0.5112 | 0.135* | 0.5 |
H3WB | 0.9961 | −0.0217 | 0.4903 | 0.135* | 0.5 |
N5 | 0.3655 (4) | 0.25100 (17) | 0.57886 (14) | 0.0422 (7) | |
H5 | 0.252 (5) | 0.2428 (18) | 0.5797 (17) | 0.051* | |
N4 | 0.5142 (4) | 0.14778 (15) | 0.50045 (15) | 0.0380 (7) | |
H4 | 0.622 (5) | 0.1491 (18) | 0.5042 (18) | 0.046* | |
N3 | 0.5197 (4) | 0.11268 (15) | 0.37866 (14) | 0.0422 (7) | |
N2 | 0.4917 (4) | 0.24119 (15) | 0.38076 (14) | 0.0375 (7) | |
H2 | 0.604 (5) | 0.2455 (18) | 0.3789 (17) | 0.045* | |
N1 | 0.3470 (4) | 0.34611 (16) | 0.45862 (17) | 0.0459 (8) | |
H1 | 0.237 (5) | 0.342 (2) | 0.4524 (19) | 0.055* | |
N6 | 0.7057 (5) | 0.0207 (2) | 0.1924 (2) | 0.0773 (12) | |
C6 | 0.4550 (6) | 0.1900 (2) | 0.6144 (2) | 0.0517 (11) | |
H6A | 0.400 (5) | 0.1804 (19) | 0.658 (2) | 0.062* | |
H6B | 0.579 (6) | 0.2040 (19) | 0.6278 (19) | 0.062* | |
C5 | 0.4414 (6) | 0.1282 (2) | 0.56692 (19) | 0.0472 (10) | |
H5A | 0.511 (5) | 0.0884 (19) | 0.5869 (18) | 0.057* | |
H5B | 0.317 (5) | 0.1139 (18) | 0.5564 (17) | 0.057* | |
C4 | 0.4585 (6) | 0.0962 (2) | 0.4450 (2) | 0.0475 (10) | |
H4A | 0.504 (5) | 0.052 (2) | 0.4583 (18) | 0.057* | |
H4B | 0.322 (5) | 0.0956 (18) | 0.4417 (17) | 0.057* | |
C3 | 0.4360 (5) | 0.1735 (2) | 0.34625 (19) | 0.0454 (10) | |
H3A | 0.305 (5) | 0.1701 (18) | 0.3498 (17) | 0.055* | |
H3B | 0.475 (5) | 0.1762 (17) | 0.2977 (18) | 0.055* | |
C2 | 0.4032 (6) | 0.3025 (2) | 0.3452 (2) | 0.0558 (12) | |
H2A | 0.275 (6) | 0.291 (2) | 0.3319 (19) | 0.067* | |
H2B | 0.461 (5) | 0.3108 (19) | 0.303 (2) | 0.067* | |
C1 | 0.4203 (6) | 0.3651 (2) | 0.3917 (2) | 0.0594 (12) | |
H1A | 0.561 (6) | 0.379 (2) | 0.4029 (19) | 0.071* | |
H1B | 0.370 (6) | 0.402 (2) | 0.375 (2) | 0.071* | |
C9 | 0.3921 (7) | 0.3989 (2) | 0.5132 (3) | 0.0637 (13) | |
H9A | 0.349 (6) | 0.441 (2) | 0.496 (2) | 0.076* | |
H9B | 0.529 (6) | 0.405 (2) | 0.522 (2) | 0.076* | |
C8 | 0.3075 (7) | 0.3790 (3) | 0.5796 (3) | 0.0730 (15) | |
H8A | 0.321 (6) | 0.414 (2) | 0.609 (2) | 0.088* | |
H8B | 0.167 (6) | 0.372 (2) | 0.575 (2) | 0.088* | |
C7 | 0.3989 (7) | 0.3169 (3) | 0.6173 (2) | 0.0603 (12) | |
H7A | 0.527 (6) | 0.323 (2) | 0.625 (2) | 0.072* | |
H7B | 0.352 (6) | 0.313 (2) | 0.664 (2) | 0.072* | |
C10 | 0.7173 (6) | 0.1022 (2) | 0.3693 (2) | 0.0500 (10) | |
H10A | 0.756 (5) | 0.064 (2) | 0.3953 (19) | 0.060* | |
H10B | 0.798 (5) | 0.1392 (19) | 0.3909 (18) | 0.060* | |
C11 | 0.7527 (5) | 0.09148 (19) | 0.29454 (19) | 0.0433 (9) | |
C15 | 0.6836 (6) | 0.0338 (2) | 0.2589 (3) | 0.0634 (13) | |
H15 | 0.622 (6) | 0.003 (2) | 0.280 (2) | 0.076* | |
C14 | 0.8046 (7) | 0.0681 (3) | 0.1601 (2) | 0.0711 (14) | |
H14 | 0.834 (6) | 0.060 (2) | 0.117 (2) | 0.085* | |
C13 | 0.8791 (6) | 0.1269 (3) | 0.1905 (2) | 0.0639 (12) | |
H13 | 0.957 (6) | 0.161 (2) | 0.163 (2) | 0.077* | |
C12 | 0.8528 (6) | 0.1385 (2) | 0.2583 (2) | 0.0514 (10) | |
H12 | 0.903 (5) | 0.177 (2) | 0.2834 (19) | 0.062* | |
C16 | −0.0922 (4) | 0.38525 (17) | 0.17181 (16) | 0.0315 (8) | |
C17 | −0.1431 (5) | 0.45554 (19) | 0.17099 (19) | 0.0419 (9) | |
H17 | −0.154 (5) | 0.4782 (18) | 0.1319 (18) | 0.050* | |
C18 | −0.1798 (5) | 0.4895 (2) | 0.2311 (2) | 0.0484 (10) | |
H18 | −0.212 (5) | 0.535 (2) | 0.2291 (18) | 0.058* | |
C19 | −0.1628 (5) | 0.45471 (19) | 0.2933 (2) | 0.0423 (9) | |
H19 | −0.178 (5) | 0.4782 (18) | 0.3327 (18) | 0.051* | |
C20 | −0.1130 (4) | 0.38455 (17) | 0.29563 (16) | 0.0322 (8) | |
C21 | −0.0791 (4) | 0.35064 (18) | 0.23471 (18) | 0.0333 (8) | |
H21 | −0.049 (4) | 0.3043 (17) | 0.2347 (16) | 0.040* | |
C22 | −0.0577 (4) | 0.3458 (2) | 0.10677 (17) | 0.0377 (8) | |
C23 | −0.0942 (4) | 0.34456 (19) | 0.36318 (18) | 0.0366 (8) | |
O4W | 0.018 (3) | 0.5169 (8) | 0.4782 (9) | 0.138 (5) | 0.2 |
H4WA | −0.0066 | 0.4764 | 0.4615 | 0.207* | 0.2 |
H4WB | 0.0112 | 0.5119 | 0.5213 | 0.207* | 0.2 |
O5W | 0.086 (3) | 0.5056 (8) | 0.4928 (9) | 0.138 (5) | 0.2 |
H5WA | 0.0741 | 0.4989 | 0.5361 | 0.207* | 0.2 |
H5WB | 0.0812 | 0.4718 | 0.4661 | 0.207* | 0.2 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0391 (2) | 0.0350 (2) | 0.0325 (2) | 0.0007 (2) | 0.00440 (15) | 0.0006 (2) |
O1W | 0.0417 (15) | 0.0661 (18) | 0.0504 (16) | 0.0018 (12) | 0.0065 (12) | 0.0141 (14) |
O2W | 0.0363 (14) | 0.0672 (18) | 0.0431 (15) | −0.0005 (12) | 0.0028 (11) | 0.0152 (13) |
O2 | 0.0547 (16) | 0.0430 (16) | 0.0411 (15) | 0.0053 (12) | 0.0118 (12) | −0.0040 (12) |
O1 | 0.0723 (18) | 0.0507 (16) | 0.0320 (15) | −0.0058 (13) | 0.0091 (12) | 0.0048 (13) |
O3 | 0.0655 (17) | 0.0388 (16) | 0.0385 (15) | 0.0013 (12) | 0.0034 (12) | 0.0051 (12) |
O4 | 0.0690 (18) | 0.0542 (17) | 0.0323 (15) | −0.0054 (13) | 0.0008 (12) | −0.0085 (13) |
O3W | 0.085 (4) | 0.059 (4) | 0.129 (6) | −0.009 (3) | 0.025 (4) | −0.033 (4) |
N5 | 0.0338 (15) | 0.0535 (19) | 0.0395 (17) | −0.0023 (17) | 0.0042 (13) | −0.0067 (17) |
N4 | 0.0367 (16) | 0.0421 (18) | 0.0349 (17) | 0.0003 (14) | 0.0015 (13) | 0.0025 (14) |
N3 | 0.0411 (18) | 0.047 (2) | 0.0386 (18) | 0.0035 (14) | 0.0065 (13) | −0.0064 (15) |
N2 | 0.0330 (15) | 0.0432 (19) | 0.0360 (16) | 0.0024 (15) | 0.0016 (13) | 0.0069 (15) |
N1 | 0.0358 (17) | 0.0402 (19) | 0.063 (2) | 0.0030 (15) | 0.0099 (16) | 0.0016 (16) |
N6 | 0.066 (3) | 0.086 (3) | 0.079 (3) | −0.001 (2) | 0.004 (2) | −0.048 (2) |
C6 | 0.047 (2) | 0.076 (3) | 0.031 (2) | 0.005 (2) | 0.0010 (19) | 0.006 (2) |
C5 | 0.045 (2) | 0.056 (3) | 0.041 (2) | 0.002 (2) | 0.0042 (18) | 0.018 (2) |
C4 | 0.052 (2) | 0.038 (2) | 0.053 (3) | −0.0043 (19) | 0.011 (2) | −0.004 (2) |
C3 | 0.041 (2) | 0.063 (3) | 0.033 (2) | 0.0004 (19) | 0.0044 (17) | −0.009 (2) |
C2 | 0.057 (3) | 0.064 (3) | 0.046 (3) | 0.014 (2) | 0.007 (2) | 0.023 (2) |
C1 | 0.055 (3) | 0.046 (3) | 0.079 (3) | 0.011 (2) | 0.016 (2) | 0.024 (3) |
C9 | 0.061 (3) | 0.036 (2) | 0.095 (4) | 0.001 (2) | 0.012 (3) | −0.014 (3) |
C8 | 0.076 (3) | 0.060 (3) | 0.086 (4) | −0.001 (3) | 0.027 (3) | −0.035 (3) |
C7 | 0.059 (3) | 0.071 (3) | 0.053 (3) | −0.005 (2) | 0.011 (2) | −0.025 (3) |
C10 | 0.047 (2) | 0.050 (3) | 0.053 (3) | 0.0033 (19) | 0.0030 (19) | −0.006 (2) |
C11 | 0.036 (2) | 0.042 (2) | 0.051 (2) | 0.0065 (17) | 0.0032 (17) | −0.0141 (19) |
C15 | 0.053 (3) | 0.061 (3) | 0.078 (3) | −0.010 (2) | 0.017 (2) | −0.022 (3) |
C14 | 0.064 (3) | 0.095 (4) | 0.055 (3) | 0.026 (3) | 0.009 (3) | −0.015 (3) |
C13 | 0.068 (3) | 0.065 (3) | 0.060 (3) | 0.015 (2) | 0.011 (2) | 0.003 (3) |
C12 | 0.049 (2) | 0.041 (3) | 0.064 (3) | 0.0016 (19) | 0.005 (2) | −0.006 (2) |
C16 | 0.0283 (17) | 0.034 (2) | 0.032 (2) | −0.0023 (14) | 0.0050 (14) | −0.0003 (16) |
C17 | 0.048 (2) | 0.041 (2) | 0.037 (2) | 0.0002 (17) | 0.0023 (17) | 0.0075 (19) |
C18 | 0.063 (3) | 0.029 (2) | 0.053 (3) | 0.0046 (19) | 0.0011 (19) | 0.002 (2) |
C19 | 0.048 (2) | 0.038 (2) | 0.042 (2) | −0.0016 (17) | 0.0083 (17) | −0.0067 (19) |
C20 | 0.0277 (18) | 0.035 (2) | 0.034 (2) | −0.0026 (14) | 0.0044 (14) | −0.0048 (16) |
C21 | 0.0295 (18) | 0.0323 (19) | 0.038 (2) | 0.0029 (15) | 0.0023 (14) | −0.0015 (19) |
C22 | 0.0327 (19) | 0.047 (3) | 0.034 (2) | −0.0061 (16) | 0.0050 (15) | 0.0005 (19) |
C23 | 0.0298 (19) | 0.044 (2) | 0.037 (2) | −0.0023 (16) | 0.0060 (15) | 0.0016 (19) |
O4W | 0.16 (2) | 0.121 (12) | 0.135 (14) | −0.018 (11) | 0.049 (10) | −0.014 (10) |
O5W | 0.16 (2) | 0.121 (12) | 0.135 (14) | −0.018 (11) | 0.049 (10) | −0.014 (10) |
Cu1—N5 | 2.009 (3) | C3—H3B | 1.01 (3) |
Cu1—N1 | 2.011 (3) | C2—C1 | 1.496 (6) |
Cu1—N4 | 2.019 (3) | C2—H2A | 0.96 (4) |
Cu1—N2 | 2.019 (3) | C2—H2B | 0.95 (4) |
Cu1—O2W | 2.499 (2) | C1—H1A | 1.05 (4) |
Cu1—O1W | 2.514 (2) | C1—H1B | 0.84 (4) |
O1W—H1WA | 0.8490 | C9—C8 | 1.518 (7) |
O1W—H1WB | 0.7628 | C9—H9A | 0.91 (4) |
O2W—H2WA | 0.7075 | C9—H9B | 0.99 (4) |
O2W—H2WB | 0.8243 | C8—C7 | 1.515 (7) |
O2—C22 | 1.253 (4) | C8—H8A | 0.88 (5) |
O1—C22 | 1.258 (4) | C8—H8B | 1.01 (5) |
O3—C23 | 1.262 (4) | C7—H7A | 0.93 (4) |
O4—C23 | 1.247 (4) | C7—H7B | 1.00 (4) |
O3W—H3WA | 0.8501 | C10—C11 | 1.508 (5) |
O3W—H3WB | 0.8500 | C10—H10A | 0.92 (4) |
N5—C7 | 1.472 (5) | C10—H10B | 0.99 (4) |
N5—C6 | 1.475 (5) | C11—C15 | 1.373 (5) |
N5—H5 | 0.83 (4) | C11—C12 | 1.376 (5) |
N4—C5 | 1.478 (4) | C15—H15 | 0.85 (4) |
N4—C4 | 1.491 (5) | C14—C13 | 1.358 (7) |
N4—H4 | 0.78 (3) | C14—H14 | 0.90 (4) |
N3—C4 | 1.428 (5) | C13—C12 | 1.365 (6) |
N3—C3 | 1.430 (5) | C13—H13 | 1.03 (4) |
N3—C10 | 1.460 (5) | C12—H12 | 0.94 (4) |
N2—C2 | 1.477 (5) | C16—C21 | 1.386 (4) |
N2—C3 | 1.494 (5) | C16—C17 | 1.388 (5) |
N2—H2 | 0.81 (3) | C16—C22 | 1.507 (4) |
N1—C9 | 1.480 (5) | C17—C18 | 1.378 (5) |
N1—C1 | 1.484 (5) | C17—H17 | 0.87 (3) |
N1—H1 | 0.79 (4) | C18—C19 | 1.377 (5) |
N6—C14 | 1.335 (6) | C18—H18 | 0.90 (4) |
N6—C15 | 1.337 (6) | C19—C20 | 1.383 (5) |
C6—C5 | 1.494 (6) | C19—H19 | 0.90 (3) |
C6—H6A | 0.98 (4) | C20—C21 | 1.387 (4) |
C6—H6B | 0.95 (4) | C20—C23 | 1.516 (4) |
C5—H5A | 0.97 (4) | C21—H21 | 0.91 (3) |
C5—H5B | 0.94 (4) | O4W—H4WA | 0.8499 |
C4—H4A | 0.94 (4) | O4W—H4WB | 0.8499 |
C4—H4B | 0.98 (4) | O5W—H5WA | 0.8621 |
C3—H3A | 0.95 (4) | O5W—H5WB | 0.8273 |
N5—Cu1—N1 | 94.53 (13) | C1—C2—H2A | 112 (2) |
N5—Cu1—N4 | 86.23 (12) | N2—C2—H2B | 109 (2) |
N1—Cu1—N4 | 178.43 (13) | C1—C2—H2B | 111 (2) |
N5—Cu1—N2 | 177.48 (12) | H2A—C2—H2B | 106 (3) |
N1—Cu1—N2 | 86.37 (12) | N1—C1—C2 | 108.5 (3) |
N4—Cu1—N2 | 92.82 (12) | N1—C1—H1A | 106 (2) |
N5—Cu1—O2W | 86.10 (10) | C2—C1—H1A | 111 (2) |
N1—Cu1—O2W | 90.74 (10) | N1—C1—H1B | 111 (3) |
N4—Cu1—O2W | 87.94 (10) | C2—C1—H1B | 115 (3) |
N2—Cu1—O2W | 91.54 (10) | H1A—C1—H1B | 105 (4) |
N5—Cu1—O1W | 90.65 (10) | N1—C9—C8 | 111.0 (4) |
N1—Cu1—O1W | 89.69 (10) | N1—C9—H9A | 106 (3) |
N4—Cu1—O1W | 91.68 (10) | C8—C9—H9A | 113 (3) |
N2—Cu1—O1W | 91.71 (10) | N1—C9—H9B | 111 (2) |
O2W—Cu1—O1W | 176.75 (8) | C8—C9—H9B | 110 (2) |
Cu1—O1W—H1WA | 120.8 | H9A—C9—H9B | 106 (4) |
Cu1—O1W—H1WB | 121.4 | C7—C8—C9 | 114.8 (4) |
H1WA—O1W—H1WB | 110.2 | C7—C8—H8A | 105 (3) |
Cu1—O2W—H2WA | 123.2 | C9—C8—H8A | 109 (3) |
Cu1—O2W—H2WB | 115.9 | C7—C8—H8B | 109 (3) |
H2WA—O2W—H2WB | 114.4 | C9—C8—H8B | 114 (2) |
H3WA—O3W—H3WB | 104.5 | H8A—C8—H8B | 103 (4) |
C7—N5—C6 | 112.7 (3) | N5—C7—C8 | 111.8 (4) |
C7—N5—Cu1 | 117.9 (3) | N5—C7—H7A | 108 (2) |
C6—N5—Cu1 | 107.0 (2) | C8—C7—H7A | 111 (3) |
C7—N5—H5 | 106 (2) | N5—C7—H7B | 110 (2) |
C6—N5—H5 | 104 (3) | C8—C7—H7B | 110 (2) |
Cu1—N5—H5 | 109 (2) | H7A—C7—H7B | 106 (3) |
C5—N4—C4 | 111.9 (3) | N3—C10—C11 | 112.0 (3) |
C5—N4—Cu1 | 106.8 (2) | N3—C10—H10A | 107 (2) |
C4—N4—Cu1 | 115.0 (2) | C11—C10—H10A | 111 (2) |
C5—N4—H4 | 110 (3) | N3—C10—H10B | 113 (2) |
C4—N4—H4 | 108 (3) | C11—C10—H10B | 112 (2) |
Cu1—N4—H4 | 105 (3) | H10A—C10—H10B | 101 (3) |
C4—N3—C3 | 115.3 (3) | C15—C11—C12 | 116.5 (4) |
C4—N3—C10 | 116.8 (3) | C15—C11—C10 | 120.9 (4) |
C3—N3—C10 | 116.0 (3) | C12—C11—C10 | 122.5 (4) |
C2—N2—C3 | 112.3 (3) | N6—C15—C11 | 124.9 (4) |
C2—N2—Cu1 | 106.7 (2) | N6—C15—H15 | 116 (3) |
C3—N2—Cu1 | 114.5 (2) | C11—C15—H15 | 119 (3) |
C2—N2—H2 | 107 (2) | N6—C14—C13 | 124.0 (4) |
C3—N2—H2 | 108 (2) | N6—C14—H14 | 120 (3) |
Cu1—N2—H2 | 108 (2) | C13—C14—H14 | 116 (3) |
C9—N1—C1 | 112.9 (3) | C14—C13—C12 | 118.5 (5) |
C9—N1—Cu1 | 115.8 (3) | C14—C13—H13 | 120 (2) |
C1—N1—Cu1 | 106.8 (2) | C12—C13—H13 | 122 (2) |
C9—N1—H1 | 109 (3) | C13—C12—C11 | 120.3 (4) |
C1—N1—H1 | 108 (3) | C13—C12—H12 | 124 (2) |
Cu1—N1—H1 | 104 (3) | C11—C12—H12 | 116 (2) |
C14—N6—C15 | 115.9 (4) | C21—C16—C17 | 118.0 (3) |
N5—C6—C5 | 109.0 (3) | C21—C16—C22 | 119.9 (3) |
N5—C6—H6A | 111 (2) | C17—C16—C22 | 122.1 (3) |
C5—C6—H6A | 112 (2) | C18—C17—C16 | 120.7 (3) |
N5—C6—H6B | 106 (2) | C18—C17—H17 | 120 (2) |
C5—C6—H6B | 114 (2) | C16—C17—H17 | 120 (2) |
H6A—C6—H6B | 104 (3) | C19—C18—C17 | 120.6 (4) |
N4—C5—C6 | 109.3 (3) | C19—C18—H18 | 121 (2) |
N4—C5—H5A | 110 (2) | C17—C18—H18 | 119 (2) |
C6—C5—H5A | 111 (2) | C18—C19—C20 | 120.0 (3) |
N4—C5—H5B | 106 (2) | C18—C19—H19 | 120 (2) |
C6—C5—H5B | 112 (2) | C20—C19—H19 | 120 (2) |
H5A—C5—H5B | 108 (3) | C19—C20—C21 | 118.9 (3) |
N3—C4—N4 | 115.1 (3) | C19—C20—C23 | 121.3 (3) |
N3—C4—H4A | 109 (2) | C21—C20—C23 | 119.7 (3) |
N4—C4—H4A | 109 (2) | C16—C21—C20 | 121.8 (3) |
N3—C4—H4B | 109 (2) | C16—C21—H21 | 118 (2) |
N4—C4—H4B | 106 (2) | C20—C21—H21 | 121 (2) |
H4A—C4—H4B | 110 (3) | O2—C22—O1 | 123.8 (3) |
N3—C3—N2 | 114.3 (3) | O2—C22—C16 | 117.7 (3) |
N3—C3—H3A | 107 (2) | O1—C22—C16 | 118.5 (3) |
N2—C3—H3A | 105 (2) | O4—C23—O3 | 124.4 (3) |
N3—C3—H3B | 108 (2) | O4—C23—C20 | 119.0 (3) |
N2—C3—H3B | 107 (2) | O3—C23—C20 | 116.6 (3) |
H3A—C3—H3B | 115 (3) | H4WA—O4W—H4WB | 104.5 |
N2—C2—C1 | 109.5 (3) | H5WA—O5W—H5WB | 119.6 |
N2—C2—H2A | 109 (2) | ||
C7—N5—C6—C5 | −170.6 (3) | N3—C10—C11—C12 | 114.6 (4) |
Cu1—N5—C6—C5 | −39.4 (4) | C14—N6—C15—C11 | 0.7 (7) |
C4—N4—C5—C6 | −164.5 (3) | C12—C11—C15—N6 | −0.5 (6) |
Cu1—N4—C5—C6 | −37.7 (3) | C10—C11—C15—N6 | 178.9 (4) |
N5—C6—C5—N4 | 52.4 (4) | C15—N6—C14—C13 | −0.7 (7) |
C3—N3—C4—N4 | −67.4 (4) | N6—C14—C13—C12 | 0.4 (7) |
C10—N3—C4—N4 | 74.0 (4) | C14—C13—C12—C11 | −0.1 (6) |
C5—N4—C4—N3 | 178.4 (3) | C15—C11—C12—C13 | 0.1 (6) |
Cu1—N4—C4—N3 | 56.3 (4) | C10—C11—C12—C13 | −179.2 (4) |
C4—N3—C3—N2 | 68.6 (4) | C21—C16—C17—C18 | −0.1 (5) |
C10—N3—C3—N2 | −73.2 (4) | C22—C16—C17—C18 | 177.8 (3) |
C2—N2—C3—N3 | 179.5 (3) | C16—C17—C18—C19 | 1.3 (6) |
Cu1—N2—C3—N3 | −58.5 (3) | C17—C18—C19—C20 | −1.6 (6) |
C3—N2—C2—C1 | 164.3 (3) | C18—C19—C20—C21 | 0.6 (5) |
Cu1—N2—C2—C1 | 38.0 (4) | C18—C19—C20—C23 | −179.6 (3) |
C9—N1—C1—C2 | 168.2 (3) | C17—C16—C21—C20 | −0.8 (5) |
Cu1—N1—C1—C2 | 39.9 (4) | C22—C16—C21—C20 | −178.8 (3) |
N2—C2—C1—N1 | −52.9 (4) | C19—C20—C21—C16 | 0.6 (5) |
C1—N1—C9—C8 | 177.6 (4) | C23—C20—C21—C16 | −179.2 (3) |
Cu1—N1—C9—C8 | −59.0 (4) | C21—C16—C22—O2 | −2.2 (4) |
N1—C9—C8—C7 | 71.4 (5) | C17—C16—C22—O2 | 179.9 (3) |
C6—N5—C7—C8 | 179.4 (3) | C21—C16—C22—O1 | 176.0 (3) |
Cu1—N5—C7—C8 | 54.0 (4) | C17—C16—C22—O1 | −1.9 (5) |
C9—C8—C7—N5 | −68.1 (5) | C19—C20—C23—O4 | −20.1 (5) |
C4—N3—C10—C11 | 156.2 (3) | C21—C20—C23—O4 | 159.6 (3) |
C3—N3—C10—C11 | −62.6 (4) | C19—C20—C23—O3 | 158.9 (3) |
N3—C10—C11—C15 | −64.7 (5) | C21—C20—C23—O3 | −21.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.79 (4) | 2.37 (4) | 3.115 (4) | 157 (4) |
N2—H2···O3i | 0.81 (3) | 2.25 (4) | 3.044 (4) | 167 (3) |
N4—H4···O1ii | 0.78 (3) | 2.31 (3) | 3.037 (4) | 157 (3) |
N5—H5···O2iii | 0.83 (4) | 2.10 (4) | 2.910 (4) | 163 (3) |
O1W—H1WA···O4i | 0.85 | 2.00 | 2.849 (3) | 174 |
O1W—H1WB···O2ii | 0.76 | 2.07 | 2.831 (3) | 176 |
O2W—H2WA···O1iii | 0.71 | 2.15 | 2.859 (3) | 178 |
O2W—H2WB···O3 | 0.82 | 1.90 | 2.722 (3) | 180 |
O3W—H3WA···O1ii | 0.85 | 1.88 | 2.731 (6) | 179 |
O3W—H3WB···O1iv | 0.85 | 2.18 | 2.760 (6) | 126 |
C1—H1A···O4i | 1.05 (4) | 2.64 (4) | 3.662 (5) | 164 (3) |
C4—H4B···O3Wv | 0.98 (4) | 2.60 (4) | 3.274 (7) | 125 (3) |
C5—H5B···O3Wv | 0.94 (4) | 2.62 (4) | 3.415 (7) | 142 (3) |
C10—H10A···O3W | 0.92 (4) | 2.49 (4) | 3.367 (8) | 161 (3) |
C13—H13···O2i | 1.03 (4) | 2.53 (4) | 3.446 (6) | 147 (3) |
C1—H1B···N6vi | 0.84 (4) | 2.66 (4) | 3.474 (5) | 165 (4) |
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+1/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y, −z+1; (vi) −x+1, y+1/2, −z+1/2. |
(I) | (II) | |
Cu1—N1 | 2.0146 (17) | 2.011 (3) |
Cu1—N2 | 2.0290 (17) | 2.019 (3) |
Cu1—N4 | 2.0119 (17) | 2.019 (3) |
Cu1—N5 | 2.0206 (17) | 2.009 (3) |
Cu1—O1W | 2.5071 (16) | 2.514 (2) |
Cu1—O2W | 2.4832 (15) | 2.499 (2) |
References
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237–249. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press. Google Scholar
Park, H. J. & Suh, M. P. (2012). CrystEngComm, 14, 2748–2755. CSD CrossRef CAS Google Scholar
Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 533–536. CSD CrossRef IUCr Journals Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. [In Russian.] Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.