research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor (UASZ), BP 523 Ziguinchor, Senegal, and cService Commun d'Analyse par Diffraction des Rayons X, Universite de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France
*Correspondence e-mail: bouks89@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 May 2019; accepted 14 June 2019; online 21 June 2019)

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.

1. Chemical context

Polyoxometalates (POMs) are clusters of transition metals (M = V, Nb, Ta, Mo, W, ⋯) and oxygen atoms with a structural and compositional diversity that lead to numerous applications because of their electrochemical, optical, catalytic and photochromic properties as well as their anti­viral and anti­tumor activities (Katsoulis, 1998[Katsoulis, D. E. (1998). Chem. Rev. 98, 359-388.]; Hasenknopf, 2005[Hasenknopf, B. (2005). Front. Biosci. 10, 275-287.]; Gerth et al., 2005[Gerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101-106.]; Coué et al., 2007[Coué, V., Dessapt, R., Bujoli-Doeuff, M., Evain, M. & Jobic, S. (2007). Inorg. Chem. 46, 2824-2835.]). In this context, the [Mo7O24]6− hepta­molybdate anion has been isolated with numerous different counter-cations such as 4-amino­pyridinium, N-pentyl­ammonium, di­ethyl­enetri­ammonium, N,N,N′,N′-tetra­methyl­ethylenedi­ammonium, tetra­methyl­ammonium, guanidinium, hexa­nedi­ammonium, butan-1-aminium, ammonium, potassium and sodium (Román et al., 1985[Román, P., Gutiérrez-Zorrilla, J. M., Martínez-Ripoll, M. & García-Blanco, S. (1985). Z. Kristallogr. 173, 283-292.], 1988[Román, P., Gutiérrez-Zorrilla, J. M., Luque, A. & Martínez-Ripoll, M. (1988). J. Crystallogr. Spectrosc. Res. 18, 117-131.], 1990[Román, P., Luque, A., Gutiérrez-Zorrilla, J. M. & Zuniga, F. J. (1990). Z. Kristallogr. 190, 249-258.], 1992[Román, P., Luque, A., Aranzabe, A. & Gutiérrez-Zorrilla, J. M. (1992). Polyhedron, 11, 2027-2038.]; Don & Weakly, 1981[Don, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451-453.]; Gatehouse & Leverett, 1968[Gatehouse, B. M. & Leverett, P. (1968). Chem. Commun. pp. 901-902.]; Sjöbom & Hedman, 1973[Sjöbom, K. & Hedman, B. (1973). Acta Chem. Scand. A27, 3673-3691.]; Niu et al., 1996[Niu, J.-Y., You, X.-Z., Fun, H.-K., Zhou, Z.-Y. & Yip, B.-C. (1996). Polyhedron, 15, 1003-1008.]; Himeno et al., 1997[Himeno, S., Niiya, H. & Ueda, T. (1997). Bull. Chem. Soc. Jpn, 70, 631-637.]; Reinoso et al., 2008[Reinoso, S., Dickman, M. H., Praetorius, A. & Kortz, U. (2008). Acta Cryst. E64, m614-m615.]; Ftini, 2015[Ftini, M. M. (2015). J. Struct. Chem. 56, 1595-1601.]; Khandolkar et al., 2016[Khandolkar, S. S., Naik, A. R., Näther, C., Bensch, W. & Srinivasan, B. R. (2016). J. Chem. Sci. 128, 1737-1744.]). As a contin­uation of our work in this area (Sarr et al., 2018[Sarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). J. Mol. Struct. 1170, 44-50.]), we now describe the synthesis and structure of the title compound (I)[link], which is notable for the incorporation of both protonated [C4H7N2]+ 2-methyl­imidazolium cations and neutral C4H6N2 2-methyl­imidazole mol­ecules in the crystal.

2. Structural commentary

The title compound is characterized by the presence of the familiar [Mo7O24]6− hepta­molybdate cluster anion (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the [Mo7O24]6− hepta­molybdate cluster anion in (I)[link].

There are four categories of oxygen atoms within the polyanion: Ot (terminal oxygen atoms), μ2-O (oxygen atoms bridging two molybdenum atoms), μ3-O (oxygen atoms bridging three molybdenum atoms) and μ4-O (oxygen atoms bridging four molybdenum atoms). All of the Mo atoms are bound to two terminal oxygen atoms except for Mo7, which is located in the `core' of the cluster. The geometrical data for the cluster in (I)[link] are consistent with those found in previous studies (Román et al., 1992[Román, P., Luque, A., Aranzabe, A. & Gutiérrez-Zorrilla, J. M. (1992). Polyhedron, 11, 2027-2038.]; Reinoso et al., 2008[Reinoso, S., Dickman, M. H., Praetorius, A. & Kortz, U. (2008). Acta Cryst. E64, m614-m615.]): the Mo—O bond lengths vary between 1.707 (2) and 1.726 (2) Å for Ot, 1.754 (2)—2.453 (2) Å for μ2-O, 1.8945 (19)–2.3057 (19) Å for μ3-O and 2.1329 (19)–2.3011 (18) Å for μ4-O. The variations of Mo—O bond lengths and O—Mo—O angles indicate that all seven octa­hedra (MoO6) within the cluster are highly distorted. As in the compound (H3dien)2[Mo7O24]·4H2O (Román et al., 1988[Román, P., Gutiérrez-Zorrilla, J. M., Luque, A. & Martínez-Ripoll, M. (1988). J. Crystallogr. Spectrosc. Res. 18, 117-131.]), we note that the longest Mo—O bond length derives from an oxygen atom bridging two molybdenum atoms (μ2-O). As well as the [Mo7O24]6− anion, six (C4H7N2)+ cations, two neutral C4H6N2 mol­ecules and two water mol­ecules of crystallization are present in the asymmetric unit (Fig. 2[link]).

[Figure 2]
Figure 2
The asymmetric unit of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, each hepta­molybdate anion inter­acts with six neighbours via the water mol­ecules, (C4H7N2)+ cations and/or neutral 2-methyl­imidazole mol­ecules (Fig. 3[link]). These inter­actions occur through simple O—H⋯O, N—H⋯O and N—H⋯N and bifurcated N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds (Table 1[link]) involving three categories of oxygen atoms of the polyanion: Ot, μ2-O and μ3-O. The N—H⋯N hydrogen bonds from N9 and N12 link (C4H7N2)+ cations to neutral mol­ecules. The packing is consolidated by weak C—H⋯O links (Table 1[link]). The overall hydrogen-bonding topology is an infinite three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O22i 0.88 (2) 1.85 (2) 2.710 (3) 167 (2)
N2—H2N⋯O20 0.87 (2) 1.79 (2) 2.655 (3) 172 (2)
N3—H3N⋯O18i 0.88 (2) 1.87 (2) 2.743 (4) 171 (5)
N4—H4N⋯O9 0.88 (2) 1.79 (2) 2.662 (4) 171 (5)
N5—H5N⋯O12 0.89 (2) 1.77 (3) 2.644 (4) 168 (4)
N6—H6N⋯O3ii 0.90 (2) 1.80 (3) 2.684 (4) 168 (5)
N7—H7N⋯O1iii 0.89 (3) 1.83 (3) 2.697 (4) 167 (3)
N8—H8N⋯O25 0.89 (3) 1.78 (3) 2.659 (4) 172 (5)
N9—H9N⋯N14iv 0.89 (2) 1.81 (2) 2.698 (4) 177 (3)
N10—H10N⋯O15 0.88 (2) 1.98 (2) 2.852 (3) 174 (3)
N11—H11N⋯O6 0.88 (2) 1.78 (2) 2.636 (3) 166 (3)
N12—H12N⋯N16v 0.88 (2) 1.87 (2) 2.725 (4) 165 (3)
N13—H13N⋯O5 0.88 (4) 2.32 (4) 3.186 (5) 167 (3)
N13—H13N⋯O8 0.88 (4) 2.55 (4) 3.043 (5) 116 (2)
N15—H15N⋯O14 0.87 (3) 2.22 (3) 2.953 (4) 142 (3)
N15—H15N⋯O17 0.87 (3) 2.27 (3) 2.917 (4) 132 (3)
O25—H25V⋯O19 0.86 (2) 2.00 (2) 2.788 (3) 154 (5)
O25—H25W⋯O26vi 0.86 (3) 1.85 (3) 2.702 (4) 176 (5)
O26—H26V⋯O10 0.83 (4) 2.50 (6) 2.999 (4) 119 (5)
O26—H26V⋯O13 0.83 (4) 2.25 (5) 3.009 (4) 151 (6)
O26—H26W⋯O7 0.83 (4) 1.99 (6) 2.737 (4) 149 (6)
C4—H4A⋯O8 0.98 2.35 3.228 (5) 149
C8—H8B⋯O2i 0.98 2.54 3.517 (6) 176
C8—H8C⋯O8 0.98 2.49 3.386 (5) 152
C10—H10⋯O26vii 0.95 2.45 3.318 (5) 151
C12—H12A⋯O5ii 0.98 2.44 3.407 (5) 167
C13—H13⋯O4iii 0.95 2.50 3.297 (6) 141
C17—H17⋯O2viii 0.95 2.46 3.154 (4) 130
C18—H18⋯O26 0.95 2.58 3.522 (5) 172
C21—H21⋯O16 0.95 2.46 3.302 (4) 147
C22—H22⋯O11ix 0.95 2.22 3.113 (4) 156
C24—H24B⋯O7 0.98 2.50 3.346 (5) 145
C25—H25⋯O8 0.95 2.59 3.055 (5) 110
C32—H32B⋯O14 0.98 2.55 3.234 (5) 126
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Detail of the structure of (I)[link] showing the inter­connections of the [Mo7O24]6− anion with its neighbours.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 35 hits for the hepta­molybdate anion and 90 hits for the 2-methyl­imidazolium cation.

5. Synthesis and crystallization

Sulfuric acid (2.1 g, 21.7 mmol), 2-methyl­imidazole (3.5 g, 43.4 mmol) and ammonium hepta­molybdate tetra­hydrate (2.2 g, 1.8 mmol) in a ratio of 1:2:1/12 were dissolved in water (60 ml). The solution was stirred for one h and evaporated in the oven at 333 K to yield a whitish precipitate. The precipitate was recrystallized from methanol solution: after two weeks at room temperature, colourless prisms of (I)[link] were recovered.

The IR spectrum of (I)[link] is included in the supporting information. The absorption bands at 3400 and 3395 cm−1 corres­pond to ν(O—H) stretches and indicate the presence of water mol­ecules and those at 1621 and 1564 cm−1 to the deformation vibrations δ(O—H). The bands centered at 3132 and 1431 cm−1 with shoulders are respectively attributed to the stretching and deformation vibrations of the N—H bonds of the protonated and/or non-protonated entities of 2-methyl­imidazole (Jinnah et al., 2004[Jinnah, M. M. A., Umadevi, M. & Ramakrishnan, V. (2004). J. Raman Spectrosc. 35, 956-960.]). The bands between 2904–2686 cm−1 are attributed to the stretching vibrations of the C—H bonds, while that at 1291 cm−1 is a δ(C—H) deformation vibration (Jinnah et al., 2004[Jinnah, M. M. A., Umadevi, M. & Ramakrishnan, V. (2004). J. Raman Spectrosc. 35, 956-960.]). The two bands at 929 and 900 cm−1 correspond to ν(Mo—Ot) stretching vibrations while the bands between 838 and 650 cm−1 are typical for the vibrations of ν(Mo—O—Mo) and ν[Mo—(μ-O)] groupings (Dey et al., 2011[Dey, C. D., Das, R., Pachfule, P., Poddar, P. & Banerjee, R. (2011). Cryst. Growth Des. 11, 139-146.]).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms treated by a mixture of independent and constrained refinement were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H distances of 0.87 (2), 0.88 (2) and 0.89 (2) Å, Cmeth­yl—H = 0.97/0.98 Å and Cmethine—H = 0.94/0.95 Å, and with Uiso (H) = 1.2Ueq(C,N) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O
Mr 1754.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 16.5325 (2), 17.5842 (2), 19.8873 (2)
β (°) 90.653 (1)
V3) 5781.08 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.56
Crystal size (mm) 0.38 × 0.28 × 0.19
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire2
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.476, 0.756
No. of measured, independent and observed [I > 2σ(I)] reflections 104921, 27993, 21593
Rint 0.053
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.15
No. of reflections 27993
No. of parameters 792
No. of restraints 58
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.83, −2.87
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR92 (Altomare et al., 1992[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hexakis(2-methyl-1H-imidazol-3-ium) heptamolybdate 2-methyl-1H-imidazole disolvate dihydrate top
Crystal data top
(C4H7N2)6[Mo7O24]·2C4H6N2·2H2OF(000) = 3456
Mr = 1754.52Dx = 2.016 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 38522 reflections
a = 16.5325 (2) Åθ = 3.5–37.4°
b = 17.5842 (2) ŵ = 1.56 mm1
c = 19.8873 (2) ÅT = 170 K
β = 90.653 (1)°Fragment of prism, colourless
V = 5781.08 (11) Å30.38 × 0.28 × 0.19 mm
Z = 4
Data collection top
Agilent Xcalibur, Sapphire2, large Be window
diffractometer
27993 independent reflections
Radiation source: Enhance (Mo) X-ray Source21593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.3622 pixels mm-1θmax = 36.3°, θmin = 3.3°
ω scansh = 2427
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2929
Tmin = 0.476, Tmax = 0.756l = 3333
104921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0397P)2 + 11.2859P]
where P = (Fo2 + 2Fc2)/3
27993 reflections(Δ/σ)max = 0.011
792 parametersΔρmax = 1.83 e Å3
58 restraintsΔρmin = 2.87 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04305 (13)0.24793 (14)0.39565 (12)0.0280 (4)
O20.00551 (14)0.27946 (14)0.26843 (11)0.0284 (5)
O30.07596 (13)0.15830 (12)0.34241 (10)0.0230 (4)
O40.07336 (14)0.12579 (14)0.48407 (11)0.0269 (4)
O50.15457 (15)0.03530 (13)0.39571 (12)0.0295 (5)
O60.23807 (12)0.13563 (11)0.47918 (9)0.0185 (3)
O70.40034 (14)0.12283 (14)0.50582 (12)0.0284 (5)
O80.33831 (15)0.04054 (13)0.40157 (12)0.0280 (4)
O90.42573 (14)0.16391 (13)0.36926 (12)0.0268 (4)
O100.52563 (15)0.25984 (16)0.44633 (15)0.0364 (6)
O110.50709 (16)0.28585 (17)0.31122 (14)0.0393 (6)
O120.41549 (13)0.37036 (12)0.40412 (11)0.0223 (4)
O130.39387 (13)0.34235 (15)0.54308 (11)0.0277 (4)
O140.32385 (14)0.46326 (12)0.47845 (11)0.0246 (4)
O150.23109 (12)0.33656 (12)0.51719 (9)0.0197 (3)
O160.06318 (13)0.33595 (15)0.52098 (11)0.0278 (5)
O170.13927 (14)0.45859 (13)0.46625 (11)0.0251 (4)
O180.06704 (13)0.36491 (12)0.37905 (10)0.0213 (4)
O190.16800 (13)0.28094 (12)0.28601 (10)0.0227 (4)
O200.24914 (12)0.16416 (11)0.35550 (9)0.0191 (3)
O210.33322 (14)0.28445 (13)0.29412 (11)0.0253 (4)
O220.24226 (12)0.36427 (11)0.39099 (9)0.0171 (3)
O230.14447 (11)0.25197 (11)0.41666 (9)0.0164 (3)
O240.33781 (11)0.25392 (11)0.42940 (9)0.0172 (3)
Mo10.042356 (14)0.264056 (14)0.348758 (11)0.01907 (5)
Mo20.142420 (14)0.128403 (13)0.420960 (11)0.01805 (4)
Mo30.342279 (14)0.130828 (14)0.434127 (12)0.01888 (4)
Mo40.454713 (15)0.269540 (15)0.383726 (13)0.02328 (5)
Mo50.333156 (14)0.365314 (13)0.475739 (11)0.01745 (4)
Mo60.134696 (14)0.360541 (13)0.463691 (11)0.01669 (4)
Mo70.248954 (14)0.271359 (12)0.343147 (10)0.01554 (4)
C10.2405 (3)0.0776 (2)0.1309 (2)0.0436 (9)
H10.2350.08910.08440.052*
C20.2374 (3)0.1281 (2)0.18283 (19)0.0366 (8)
H20.22940.18140.17940.044*
C30.25571 (18)0.01393 (18)0.22512 (16)0.0243 (5)
C40.2682 (3)0.0505 (2)0.2726 (2)0.0466 (10)
H4A0.27050.0310.31880.07*
H4B0.31920.07630.26230.07*
H4C0.22330.08650.26810.07*
N10.25288 (17)0.00771 (16)0.15858 (13)0.0265 (5)
N20.24786 (16)0.08720 (15)0.24065 (13)0.0236 (5)
H1N0.255 (2)0.0354 (12)0.1362 (13)0.028*
H2N0.248 (2)0.1084 (15)0.2801 (10)0.028*
C50.4466 (3)0.0710 (3)0.1457 (2)0.0472 (10)
H50.44090.07690.09840.057*
C60.4432 (3)0.1273 (3)0.1927 (2)0.0429 (9)
H60.43520.18010.18470.051*
C70.46291 (19)0.0184 (2)0.2452 (2)0.0338 (7)
C80.4797 (3)0.0370 (3)0.3006 (2)0.0458 (10)
H8A0.53220.02530.32150.069*
H8B0.48070.08870.28220.069*
H8C0.43720.03330.33440.069*
N30.45995 (18)0.00367 (19)0.18011 (18)0.0356 (7)
N40.45352 (17)0.09260 (18)0.25376 (18)0.0343 (6)
H3N0.457 (3)0.0409 (12)0.1597 (14)0.041*
H4N0.450 (3)0.1166 (16)0.2926 (10)0.041*
C90.4628 (3)0.5730 (2)0.3839 (2)0.0417 (9)
H90.46610.58160.4310.05*
C100.4672 (2)0.6261 (2)0.3346 (2)0.0389 (8)
H100.47390.67940.34070.047*
C110.45236 (19)0.5147 (2)0.28609 (19)0.0308 (7)
C120.4469 (3)0.4532 (3)0.2355 (2)0.0536 (12)
H12A0.41240.46970.19790.08*
H12B0.42350.40770.25610.08*
H12C0.50110.44130.2190.08*
N50.45244 (17)0.50405 (18)0.35196 (16)0.0316 (6)
N60.46028 (17)0.58857 (17)0.27414 (16)0.0316 (6)
H5N0.446 (3)0.4604 (12)0.3735 (13)0.038*
H6N0.456 (3)0.6126 (15)0.2346 (10)0.038*
C130.4092 (3)0.3119 (4)0.0588 (3)0.0606 (14)
H130.46440.3270.05990.073*
C140.3540 (3)0.3234 (3)0.1070 (3)0.0549 (12)
H140.3630.34760.14920.066*
C150.2921 (3)0.2642 (2)0.02298 (19)0.0364 (8)
C160.2296 (4)0.2267 (3)0.0190 (3)0.0564 (12)
H16A0.22710.17260.00750.085*
H16B0.24330.23230.06660.085*
H16C0.1770.25030.01080.085*
N70.3698 (2)0.2740 (2)0.00784 (19)0.0475 (9)
N80.2818 (2)0.2935 (2)0.08359 (17)0.0398 (7)
H7N0.3920 (18)0.263 (3)0.0313 (13)0.048*
H8N0.2341 (13)0.301 (3)0.1029 (17)0.048*
C170.3403 (2)0.3084 (2)0.75070 (18)0.0319 (7)
H170.37870.29160.78340.038*
C180.34305 (19)0.2954 (2)0.68388 (18)0.0300 (6)
H180.38360.26810.66060.036*
C190.23323 (18)0.36274 (19)0.70469 (15)0.0251 (5)
C200.1568 (2)0.4053 (3)0.6948 (2)0.0404 (9)
H20A0.1190.3920.73050.061*
H20B0.13280.3920.6510.061*
H20C0.16790.460.69620.061*
N90.27156 (17)0.35055 (18)0.76280 (14)0.0292 (5)
N100.27544 (16)0.32947 (17)0.65606 (13)0.0260 (5)
H9N0.2597 (19)0.369 (2)0.8029 (10)0.031*
H10N0.2612 (19)0.328 (2)0.6133 (9)0.031*
C210.1295 (2)0.2036 (2)0.62572 (16)0.0294 (6)
H210.09090.22980.59850.035*
C220.12795 (19)0.1954 (2)0.69351 (15)0.0289 (6)
H220.08780.21440.72280.035*
C230.23697 (19)0.13713 (18)0.65689 (14)0.0241 (5)
C240.3139 (2)0.0943 (2)0.6550 (2)0.0356 (7)
H24A0.35750.12570.67390.053*
H24B0.32640.08130.60830.053*
H24C0.30880.04760.68150.053*
N110.19766 (16)0.16674 (17)0.60401 (12)0.0262 (5)
N120.19571 (16)0.15416 (17)0.71190 (12)0.0257 (5)
H11N0.2134 (19)0.164 (2)0.5621 (9)0.031*
H12N0.2122 (19)0.145 (2)0.7531 (9)0.031*
C250.3331 (3)0.0694 (3)0.5204 (2)0.0543 (12)
H250.37530.06380.48880.065*
C260.3380 (3)0.1023 (3)0.5821 (2)0.0498 (11)
H260.38530.12480.60090.06*
C270.2140 (3)0.0632 (2)0.5699 (2)0.0439 (10)
C280.1286 (4)0.0448 (3)0.5815 (3)0.0625 (14)
H28A0.09940.09120.59380.094*
H28B0.10460.02340.54040.094*
H28C0.12480.00770.6180.094*
N130.2543 (3)0.0461 (2)0.51329 (18)0.0523 (10)
N140.2641 (2)0.0981 (2)0.61320 (16)0.0421 (8)
H13N0.2347 (18)0.022 (3)0.4779 (15)0.05*
C290.1459 (2)0.5736 (2)0.59154 (18)0.0331 (7)
H290.09660.56970.56690.04*
C300.1591 (2)0.6127 (2)0.64964 (18)0.0325 (7)
H300.11950.64110.6730.039*
C310.2732 (2)0.5611 (2)0.62385 (16)0.0289 (6)
C320.3600 (2)0.5372 (3)0.6246 (2)0.0472 (11)
H32A0.39160.57230.65260.071*
H32B0.38070.53780.57860.071*
H32C0.36450.48560.6430.071*
N150.21866 (17)0.54082 (17)0.57597 (14)0.0287 (5)
N160.23894 (17)0.60467 (18)0.66955 (14)0.0302 (6)
H15N0.2266 (18)0.511 (2)0.5419 (15)0.036*
O250.14267 (16)0.30433 (19)0.14871 (12)0.0369 (6)
H25V0.134 (3)0.300 (3)0.1909 (10)0.055*
H25W0.0957 (17)0.302 (3)0.130 (2)0.055*
O260.4963 (2)0.2100 (2)0.58818 (17)0.0519 (8)
H26V0.482 (4)0.248 (2)0.566 (3)0.078*
H26W0.482 (4)0.172 (2)0.566 (3)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (9)0.0333 (12)0.0294 (11)0.0021 (8)0.0030 (8)0.0072 (9)
O20.0330 (11)0.0339 (12)0.0182 (9)0.0065 (9)0.0104 (8)0.0047 (8)
O30.0288 (10)0.0217 (9)0.0183 (9)0.0051 (8)0.0051 (7)0.0004 (7)
O40.0258 (10)0.0345 (12)0.0206 (9)0.0030 (9)0.0017 (8)0.0070 (8)
O50.0382 (12)0.0218 (10)0.0285 (11)0.0060 (9)0.0035 (9)0.0020 (8)
O60.0218 (8)0.0208 (9)0.0129 (7)0.0003 (7)0.0016 (6)0.0024 (6)
O70.0255 (10)0.0328 (12)0.0268 (11)0.0018 (9)0.0034 (8)0.0067 (9)
O80.0375 (12)0.0221 (10)0.0247 (10)0.0050 (9)0.0080 (9)0.0008 (8)
O90.0295 (10)0.0258 (10)0.0253 (10)0.0044 (8)0.0119 (8)0.0025 (8)
O100.0240 (11)0.0398 (14)0.0452 (15)0.0009 (10)0.0018 (10)0.0059 (12)
O110.0371 (13)0.0433 (15)0.0379 (14)0.0011 (11)0.0227 (11)0.0077 (11)
O120.0239 (9)0.0206 (9)0.0223 (9)0.0029 (7)0.0041 (7)0.0025 (7)
O130.0233 (10)0.0389 (13)0.0206 (9)0.0016 (9)0.0060 (8)0.0031 (9)
O140.0312 (10)0.0204 (9)0.0222 (9)0.0040 (8)0.0020 (8)0.0034 (7)
O150.0219 (9)0.0257 (9)0.0116 (7)0.0001 (7)0.0011 (6)0.0004 (7)
O160.0256 (10)0.0402 (13)0.0177 (9)0.0037 (9)0.0059 (8)0.0036 (8)
O170.0310 (11)0.0228 (10)0.0215 (9)0.0033 (8)0.0038 (8)0.0032 (7)
O180.0242 (9)0.0206 (9)0.0189 (9)0.0013 (7)0.0031 (7)0.0008 (7)
O190.0306 (10)0.0237 (9)0.0137 (8)0.0029 (8)0.0038 (7)0.0018 (7)
O200.0283 (9)0.0160 (8)0.0129 (7)0.0013 (7)0.0032 (7)0.0007 (6)
O210.0321 (11)0.0255 (10)0.0186 (9)0.0004 (8)0.0110 (8)0.0020 (7)
O220.0229 (8)0.0167 (8)0.0117 (7)0.0007 (6)0.0003 (6)0.0007 (6)
O230.0187 (8)0.0189 (8)0.0117 (7)0.0014 (6)0.0007 (6)0.0008 (6)
O240.0198 (8)0.0175 (8)0.0143 (7)0.0004 (6)0.0029 (6)0.0014 (6)
Mo10.01912 (9)0.02215 (10)0.01584 (9)0.00268 (8)0.00351 (7)0.00174 (7)
Mo20.02159 (10)0.01762 (9)0.01494 (9)0.00348 (7)0.00019 (7)0.00209 (7)
Mo30.02075 (10)0.01832 (10)0.01763 (9)0.00146 (8)0.00352 (7)0.00293 (7)
Mo40.01970 (10)0.02472 (11)0.02561 (11)0.00006 (8)0.00868 (8)0.00360 (9)
Mo50.01950 (9)0.01916 (10)0.01367 (9)0.00115 (7)0.00133 (7)0.00076 (7)
Mo60.01876 (9)0.01945 (10)0.01188 (8)0.00120 (7)0.00054 (7)0.00103 (7)
Mo70.02116 (9)0.01513 (9)0.01035 (8)0.00110 (7)0.00168 (7)0.00035 (6)
C10.069 (3)0.0360 (19)0.0254 (16)0.0063 (19)0.0037 (17)0.0048 (14)
C20.054 (2)0.0268 (15)0.0291 (16)0.0069 (15)0.0016 (15)0.0060 (12)
C30.0225 (12)0.0242 (13)0.0263 (13)0.0004 (10)0.0014 (10)0.0075 (10)
C40.076 (3)0.0280 (17)0.036 (2)0.0038 (18)0.002 (2)0.0050 (15)
N10.0293 (12)0.0281 (12)0.0222 (11)0.0017 (10)0.0000 (9)0.0128 (9)
N20.0248 (11)0.0248 (11)0.0211 (11)0.0002 (9)0.0014 (9)0.0092 (9)
C50.052 (2)0.051 (3)0.038 (2)0.000 (2)0.0123 (18)0.0113 (18)
C60.047 (2)0.041 (2)0.041 (2)0.0030 (17)0.0089 (17)0.0061 (17)
C70.0215 (13)0.0335 (17)0.047 (2)0.0041 (12)0.0096 (13)0.0113 (14)
C80.045 (2)0.046 (2)0.046 (2)0.0079 (18)0.0100 (18)0.0030 (18)
N30.0256 (13)0.0373 (16)0.0439 (17)0.0015 (11)0.0025 (12)0.0179 (13)
N40.0231 (12)0.0330 (15)0.0469 (18)0.0027 (11)0.0027 (11)0.0127 (13)
C90.050 (2)0.037 (2)0.038 (2)0.0067 (17)0.0036 (17)0.0054 (15)
C100.043 (2)0.0313 (17)0.043 (2)0.0031 (15)0.0023 (16)0.0063 (15)
C110.0230 (13)0.0311 (15)0.0380 (17)0.0034 (11)0.0103 (12)0.0118 (13)
C120.073 (3)0.040 (2)0.047 (2)0.004 (2)0.020 (2)0.0017 (19)
N50.0250 (12)0.0308 (14)0.0389 (16)0.0056 (10)0.0032 (11)0.0133 (12)
N60.0261 (12)0.0306 (14)0.0380 (15)0.0036 (10)0.0054 (11)0.0120 (12)
C130.037 (2)0.077 (4)0.068 (3)0.002 (2)0.012 (2)0.008 (3)
C140.045 (2)0.070 (3)0.050 (3)0.003 (2)0.005 (2)0.020 (2)
C150.047 (2)0.0326 (17)0.0296 (16)0.0093 (15)0.0081 (14)0.0016 (13)
C160.077 (4)0.044 (3)0.047 (3)0.002 (2)0.011 (2)0.005 (2)
N70.053 (2)0.052 (2)0.0381 (18)0.0154 (17)0.0202 (16)0.0027 (16)
N80.0393 (16)0.0454 (19)0.0350 (16)0.0044 (14)0.0116 (13)0.0041 (14)
C170.0242 (13)0.0393 (18)0.0321 (16)0.0027 (12)0.0053 (12)0.0007 (13)
C180.0220 (13)0.0359 (17)0.0322 (16)0.0035 (12)0.0030 (11)0.0006 (13)
C190.0228 (12)0.0309 (15)0.0215 (12)0.0022 (11)0.0018 (10)0.0001 (10)
C200.0333 (17)0.048 (2)0.040 (2)0.0146 (16)0.0022 (14)0.0057 (17)
N90.0293 (13)0.0380 (15)0.0203 (11)0.0040 (11)0.0012 (9)0.0007 (10)
N100.0266 (12)0.0338 (13)0.0177 (10)0.0006 (10)0.0024 (9)0.0001 (9)
C210.0277 (14)0.0417 (18)0.0190 (12)0.0009 (13)0.0000 (10)0.0026 (12)
C220.0268 (13)0.0415 (18)0.0187 (12)0.0004 (12)0.0069 (10)0.0002 (11)
C230.0288 (13)0.0282 (14)0.0155 (11)0.0015 (11)0.0017 (10)0.0007 (9)
C240.0362 (17)0.0365 (18)0.0343 (17)0.0089 (14)0.0056 (14)0.0012 (14)
N110.0289 (12)0.0374 (14)0.0124 (9)0.0002 (10)0.0027 (8)0.0008 (9)
N120.0293 (12)0.0347 (14)0.0132 (9)0.0017 (10)0.0013 (8)0.0037 (9)
C250.081 (3)0.039 (2)0.043 (2)0.008 (2)0.026 (2)0.0121 (18)
C260.066 (3)0.042 (2)0.042 (2)0.003 (2)0.013 (2)0.0089 (18)
C270.074 (3)0.0266 (16)0.0306 (17)0.0031 (18)0.0014 (18)0.0015 (13)
C280.075 (4)0.054 (3)0.058 (3)0.001 (3)0.006 (3)0.005 (2)
N130.095 (3)0.0330 (17)0.0288 (16)0.0064 (19)0.0075 (18)0.0112 (13)
N140.065 (2)0.0348 (16)0.0260 (14)0.0038 (15)0.0053 (14)0.0052 (12)
C290.0285 (15)0.0419 (19)0.0286 (15)0.0052 (13)0.0094 (12)0.0013 (13)
C300.0307 (15)0.0369 (17)0.0298 (15)0.0115 (13)0.0028 (12)0.0057 (13)
C310.0290 (14)0.0355 (16)0.0222 (13)0.0043 (12)0.0059 (11)0.0094 (12)
C320.0322 (18)0.068 (3)0.041 (2)0.0155 (19)0.0086 (15)0.019 (2)
N150.0315 (13)0.0327 (14)0.0217 (11)0.0048 (11)0.0046 (10)0.0109 (10)
N160.0302 (13)0.0364 (15)0.0240 (12)0.0088 (11)0.0057 (10)0.0092 (11)
O250.0344 (12)0.0563 (17)0.0199 (10)0.0001 (12)0.0025 (9)0.0003 (11)
O260.066 (2)0.0466 (18)0.0422 (17)0.0038 (16)0.0272 (15)0.0040 (14)
Geometric parameters (Å, º) top
O1—Mo11.724 (2)C11—N61.328 (4)
O2—Mo11.725 (2)C11—C121.479 (6)
O3—Mo11.945 (2)C12—H12A0.98
O3—Mo21.971 (2)C12—H12B0.98
O4—Mo21.707 (2)C12—H12C0.98
O5—Mo21.725 (2)N5—H5N0.886 (17)
O6—Mo31.9528 (19)N6—H6N0.895 (17)
O6—Mo21.953 (2)C13—C141.347 (7)
O7—Mo31.715 (2)C13—N71.372 (7)
O8—Mo31.716 (2)C13—H130.95
O9—Mo41.939 (2)C14—N81.379 (6)
O9—Mo31.987 (2)C14—H140.95
O10—Mo41.709 (3)C15—N81.324 (5)
O11—Mo41.715 (2)C15—N71.333 (5)
O12—Mo41.932 (2)C15—C161.476 (6)
O12—Mo51.983 (2)C16—H16A0.98
O13—Mo51.713 (2)C16—H16B0.98
O14—Mo51.730 (2)C16—H16C0.98
O15—Mo61.9521 (19)N7—H7N0.887 (17)
O15—Mo51.953 (2)N8—H8N0.893 (17)
O16—Mo61.707 (2)C17—C181.350 (5)
O17—Mo61.726 (2)C17—N91.380 (4)
O18—Mo11.916 (2)C17—H170.95
O18—Mo62.012 (2)C18—N101.379 (4)
O19—Mo71.754 (2)C18—H180.95
O19—Mo12.453 (2)C19—N91.329 (4)
O20—Mo71.901 (2)C19—N101.334 (4)
O20—Mo32.259 (2)C19—C201.480 (5)
O20—Mo22.292 (2)C20—H20A0.98
O21—Mo71.725 (2)C20—H20B0.98
O22—Mo71.8945 (19)C20—H20C0.98
O22—Mo52.2453 (19)N9—H9N0.886 (17)
O22—Mo62.3057 (19)N10—H10N0.880 (17)
O23—Mo62.1329 (19)C21—C221.356 (4)
O23—Mo12.1604 (19)C21—N111.374 (4)
O23—Mo22.1748 (19)C21—H210.95
O23—Mo72.3011 (18)C22—N121.380 (4)
O24—Mo42.1624 (19)C22—H220.95
O24—Mo52.1665 (19)C23—N121.330 (4)
O24—Mo32.1677 (19)C23—N111.336 (4)
O24—Mo72.2665 (19)C23—C241.479 (5)
Mo1—Mo63.2178 (3)C24—H24A0.98
Mo4—Mo53.2105 (3)C24—H24B0.98
C1—C21.362 (5)C24—H24C0.98
C1—N11.362 (5)N11—H11N0.877 (17)
C1—H10.95N12—H12N0.876 (17)
C2—N21.365 (5)C25—C261.357 (6)
C2—H20.95C25—N131.371 (7)
C3—N11.328 (4)C25—H250.95
C3—N21.332 (4)C26—N141.377 (6)
C3—C41.488 (5)C26—H260.95
C4—H4A0.98C27—N141.338 (6)
C4—H4B0.98C27—N131.348 (6)
C4—H4C0.98C27—C281.470 (8)
N1—H1N0.881 (17)C28—H28A0.98
N2—H2N0.868 (17)C28—H28B0.98
C5—C61.363 (6)C28—H28C0.98
C5—N31.384 (6)N13—H13N0.880 (19)
C5—H50.95C29—C301.360 (5)
C6—N41.367 (6)C29—N151.372 (4)
C6—H60.95C29—H290.95
C7—N31.321 (5)C30—N161.380 (4)
C7—N41.325 (5)C30—H300.95
C7—C81.493 (6)C31—N161.321 (4)
C8—H8A0.98C31—N151.352 (4)
C8—H8B0.98C31—C321.495 (5)
C8—H8C0.98C32—H32A0.98
N3—H3N0.884 (17)C32—H32B0.98
N4—H4N0.884 (17)C32—H32C0.98
C9—C101.357 (6)N15—H15N0.867 (19)
C9—N51.378 (5)O25—H25V0.857 (19)
C9—H90.95O25—H25W0.856 (18)
C10—N61.375 (5)O26—H26V0.842 (19)
C10—H100.95O26—H26W0.843 (19)
C11—N51.323 (5)
Mo1—O3—Mo2111.13 (10)C3—C4—H4A109.5
Mo3—O6—Mo2115.96 (9)C3—C4—H4B109.5
Mo4—O9—Mo3110.89 (11)H4A—C4—H4B109.5
Mo4—O12—Mo5110.14 (10)C3—C4—H4C109.5
Mo6—O15—Mo5114.70 (9)H4A—C4—H4C109.5
Mo1—O18—Mo6110.01 (10)H4B—C4—H4C109.5
Mo7—O19—Mo1107.64 (9)C3—N1—C1109.4 (3)
Mo7—O20—Mo3110.29 (9)C3—N1—H1N125.1 (19)
Mo7—O20—Mo2110.20 (9)C1—N1—H1N125.4 (19)
Mo3—O20—Mo293.36 (7)C3—N2—C2109.0 (3)
Mo7—O22—Mo5109.98 (9)C3—N2—H2N128.7 (19)
Mo7—O22—Mo6109.89 (9)C2—N2—H2N122.3 (19)
Mo5—O22—Mo692.51 (7)C6—C5—N3106.9 (4)
Mo6—O23—Mo197.09 (8)C6—C5—H5126.6
Mo6—O23—Mo2151.14 (9)N3—C5—H5126.6
Mo1—O23—Mo296.34 (7)C5—C6—N4106.2 (4)
Mo6—O23—Mo7101.96 (8)C5—C6—H6126.9
Mo1—O23—Mo7100.09 (7)N4—C6—H6126.9
Mo2—O23—Mo7100.67 (7)N3—C7—N4108.4 (4)
Mo4—O24—Mo595.74 (8)N3—C7—C8126.8 (4)
Mo4—O24—Mo396.60 (8)N4—C7—C8124.7 (4)
Mo5—O24—Mo3152.34 (9)C7—C8—H8A109.5
Mo4—O24—Mo7103.86 (7)C7—C8—H8B109.5
Mo5—O24—Mo7100.00 (8)H8A—C8—H8B109.5
Mo3—O24—Mo7100.92 (8)C7—C8—H8C109.5
O1—Mo1—O2104.12 (11)H8A—C8—H8C109.5
O1—Mo1—O1898.92 (11)H8B—C8—H8C109.5
O2—Mo1—O18102.57 (10)C7—N3—C5108.7 (3)
O1—Mo1—O396.55 (11)C7—N3—H3N129 (2)
O2—Mo1—O3100.84 (10)C5—N3—H3N122 (2)
O18—Mo1—O3147.73 (9)C7—N4—C6109.9 (3)
O1—Mo1—O23106.54 (9)C7—N4—H4N126 (2)
O2—Mo1—O23149.29 (10)C6—N4—H4N124 (2)
O18—Mo1—O2374.47 (8)C10—C9—N5106.3 (4)
O3—Mo1—O2374.03 (8)C10—C9—H9126.9
O1—Mo1—O19176.53 (9)N5—C9—H9126.9
O2—Mo1—O1978.58 (10)C9—C10—N6107.2 (4)
O18—Mo1—O1982.49 (8)C9—C10—H10126.4
O3—Mo1—O1980.71 (8)N6—C10—H10126.4
O23—Mo1—O1970.72 (7)N5—C11—N6108.4 (3)
O1—Mo1—Mo695.01 (8)N5—C11—C12124.7 (3)
O2—Mo1—Mo6137.30 (8)N6—C11—C12126.8 (4)
O18—Mo1—Mo635.98 (6)C11—C12—H12A109.5
O3—Mo1—Mo6114.62 (6)C11—C12—H12B109.5
O23—Mo1—Mo641.13 (5)H12A—C12—H12B109.5
O19—Mo1—Mo684.26 (5)C11—C12—H12C109.5
O4—Mo2—O5105.64 (12)H12A—C12—H12C109.5
O4—Mo2—O696.30 (9)H12B—C12—H12C109.5
O5—Mo2—O697.94 (10)C11—N5—C9109.3 (3)
O4—Mo2—O3102.62 (10)C11—N5—H5N127.0 (19)
O5—Mo2—O395.05 (10)C9—N5—H5N123.7 (19)
O6—Mo2—O3153.21 (8)C11—N6—C10108.7 (3)
O4—Mo2—O2393.82 (10)C11—N6—H6N127.8 (19)
O5—Mo2—O23159.22 (10)C10—N6—H6N123.1 (19)
O6—Mo2—O2386.87 (8)C14—C13—N7106.2 (4)
O3—Mo2—O2373.22 (8)C14—C13—H13126.9
O4—Mo2—O20161.90 (10)N7—C13—H13126.9
O5—Mo2—O2090.12 (10)C13—C14—N8107.0 (4)
O6—Mo2—O2072.28 (7)C13—C14—H14126.5
O3—Mo2—O2084.40 (8)N8—C14—H14126.5
O23—Mo2—O2072.01 (7)N8—C15—N7106.8 (4)
O8—Mo3—O7104.86 (12)N8—C15—C16126.4 (4)
O8—Mo3—O6100.55 (10)N7—C15—C16126.8 (4)
O7—Mo3—O696.34 (10)C15—C16—H16A109.5
O8—Mo3—O992.85 (10)C15—C16—H16B109.5
O7—Mo3—O9100.23 (11)H16A—C16—H16B109.5
O6—Mo3—O9155.25 (9)C15—C16—H16C109.5
O8—Mo3—O24155.03 (9)H16A—C16—H16C109.5
O7—Mo3—O2497.84 (10)H16B—C16—H16C109.5
O6—Mo3—O2486.96 (8)C15—N7—C13110.3 (4)
O9—Mo3—O2472.72 (8)C15—N7—H7N125 (2)
O8—Mo3—O2087.48 (10)C13—N7—H7N124 (2)
O7—Mo3—O20165.23 (10)C15—N8—C14109.7 (4)
O6—Mo3—O2073.05 (7)C15—N8—H8N125 (2)
O9—Mo3—O2086.99 (9)C14—N8—H8N124 (2)
O24—Mo3—O2071.84 (7)C18—C17—N9107.4 (3)
O10—Mo4—O11106.30 (14)C18—C17—H17126.3
O10—Mo4—O1299.66 (12)N9—C17—H17126.3
O11—Mo4—O12101.36 (12)C17—C18—N10106.6 (3)
O10—Mo4—O9100.30 (12)C17—C18—H18126.7
O11—Mo4—O999.31 (12)N10—C18—H18126.7
O12—Mo4—O9145.80 (9)N9—C19—N10108.1 (3)
O10—Mo4—O24106.87 (10)N9—C19—C20126.5 (3)
O11—Mo4—O24146.81 (11)N10—C19—C20125.3 (3)
O12—Mo4—O2474.02 (8)C19—C20—H20A109.5
O9—Mo4—O2473.74 (8)C19—C20—H20B109.5
O10—Mo4—Mo593.77 (10)H20A—C20—H20B109.5
O11—Mo4—Mo5135.81 (10)C19—C20—H20C109.5
O12—Mo4—Mo535.45 (6)H20A—C20—H20C109.5
O9—Mo4—Mo5115.58 (6)H20B—C20—H20C109.5
O24—Mo4—Mo542.18 (5)C19—N9—C17108.7 (3)
O13—Mo5—O14105.18 (11)C19—N9—H9N128.0 (19)
O13—Mo5—O1596.34 (10)C17—N9—H9N123.0 (19)
O14—Mo5—O1599.61 (10)C19—N10—C18109.2 (3)
O13—Mo5—O1299.85 (10)C19—N10—H10N125.4 (19)
O14—Mo5—O1292.28 (10)C18—N10—H10N125.4 (19)
O15—Mo5—O12156.65 (9)C22—C21—N11106.6 (3)
O13—Mo5—O2495.51 (10)C22—C21—H21126.7
O14—Mo5—O24156.48 (9)N11—C21—H21126.7
O15—Mo5—O2488.88 (8)C21—C22—N12107.2 (3)
O12—Mo5—O2472.96 (8)C21—C22—H22126.4
O13—Mo5—O22165.08 (10)N12—C22—H22126.4
O14—Mo5—O2288.42 (9)N12—C23—N11108.1 (3)
O15—Mo5—O2274.97 (7)N12—C23—C24125.8 (3)
O12—Mo5—O2285.42 (8)N11—C23—C24126.1 (3)
O24—Mo5—O2272.54 (7)C23—C24—H24A109.5
O13—Mo5—Mo487.53 (8)C23—C24—H24B109.5
O14—Mo5—Mo4126.61 (8)H24A—C24—H24B109.5
O15—Mo5—Mo4130.86 (6)C23—C24—H24C109.5
O12—Mo5—Mo434.41 (6)H24A—C24—H24C109.5
O24—Mo5—Mo442.08 (5)H24B—C24—H24C109.5
O22—Mo5—Mo489.18 (5)C23—N11—C21109.3 (2)
O16—Mo6—O17105.29 (12)C23—N11—H11N125.3 (18)
O16—Mo6—O1598.56 (10)C21—N11—H11N125.4 (18)
O17—Mo6—O1599.46 (10)C23—N12—C22108.8 (2)
O16—Mo6—O18100.69 (10)C23—N12—H12N124.9 (19)
O17—Mo6—O1890.59 (9)C22—N12—H12N125.9 (19)
O15—Mo6—O18155.08 (8)C26—C25—N13105.5 (4)
O16—Mo6—O2397.03 (10)C26—C25—H25127.2
O17—Mo6—O23154.60 (9)N13—C25—H25127.2
O15—Mo6—O2388.86 (8)C25—C26—N14109.8 (5)
O18—Mo6—O2373.23 (8)C25—C26—H26125.1
O16—Mo6—O22166.13 (10)N14—C26—H26125.1
O17—Mo6—O2287.49 (9)N14—C27—N13109.4 (4)
O15—Mo6—O2273.58 (7)N14—C27—C28126.1 (4)
O18—Mo6—O2284.24 (8)N13—C27—C28124.5 (4)
O23—Mo6—O2271.80 (7)C27—C28—H28A109.5
O16—Mo6—Mo190.80 (8)C27—C28—H28B109.5
O17—Mo6—Mo1124.59 (7)H28A—C28—H28B109.5
O15—Mo6—Mo1130.62 (6)C27—C28—H28C109.5
O18—Mo6—Mo134.01 (6)H28A—C28—H28C109.5
O23—Mo6—Mo141.78 (5)H28B—C28—H28C109.5
O22—Mo6—Mo186.14 (5)C27—N13—C25108.9 (4)
O21—Mo7—O19103.66 (11)C27—N13—H13N126 (2)
O21—Mo7—O22102.76 (10)C25—N13—H13N125 (2)
O19—Mo7—O22101.19 (9)C27—N14—C26106.3 (4)
O21—Mo7—O20101.84 (10)C30—C29—N15105.7 (3)
O19—Mo7—O20100.32 (9)C30—C29—H29127.1
O22—Mo7—O20142.21 (8)N15—C29—H29127.1
O21—Mo7—O2485.71 (9)C29—C30—N16109.6 (3)
O19—Mo7—O24170.59 (8)C29—C30—H30125.2
O22—Mo7—O2477.15 (8)N16—C30—H30125.2
O20—Mo7—O2476.58 (8)N16—C31—N15110.4 (3)
O21—Mo7—O23174.78 (9)N16—C31—C32125.2 (3)
O19—Mo7—O2381.55 (8)N15—C31—C32124.4 (3)
O22—Mo7—O2376.12 (8)C31—C32—H32A109.5
O20—Mo7—O2376.77 (8)C31—C32—H32B109.5
O24—Mo7—O2389.07 (6)H32A—C32—H32B109.5
C2—C1—N1106.8 (3)C31—C32—H32C109.5
C2—C1—H1126.6H32A—C32—H32C109.5
N1—C1—H1126.6H32B—C32—H32C109.5
C1—C2—N2106.9 (3)C31—N15—C29108.1 (3)
C1—C2—H2126.6C31—N15—H15N127.1 (19)
N2—C2—H2126.6C29—N15—H15N124.8 (19)
N1—C3—N2108.0 (3)C31—N16—C30106.1 (3)
N1—C3—C4125.0 (3)H25V—O25—H25W105 (3)
N2—C3—C4127.0 (3)H26V—O26—H26W107 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O22i0.88 (2)1.85 (2)2.710 (3)167 (2)
N2—H2N···O200.87 (2)1.79 (2)2.655 (3)172 (2)
N3—H3N···O18i0.88 (2)1.87 (2)2.743 (4)171 (5)
N4—H4N···O90.88 (2)1.79 (2)2.662 (4)171 (5)
N5—H5N···O120.89 (2)1.77 (3)2.644 (4)168 (4)
N6—H6N···O3ii0.90 (2)1.80 (3)2.684 (4)168 (5)
N7—H7N···O1iii0.89 (3)1.83 (3)2.697 (4)167 (3)
N8—H8N···O250.89 (3)1.78 (3)2.659 (4)172 (5)
N9—H9N···N14iv0.89 (2)1.81 (2)2.698 (4)177 (3)
N10—H10N···O150.88 (2)1.98 (2)2.852 (3)174 (3)
N11—H11N···O60.88 (2)1.78 (2)2.636 (3)166 (3)
N12—H12N···N16v0.88 (2)1.87 (2)2.725 (4)165 (3)
N13—H13N···O50.88 (4)2.32 (4)3.186 (5)167 (3)
N13—H13N···O80.88 (4)2.55 (4)3.043 (5)116 (2)
N15—H15N···O140.87 (3)2.22 (3)2.953 (4)142 (3)
N15—H15N···O170.87 (3)2.27 (3)2.917 (4)132 (3)
O25—H25V···O190.86 (2)2.00 (2)2.788 (3)154 (5)
O25—H25W···O26vi0.86 (3)1.85 (3)2.702 (4)176 (5)
O26—H26V···O100.83 (4)2.50 (6)2.999 (4)119 (5)
O26—H26V···O130.83 (4)2.25 (5)3.009 (4)151 (6)
O26—H26W···O70.83 (4)1.99 (6)2.737 (4)149 (6)
C4—H4A···O80.982.353.228 (5)149
C8—H8B···O2i0.982.543.517 (6)176
C8—H8C···O80.982.493.386 (5)152
C10—H10···O26vii0.952.453.318 (5)151
C12—H12A···O5ii0.982.443.407 (5)167
C13—H13···O4iii0.952.503.297 (6)141
C17—H17···O2viii0.952.463.154 (4)130
C18—H18···O260.952.583.522 (5)172
C21—H21···O160.952.463.302 (4)147
C22—H22···O11ix0.952.223.113 (4)156
C24—H24B···O70.982.503.346 (5)145
C25—H25···O80.952.593.055 (5)110
C32—H32B···O140.982.553.234 (5)126
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+3/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y+1, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Université Cheikh Anta Diop Dakar-Sénégal, the Laboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor, Sénégal and the service commun d'analyse par diffraction des rayons X, Universitée de Bretagne Occidentale, France for financial support. All measurements were performed in the institutes above quoted.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationCoué, V., Dessapt, R., Bujoli-Doeuff, M., Evain, M. & Jobic, S. (2007). Inorg. Chem. 46, 2824–2835.  PubMed Google Scholar
First citationDey, C. D., Das, R., Pachfule, P., Poddar, P. & Banerjee, R. (2011). Cryst. Growth Des. 11, 139–146.  CSD CrossRef CAS Google Scholar
First citationDon, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451–453.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFtini, M. M. (2015). J. Struct. Chem. 56, 1595–1601.  CSD CrossRef CAS Google Scholar
First citationGatehouse, B. M. & Leverett, P. (1968). Chem. Commun. pp. 901–902.  Google Scholar
First citationGerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101–106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasenknopf, B. (2005). Front. Biosci. 10, 275–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHimeno, S., Niiya, H. & Ueda, T. (1997). Bull. Chem. Soc. Jpn, 70, 631–637.  CrossRef CAS Web of Science Google Scholar
First citationJinnah, M. M. A., Umadevi, M. & Ramakrishnan, V. (2004). J. Raman Spectrosc. 35, 956–960.  CrossRef CAS Google Scholar
First citationKatsoulis, D. E. (1998). Chem. Rev. 98, 359–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhandolkar, S. S., Naik, A. R., Näther, C., Bensch, W. & Srinivasan, B. R. (2016). J. Chem. Sci. 128, 1737–1744.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiu, J.-Y., You, X.-Z., Fun, H.-K., Zhou, Z.-Y. & Yip, B.-C. (1996). Polyhedron, 15, 1003–1008.  CAS Google Scholar
First citationReinoso, S., Dickman, M. H., Praetorius, A. & Kortz, U. (2008). Acta Cryst. E64, m614–m615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRomán, P., Gutiérrez-Zorrilla, J. M., Luque, A. & Martínez-Ripoll, M. (1988). J. Crystallogr. Spectrosc. Res. 18, 117–131.  Google Scholar
First citationRomán, P., Gutiérrez-Zorrilla, J. M., Martínez-Ripoll, M. & García-Blanco, S. (1985). Z. Kristallogr. 173, 283–292.  Google Scholar
First citationRomán, P., Luque, A., Aranzabe, A. & Gutiérrez-Zorrilla, J. M. (1992). Polyhedron, 11, 2027–2038.  Google Scholar
First citationRomán, P., Luque, A., Gutiérrez-Zorrilla, J. M. & Zuniga, F. J. (1990). Z. Kristallogr. 190, 249–258.  Google Scholar
First citationSarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). J. Mol. Struct. 1170, 44–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSjöbom, K. & Hedman, B. (1973). Acta Chem. Scand. A27, 3673–3691.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds