research communications
E)-3-(4-chloro-3-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one
and Hirshfeld surface analysis of (2aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, GSSS Institute of Engineering & Technology for Women, Mysuru 570016, Karnataka, India, cDepartment of Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India, and dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr
The molecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluorophenyl ring and a 3,4-dimethoxyphenyl ring linked via a prop-2-en-1-one spacer. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluorophenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, molecules are linked via pairs of C—H⋯O interactions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10] by a C—H⋯π interaction. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%).
Keywords: crystal structure; E configuration; 4-chloro-3-fluorophenyl ring; 3,4-dimethoxyphenyl ring; disorder; Hirshfeld surface analysis.
CCDC reference: 1919577
1. Chemical context
via the –CO—CH=CH– chromophore and other auxochromes. attract significant attention because of their availability of high optical non-linearities arising from the delocalization of π-conjugated electron clouds throughout the chalcone system, which provides a large charge-transfer axis with appropriate substituents on the terminal aromatic rings. π-conjugated systems have been studied extensively for their optoelectronic properties (Shetty et al., 2016, 2017) because of the possibility of developing low-cost, large-area and flexible electronic devices. In view of all the above and in a continuation of our previous work on 3,4-dimethoxy (Sheshadri et al., 2018a,b), we report herein the crystal and molecular structure of the title compound.
compounds with a 1,3-diphenylprop-2-en-1-one framework, are considered to be the precursors of and which are abundant in edible plants. These compounds are coloured2. Structural commentary
The title compound (Fig. 1) is composed of two aromatic rings, 4-chloro-3-fluorophenyl and 3,4-dimethoxyphenyl, which are linked by a –CO—CH=CH– enone bridge. The molecule is approximately planar as indicated by the torsion angles C1—C6—C7—O3 = 174.71 (16)°, C1—C6—C7—C8 = −3.8 (2)°, C6—C7—C8—C9 = 178.49 (15)°, O3—C7—C8—C9 = 0.0 (3)°, C8—C9—C10—C11 = 178.22 (17)° and C7—C8—C9—C10 = −179.00 (15)°. The dihedral angle between the 4-chloro-3-fluorophenyl and 3,4-dimethoxyphenyl rings is 5.40 (7)°. The H atoms of the central propenone group are trans configured. The two methoxy groups attached to atoms C3 and C4 are almost coplanar with the benzene ring, with deviations of 0.214 (2) Å for C16 and 0.209 (2) Å for C17. The 4-chloro-3-fluorophenyl fragment is disordered over two orientations around the C9—C10 bond axis, with an occupancy ratio of 0.785 (3):0.215 (3).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are connected into inversion dimers with an R22(14) ring motif (Fig. 2) via pairs of C—H⋯O interactions (Table 1). The dimers are further linked by a C—H⋯π interaction (Table 1), forming a tape structure along [10] (Fig. 3).
|
The Hirshfeld surface and two-dimensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017). In the Hirshfeld surface plotted over dnorm (Fig. 4), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016). The overall two-dimensional fingerprint plot and those delineated into H⋯H (25.0%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%) contacts (McKinnon et al., 2007) are illustrated in Fig. 5a–h, respectively. The small percentage contributions from the other different interatomic contacts to the Hirshfeld surfaces are as follows: Cl⋯O/O⋯Cl (2.7%), O⋯C/C⋯O (1.7%), Cl⋯C/C⋯Cl (1.1%), F⋯F (0.9%), Cl⋯F/F⋯Cl (0.7%) and F⋯O/O⋯F (0.2%).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom et al., 2016) using (E)-1,3-diphenylprop-2-en-1-one as the main skeleton revealed 3314 hits. Six structures containing the (E)-1,3-diphenylprop-2-en-1-one framework with different substituents that are similar to the title compound were found, viz. 3-(3-chlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (VIDVEM; Sheshadri et al., 2018a), 3-(3-bromo-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (BIBWOB; Sheshadri et al., 2018b), (E)-3-(2-bromophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (LAPREB; Li et al., 2012), (E)-1-(3,5-difluorophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (KUZFOB; Huang et al., 2010), (E)-1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (LAQWUX; Escobar et al., 2012) and 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)-prop-2-en-1-one(MEGQOF; Butcher et al., 2006).
For these similar compounds, the dihedral angles between the two terminal benzene rings, which are linked by a –CO—CH=CH– enone bridge are 18.46 (7)° for VIDVEM, 17.91 (17)° for BIBWOB, 9.3 (2) and 19.4 (2)° (two crystallographically independent molecules) for LAPREB, 5.46 (2)° for KUZFOB, 26.59 (9)° for LAQWUX and 47.81 (6) and 50.18 (5)° (two crystallographically independent molecules) for MEGQOF. In the crystals of VIDVEM and BIBWOB, molecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs, and the dimers are further linked by other C—H⋯O hydrogen contacts, forming two-dimensional supramolecular structures. In the crystal of LAPREB, molecules are also linked through weak intermolecular C—H⋯O hydrogen bonds. The of KUZFOB is stabilized by intermolecular C—H⋯F hydrogen bonds.
5. Synthesis and crystallization
The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a,b). 1-(3,4-Dimethoxyphenyl)ethanone (0.01 mol) and 4-chloro-3-fluorobenzaldehyde (0.01 mol) were dissolved in 20 ml of methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 3 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol to get the title compound (m.p. 384–388 K).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The 4-chloro-3-fluorophenyl fragment was found to be disordered in a difference-Fourier map, and the F and H atoms at the meta positions of the benzene ring were treated as disordered over two sites with an occupancy ratio of 0.785 (3):0.215 (3).
details are summarized in Table 2Supporting information
CCDC reference: 1919577
https://doi.org/10.1107/S2056989019007783/is5515sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007783/is5515Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007783/is5515Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C17H14ClFO3 | F(000) = 664 |
Mr = 320.73 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.9088 (13) Å | Cell parameters from 5099 reflections |
b = 5.7669 (5) Å | θ = 2.4–29.4° |
c = 17.9074 (15) Å | µ = 0.28 mm−1 |
β = 104.491 (2)° | T = 294 K |
V = 1490.7 (2) Å3 | Block, colourless |
Z = 4 | 0.45 × 0.37 × 0.30 mm |
Bruker APEXII CCD diffractometer | 3195 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.024 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | θmax = 30.0°, θmin = 1.6° |
Tmin = 0.884, Tmax = 0.921 | h = −19→20 |
16268 measured reflections | k = −8→7 |
4334 independent reflections | l = −25→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2421P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4334 reflections | Δρmax = 0.33 e Å−3 |
211 parameters | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.36793 (3) | 0.45137 (9) | 0.15399 (3) | 0.06876 (17) | |
F1 | 0.34304 (9) | 0.0254 (3) | 0.06801 (10) | 0.0765 (6) | 0.785 (3) |
F1A | 0.1946 (4) | 0.5065 (11) | 0.2007 (4) | 0.094 (2) | 0.215 (3) |
O1 | −0.44876 (7) | −0.2364 (2) | 0.18315 (7) | 0.0525 (3) | |
O2 | −0.42868 (8) | −0.5737 (2) | 0.09682 (7) | 0.0534 (3) | |
O3 | −0.11186 (9) | −0.4829 (2) | 0.04648 (8) | 0.0690 (4) | |
C1 | −0.21547 (10) | −0.0994 (3) | 0.16131 (8) | 0.0438 (3) | |
H1 | −0.168526 | 0.009416 | 0.177135 | 0.053* | |
C2 | −0.29625 (10) | −0.0816 (3) | 0.18676 (8) | 0.0439 (3) | |
H2 | −0.302640 | 0.038463 | 0.219715 | 0.053* | |
C3 | −0.36666 (9) | −0.2405 (2) | 0.16343 (8) | 0.0388 (3) | |
C4 | −0.35591 (9) | −0.4244 (2) | 0.11467 (7) | 0.0392 (3) | |
C5 | −0.27631 (10) | −0.4408 (2) | 0.08964 (8) | 0.0412 (3) | |
H5 | −0.269807 | −0.561469 | 0.056957 | 0.049* | |
C6 | −0.20461 (9) | −0.2784 (2) | 0.11254 (8) | 0.0400 (3) | |
C7 | −0.11934 (10) | −0.3123 (3) | 0.08476 (9) | 0.0462 (3) | |
C8 | −0.04346 (11) | −0.1412 (3) | 0.10561 (9) | 0.0514 (4) | |
H8 | −0.050846 | −0.012603 | 0.134851 | 0.062* | |
C9 | 0.03440 (10) | −0.1648 (3) | 0.08409 (9) | 0.0468 (3) | |
H9 | 0.038821 | −0.294198 | 0.054228 | 0.056* | |
C10 | 0.11470 (10) | −0.0096 (3) | 0.10207 (8) | 0.0437 (3) | |
C11 | 0.19219 (11) | −0.0652 (3) | 0.07626 (9) | 0.0495 (4) | |
H11 | 0.192714 | −0.199152 | 0.047458 | 0.059* | |
C12 | 0.26843 (10) | 0.0782 (3) | 0.09329 (9) | 0.0503 (4) | |
H12A | 0.319949 | 0.038662 | 0.075551 | 0.060* | 0.215 (3) |
C13 | 0.27083 (10) | 0.2763 (3) | 0.13536 (9) | 0.0484 (3) | |
C14 | 0.19390 (13) | 0.3344 (3) | 0.16078 (11) | 0.0613 (4) | |
H14 | 0.194093 | 0.469027 | 0.189426 | 0.074* | 0.785 (3) |
C15 | 0.11650 (12) | 0.1938 (3) | 0.14396 (11) | 0.0597 (4) | |
H15 | 0.064721 | 0.235966 | 0.160943 | 0.072* | |
C16 | −0.46843 (13) | −0.0410 (3) | 0.22426 (11) | 0.0599 (4) | |
H16A | −0.531649 | −0.047899 | 0.227596 | 0.090* | |
H16B | −0.458981 | 0.098166 | 0.197789 | 0.090* | |
H16C | −0.428007 | −0.040654 | 0.275248 | 0.090* | |
C17 | −0.43044 (13) | −0.7381 (3) | 0.03698 (10) | 0.0576 (4) | |
H17A | −0.487558 | −0.823211 | 0.026665 | 0.086* | |
H17B | −0.379347 | −0.843355 | 0.052900 | 0.086* | |
H17C | −0.425610 | −0.658282 | −0.008901 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0483 (3) | 0.0636 (3) | 0.0962 (4) | −0.01829 (19) | 0.0215 (2) | −0.0083 (2) |
F1 | 0.0457 (8) | 0.0828 (11) | 0.1146 (12) | −0.0100 (6) | 0.0454 (8) | −0.0308 (8) |
F1A | 0.075 (4) | 0.081 (4) | 0.137 (5) | −0.023 (3) | 0.048 (4) | −0.061 (4) |
O1 | 0.0380 (5) | 0.0559 (7) | 0.0690 (7) | −0.0088 (5) | 0.0234 (5) | −0.0118 (5) |
O2 | 0.0445 (6) | 0.0533 (7) | 0.0650 (6) | −0.0199 (5) | 0.0186 (5) | −0.0151 (5) |
O3 | 0.0533 (7) | 0.0692 (8) | 0.0944 (9) | −0.0154 (6) | 0.0372 (7) | −0.0334 (7) |
C1 | 0.0334 (7) | 0.0433 (7) | 0.0550 (8) | −0.0086 (5) | 0.0120 (6) | −0.0064 (6) |
C2 | 0.0380 (7) | 0.0425 (7) | 0.0519 (7) | −0.0042 (6) | 0.0128 (6) | −0.0098 (6) |
C3 | 0.0314 (6) | 0.0423 (7) | 0.0430 (6) | −0.0021 (5) | 0.0101 (5) | 0.0017 (5) |
C4 | 0.0337 (6) | 0.0398 (7) | 0.0429 (6) | −0.0075 (5) | 0.0075 (5) | −0.0002 (5) |
C5 | 0.0388 (7) | 0.0416 (7) | 0.0441 (7) | −0.0053 (5) | 0.0120 (6) | −0.0054 (5) |
C6 | 0.0333 (6) | 0.0432 (7) | 0.0442 (6) | −0.0045 (5) | 0.0111 (5) | −0.0013 (5) |
C7 | 0.0371 (7) | 0.0517 (8) | 0.0523 (7) | −0.0063 (6) | 0.0158 (6) | −0.0053 (6) |
C8 | 0.0404 (7) | 0.0550 (9) | 0.0635 (9) | −0.0096 (7) | 0.0215 (7) | −0.0107 (7) |
C9 | 0.0376 (7) | 0.0530 (9) | 0.0522 (7) | −0.0065 (6) | 0.0159 (6) | −0.0045 (6) |
C10 | 0.0359 (7) | 0.0507 (8) | 0.0471 (7) | −0.0039 (6) | 0.0153 (6) | −0.0011 (6) |
C11 | 0.0406 (8) | 0.0534 (9) | 0.0586 (8) | −0.0035 (6) | 0.0197 (6) | −0.0116 (7) |
C12 | 0.0349 (7) | 0.0591 (9) | 0.0614 (8) | −0.0020 (6) | 0.0206 (6) | −0.0032 (7) |
C13 | 0.0387 (7) | 0.0510 (8) | 0.0569 (8) | −0.0088 (6) | 0.0147 (6) | −0.0008 (6) |
C14 | 0.0558 (10) | 0.0581 (10) | 0.0773 (11) | −0.0098 (8) | 0.0305 (9) | −0.0195 (9) |
C15 | 0.0465 (9) | 0.0625 (10) | 0.0807 (11) | −0.0084 (7) | 0.0360 (8) | −0.0177 (8) |
C16 | 0.0514 (9) | 0.0636 (11) | 0.0738 (11) | −0.0024 (8) | 0.0328 (8) | −0.0113 (8) |
C17 | 0.0550 (9) | 0.0507 (9) | 0.0636 (9) | −0.0141 (7) | 0.0082 (7) | −0.0145 (7) |
Cl1—C13 | 1.7278 (15) | C8—H8 | 0.9300 |
F1—C12 | 1.3367 (18) | C9—C10 | 1.465 (2) |
F1A—C14 | 1.222 (5) | C9—H9 | 0.9300 |
O1—C3 | 1.3565 (16) | C10—C11 | 1.3851 (19) |
O1—C16 | 1.416 (2) | C10—C15 | 1.389 (2) |
O2—C4 | 1.3590 (16) | C11—C12 | 1.376 (2) |
O2—C17 | 1.4259 (19) | C11—H11 | 0.9300 |
O3—C7 | 1.2202 (19) | C12—C13 | 1.364 (2) |
C1—C6 | 1.3876 (19) | C12—H12A | 0.9300 |
C1—C2 | 1.3940 (19) | C13—C14 | 1.377 (2) |
C1—H1 | 0.9300 | C14—C15 | 1.381 (2) |
C2—C3 | 1.3772 (19) | C14—H14 | 0.9300 |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.4082 (19) | C16—H16A | 0.9600 |
C4—C5 | 1.3727 (19) | C16—H16B | 0.9600 |
C5—C6 | 1.4028 (19) | C16—H16C | 0.9600 |
C5—H5 | 0.9300 | C17—H17A | 0.9600 |
C6—C7 | 1.4893 (19) | C17—H17B | 0.9600 |
C7—C8 | 1.477 (2) | C17—H17C | 0.9600 |
C8—C9 | 1.319 (2) | ||
C3—O1—C16 | 117.83 (12) | C12—C11—C10 | 119.90 (14) |
C4—O2—C17 | 117.47 (12) | C12—C11—H11 | 120.1 |
C6—C1—C2 | 120.47 (13) | C10—C11—H11 | 120.1 |
C6—C1—H1 | 119.8 | F1—C12—C13 | 117.94 (14) |
C2—C1—H1 | 119.8 | F1—C12—C11 | 119.95 (15) |
C3—C2—C1 | 120.46 (13) | C13—C12—C11 | 122.11 (14) |
C3—C2—H2 | 119.8 | C13—C12—H12A | 118.9 |
C1—C2—H2 | 119.8 | C11—C12—H12A | 118.9 |
O1—C3—C2 | 125.34 (13) | C12—C13—C14 | 118.53 (14) |
O1—C3—C4 | 115.13 (12) | C12—C13—Cl1 | 120.07 (12) |
C2—C3—C4 | 119.53 (12) | C14—C13—Cl1 | 121.38 (13) |
O2—C4—C5 | 125.75 (13) | F1A—C14—C13 | 120.4 (3) |
O2—C4—C3 | 114.52 (12) | F1A—C14—C15 | 119.3 (3) |
C5—C4—C3 | 119.73 (12) | C13—C14—C15 | 120.31 (16) |
C4—C5—C6 | 121.10 (13) | C13—C14—H14 | 119.8 |
C4—C5—H5 | 119.5 | C15—C14—H14 | 119.8 |
C6—C5—H5 | 119.5 | C14—C15—C10 | 121.06 (14) |
C1—C6—C5 | 118.69 (12) | C14—C15—H15 | 119.5 |
C1—C6—C7 | 123.47 (12) | C10—C15—H15 | 119.5 |
C5—C6—C7 | 117.82 (12) | O1—C16—H16A | 109.5 |
O3—C7—C8 | 120.58 (13) | O1—C16—H16B | 109.5 |
O3—C7—C6 | 119.93 (13) | H16A—C16—H16B | 109.5 |
C8—C7—C6 | 119.47 (13) | O1—C16—H16C | 109.5 |
C9—C8—C7 | 122.13 (15) | H16A—C16—H16C | 109.5 |
C9—C8—H8 | 118.9 | H16B—C16—H16C | 109.5 |
C7—C8—H8 | 118.9 | O2—C17—H17A | 109.5 |
C8—C9—C10 | 127.13 (15) | O2—C17—H17B | 109.5 |
C8—C9—H9 | 116.4 | H17A—C17—H17B | 109.5 |
C10—C9—H9 | 116.4 | O2—C17—H17C | 109.5 |
C11—C10—C15 | 118.09 (14) | H17A—C17—H17C | 109.5 |
C11—C10—C9 | 119.29 (14) | H17B—C17—H17C | 109.5 |
C15—C10—C9 | 122.62 (13) | ||
C6—C1—C2—C3 | −0.4 (2) | O3—C7—C8—C9 | 0.0 (3) |
C16—O1—C3—C2 | 7.1 (2) | C6—C7—C8—C9 | 178.49 (15) |
C16—O1—C3—C4 | −172.50 (14) | C7—C8—C9—C10 | −179.00 (15) |
C1—C2—C3—O1 | −178.37 (14) | C8—C9—C10—C11 | 178.22 (17) |
C1—C2—C3—C4 | 1.2 (2) | C8—C9—C10—C15 | −2.1 (3) |
C17—O2—C4—C5 | −11.5 (2) | C15—C10—C11—C12 | 0.9 (3) |
C17—O2—C4—C3 | 168.72 (13) | C9—C10—C11—C12 | −179.46 (15) |
O1—C3—C4—O2 | −1.91 (18) | C10—C11—C12—F1 | −179.59 (16) |
C2—C3—C4—O2 | 178.50 (13) | C10—C11—C12—C13 | 0.0 (3) |
O1—C3—C4—C5 | 178.26 (13) | F1—C12—C13—C14 | 179.06 (17) |
C2—C3—C4—C5 | −1.3 (2) | C11—C12—C13—C14 | −0.6 (3) |
O2—C4—C5—C6 | −179.07 (13) | F1—C12—C13—Cl1 | 0.4 (2) |
C3—C4—C5—C6 | 0.7 (2) | C11—C12—C13—Cl1 | −179.23 (14) |
C2—C1—C6—C5 | −0.2 (2) | C12—C13—C14—F1A | 177.6 (5) |
C2—C1—C6—C7 | −178.27 (14) | Cl1—C13—C14—F1A | −3.8 (5) |
C4—C5—C6—C1 | 0.0 (2) | C12—C13—C14—C15 | 0.2 (3) |
C4—C5—C6—C7 | 178.21 (13) | Cl1—C13—C14—C15 | 178.81 (15) |
C1—C6—C7—O3 | 174.71 (16) | F1A—C14—C15—C10 | −176.7 (5) |
C5—C6—C7—O3 | −3.4 (2) | C13—C14—C15—C10 | 0.8 (3) |
C1—C6—C7—C8 | −3.8 (2) | C11—C10—C15—C14 | −1.3 (3) |
C5—C6—C7—C8 | 178.12 (14) | C9—C10—C15—C14 | 179.08 (17) |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O3i | 0.93 | 2.57 | 3.426 (2) | 152 |
C2—H2···Cg1ii | 0.93 | 2.81 | 3.5832 (16) | 142 |
Symmetry codes: (i) −x, −y−1, −z; (ii) −x−1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935–938. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063–1066. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shetty, T. C. S., Chidan Kumar, C. S., Patel, K. N. G., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317. Google Scholar
Shetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B122, 205–213. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625–636. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.