research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluoro­phen­yl)-1-(3,4-di­meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, GSSS Institute of Engineering & Technology for Women, Mysuru 570016, Karnataka, India, cDepartment of Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India, and dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by H. Ishida, Okayama University, Japan (Received 6 May 2019; accepted 29 May 2019; online 4 June 2019)

The mol­ecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluoro­phenyl ring and a 3,4-di­meth­oxy­phenyl ring linked via a prop-2-en-1-one spacer. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluoro­phenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, mol­ecules are linked via pairs of C—H⋯O inter­actions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10[\overline{1}]] by a C—H⋯π inter­action. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%).

1. Chemical context

Chalcones, compounds with a 1,3-di­phenyl­prop-2-en-1-one framework, are considered to be the precursors of flavonoids and isoflavonoids, which are abundant in edible plants. These compounds are coloured via the –CO—CH=CH– chromophore and other auxochromes. Chalcones attract significant attention because of their availability of high optical non-linearities arising from the delocalization of π-conjugated electron clouds throughout the chalcone system, which provides a large charge-transfer axis with appropriate substituents on the terminal aromatic rings. π-conjugated systems have been studied extensively for their optoelectronic properties (Shetty et al., 2016[Shetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B122, 205-213.], 2017[Shetty, T. C. S., Chidan Kumar, C. S., Patel, K. N. G., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306-317.]) because of the possibility of developing low-cost, large-area and flexible electronic devices. In view of all the above and in a continuation of our previous work on 3,4-dimeth­oxy chalcones (Sheshadri et al., 2018a[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935-938.],b[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063-1066.]), we report herein the crystal and mol­ecular structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is composed of two aromatic rings, 4-chloro-3-fluoro­phenyl and 3,4-di­meth­oxy­phenyl, which are linked by a –CO—CH=CH– enone bridge. The mol­ecule is approximately planar as indicated by the torsion angles C1—C6—C7—O3 = 174.71 (16)°, C1—C6—C7—C8 = −3.8 (2)°, C6—C7—C8—C9 = 178.49 (15)°, O3—C7—C8—C9 = 0.0 (3)°, C8—C9—C10—C11 = 178.22 (17)° and C7—C8—C9—C10 = −179.00 (15)°. The dihedral angle between the 4-chloro-3-fluoro­phenyl and 3,4-di­meth­oxy­phenyl rings is 5.40 (7)°. The H atoms of the central propenone group are trans configured. The two meth­oxy groups attached to atoms C3 and C4 are almost coplanar with the benzene ring, with deviations of 0.214 (2) Å for C16 and 0.209 (2) Å for C17. The 4-chloro-3-fluoro­phenyl fragment is disordered over two orientations around the C9—C10 bond axis, with an occupancy ratio of 0.785 (3):0.215 (3).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected into inversion dimers with an R22(14) ring motif (Fig. 2[link]) via pairs of C—H⋯O inter­actions (Table 1[link]). The dimers are further linked by a C—H⋯π inter­action (Table 1[link]), forming a tape structure along [10[\overline{1}]] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.93 2.57 3.426 (2) 152
C2—H2⋯Cg1ii 0.93 2.81 3.5832 (16) 142
Symmetry codes: (i) -x, -y-1, -z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the a axis, showing mol­ecular dimers formed by the inter­molecular C—H⋯O hydrogen bonds (dashed lines). The minor disorder component and H atoms not involved in the hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the a axis, showing inter­molecular C—H⋯O and C—H⋯π inter­actions (dashed lines). The minor disorder component and H atoms not involved in the hydrogen bonds are omitted for clarity.

The Hirshfeld surface and two-dimensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au]). In the Hirshfeld surface plotted over dnorm (Fig. 4[link]), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625-636.]). The overall two-dimensional fingerprint plot and those delineated into H⋯H (25.0%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%) contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]ah, respectively. The small percentage contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯O/O⋯Cl (2.7%), O⋯C/C⋯O (1.7%), Cl⋯C/C⋯Cl (1.1%), F⋯F (0.9%), Cl⋯F/F⋯Cl (0.7%) and F⋯O/O⋯F (0.2%).

[Figure 4]
Figure 4
Plot of dnorm mapped on the Hirshfeld surfaces of the title compound showing the short H⋯O contacts.
[Figure 5]
Figure 5
Hirshfeld surface representations and the overall two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl, (f) F⋯H/H⋯F, (g) F⋯C/C⋯F and (h) C⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-1,3-di­phenyl­prop-2-en-1-one as the main skeleton revealed 3314 hits. Six structures containing the (E)-1,3-di­phenyl­prop-2-en-1-one framework with different substituents that are similar to the title compound were found, viz. 3-(3-chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (VIDVEM; Sheshadri et al., 2018a[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935-938.]), 3-(3-bromo-4-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (BIBWOB; Sheshadri et al., 2018b[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063-1066.]), (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (LAPREB; Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]), (E)-1-(3,5-di­fluoro­phen­yl)-3-(2,4-di­meth­oxy­phen­yl)prop-2-en-1-one (KUZFOB; Huang et al., 2010[Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (LAQWUX; Escobar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and 3-(3,4-di­meth­oxy­phen­yl)-1-(4-fluoro­phen­yl)-prop-2-en-1-one(MEGQOF; Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.]).

For these similar compounds, the dihedral angles between the two terminal benzene rings, which are linked by a –CO—CH=CH– enone bridge are 18.46 (7)° for VIDVEM, 17.91 (17)° for BIBWOB, 9.3 (2) and 19.4 (2)° (two crystallographically independent mol­ecules) for LAPREB, 5.46 (2)° for KUZFOB, 26.59 (9)° for LAQWUX and 47.81 (6) and 50.18 (5)° (two crystallographically independent mol­ecules) for MEGQOF. In the crystals of VIDVEM and BIBWOB, mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs, and the dimers are further linked by other C—H⋯O hydrogen contacts, forming two-dimensional supra­molecular structures. In the crystal of LAPREB, mol­ecules are also linked through weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure of KUZFOB is stabilized by inter­molecular C—H⋯F hydrogen bonds.

5. Synthesis and crystallization

The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707-12724.]). 1-(3,4-Di­meth­oxy­phen­yl)ethanone (0.01 mol) and 4-chloro-3-fluoro­benzaldehyde (0.01 mol) were dissolved in 20 ml of methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 3 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol to get the title compound (m.p. 384–388 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The 4-chloro-3-fluoro­phenyl fragment was found to be disordered in a difference-Fourier map, and the F and H atoms at the meta positions of the benzene ring were treated as disordered over two sites with an occupancy ratio of 0.785 (3):0.215 (3).

Table 2
Experimental details

Crystal data
Chemical formula C17H14ClFO3
Mr 320.73
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 14.9088 (13), 5.7669 (5), 17.9074 (15)
β (°) 104.491 (2)
V3) 1490.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.45 × 0.37 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.884, 0.921
No. of measured, independent and observed [I > 2σ(I)] reflections 16268, 4334, 3195
Rint 0.024
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.05
No. of reflections 4334
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-3-(4-Chloro-3-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H14ClFO3F(000) = 664
Mr = 320.73Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.9088 (13) ÅCell parameters from 5099 reflections
b = 5.7669 (5) Åθ = 2.4–29.4°
c = 17.9074 (15) ŵ = 0.28 mm1
β = 104.491 (2)°T = 294 K
V = 1490.7 (2) Å3Block, colourless
Z = 40.45 × 0.37 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
3195 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
θmax = 30.0°, θmin = 1.6°
Tmin = 0.884, Tmax = 0.921h = 1920
16268 measured reflectionsk = 87
4334 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2421P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4334 reflectionsΔρmax = 0.33 e Å3
211 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.36793 (3)0.45137 (9)0.15399 (3)0.06876 (17)
F10.34304 (9)0.0254 (3)0.06801 (10)0.0765 (6)0.785 (3)
F1A0.1946 (4)0.5065 (11)0.2007 (4)0.094 (2)0.215 (3)
O10.44876 (7)0.2364 (2)0.18315 (7)0.0525 (3)
O20.42868 (8)0.5737 (2)0.09682 (7)0.0534 (3)
O30.11186 (9)0.4829 (2)0.04648 (8)0.0690 (4)
C10.21547 (10)0.0994 (3)0.16131 (8)0.0438 (3)
H10.1685260.0094160.1771350.053*
C20.29625 (10)0.0816 (3)0.18676 (8)0.0439 (3)
H20.3026400.0384630.2197150.053*
C30.36666 (9)0.2405 (2)0.16343 (8)0.0388 (3)
C40.35591 (9)0.4244 (2)0.11467 (7)0.0392 (3)
C50.27631 (10)0.4408 (2)0.08964 (8)0.0412 (3)
H50.2698070.5614690.0569570.049*
C60.20461 (9)0.2784 (2)0.11254 (8)0.0400 (3)
C70.11934 (10)0.3123 (3)0.08476 (9)0.0462 (3)
C80.04346 (11)0.1412 (3)0.10561 (9)0.0514 (4)
H80.0508460.0126030.1348510.062*
C90.03440 (10)0.1648 (3)0.08409 (9)0.0468 (3)
H90.0388210.2941980.0542280.056*
C100.11470 (10)0.0096 (3)0.10207 (8)0.0437 (3)
C110.19219 (11)0.0652 (3)0.07626 (9)0.0495 (4)
H110.1927140.1991520.0474580.059*
C120.26843 (10)0.0782 (3)0.09329 (9)0.0503 (4)
H12A0.3199490.0386620.0755510.060*0.215 (3)
C130.27083 (10)0.2763 (3)0.13536 (9)0.0484 (3)
C140.19390 (13)0.3344 (3)0.16078 (11)0.0613 (4)
H140.1940930.4690270.1894260.074*0.785 (3)
C150.11650 (12)0.1938 (3)0.14396 (11)0.0597 (4)
H150.0647210.2359660.1609430.072*
C160.46843 (13)0.0410 (3)0.22426 (11)0.0599 (4)
H16A0.5316490.0478990.2275960.090*
H16B0.4589810.0981660.1977890.090*
H16C0.4280070.0406540.2752480.090*
C170.43044 (13)0.7381 (3)0.03698 (10)0.0576 (4)
H17A0.4875580.8232110.0266650.086*
H17B0.3793470.8433550.0529000.086*
H17C0.4256100.6582820.0089010.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0483 (3)0.0636 (3)0.0962 (4)0.01829 (19)0.0215 (2)0.0083 (2)
F10.0457 (8)0.0828 (11)0.1146 (12)0.0100 (6)0.0454 (8)0.0308 (8)
F1A0.075 (4)0.081 (4)0.137 (5)0.023 (3)0.048 (4)0.061 (4)
O10.0380 (5)0.0559 (7)0.0690 (7)0.0088 (5)0.0234 (5)0.0118 (5)
O20.0445 (6)0.0533 (7)0.0650 (6)0.0199 (5)0.0186 (5)0.0151 (5)
O30.0533 (7)0.0692 (8)0.0944 (9)0.0154 (6)0.0372 (7)0.0334 (7)
C10.0334 (7)0.0433 (7)0.0550 (8)0.0086 (5)0.0120 (6)0.0064 (6)
C20.0380 (7)0.0425 (7)0.0519 (7)0.0042 (6)0.0128 (6)0.0098 (6)
C30.0314 (6)0.0423 (7)0.0430 (6)0.0021 (5)0.0101 (5)0.0017 (5)
C40.0337 (6)0.0398 (7)0.0429 (6)0.0075 (5)0.0075 (5)0.0002 (5)
C50.0388 (7)0.0416 (7)0.0441 (7)0.0053 (5)0.0120 (6)0.0054 (5)
C60.0333 (6)0.0432 (7)0.0442 (6)0.0045 (5)0.0111 (5)0.0013 (5)
C70.0371 (7)0.0517 (8)0.0523 (7)0.0063 (6)0.0158 (6)0.0053 (6)
C80.0404 (7)0.0550 (9)0.0635 (9)0.0096 (7)0.0215 (7)0.0107 (7)
C90.0376 (7)0.0530 (9)0.0522 (7)0.0065 (6)0.0159 (6)0.0045 (6)
C100.0359 (7)0.0507 (8)0.0471 (7)0.0039 (6)0.0153 (6)0.0011 (6)
C110.0406 (8)0.0534 (9)0.0586 (8)0.0035 (6)0.0197 (6)0.0116 (7)
C120.0349 (7)0.0591 (9)0.0614 (8)0.0020 (6)0.0206 (6)0.0032 (7)
C130.0387 (7)0.0510 (8)0.0569 (8)0.0088 (6)0.0147 (6)0.0008 (6)
C140.0558 (10)0.0581 (10)0.0773 (11)0.0098 (8)0.0305 (9)0.0195 (9)
C150.0465 (9)0.0625 (10)0.0807 (11)0.0084 (7)0.0360 (8)0.0177 (8)
C160.0514 (9)0.0636 (11)0.0738 (11)0.0024 (8)0.0328 (8)0.0113 (8)
C170.0550 (9)0.0507 (9)0.0636 (9)0.0141 (7)0.0082 (7)0.0145 (7)
Geometric parameters (Å, º) top
Cl1—C131.7278 (15)C8—H80.9300
F1—C121.3367 (18)C9—C101.465 (2)
F1A—C141.222 (5)C9—H90.9300
O1—C31.3565 (16)C10—C111.3851 (19)
O1—C161.416 (2)C10—C151.389 (2)
O2—C41.3590 (16)C11—C121.376 (2)
O2—C171.4259 (19)C11—H110.9300
O3—C71.2202 (19)C12—C131.364 (2)
C1—C61.3876 (19)C12—H12A0.9300
C1—C21.3940 (19)C13—C141.377 (2)
C1—H10.9300C14—C151.381 (2)
C2—C31.3772 (19)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.4082 (19)C16—H16A0.9600
C4—C51.3727 (19)C16—H16B0.9600
C5—C61.4028 (19)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.4893 (19)C17—H17B0.9600
C7—C81.477 (2)C17—H17C0.9600
C8—C91.319 (2)
C3—O1—C16117.83 (12)C12—C11—C10119.90 (14)
C4—O2—C17117.47 (12)C12—C11—H11120.1
C6—C1—C2120.47 (13)C10—C11—H11120.1
C6—C1—H1119.8F1—C12—C13117.94 (14)
C2—C1—H1119.8F1—C12—C11119.95 (15)
C3—C2—C1120.46 (13)C13—C12—C11122.11 (14)
C3—C2—H2119.8C13—C12—H12A118.9
C1—C2—H2119.8C11—C12—H12A118.9
O1—C3—C2125.34 (13)C12—C13—C14118.53 (14)
O1—C3—C4115.13 (12)C12—C13—Cl1120.07 (12)
C2—C3—C4119.53 (12)C14—C13—Cl1121.38 (13)
O2—C4—C5125.75 (13)F1A—C14—C13120.4 (3)
O2—C4—C3114.52 (12)F1A—C14—C15119.3 (3)
C5—C4—C3119.73 (12)C13—C14—C15120.31 (16)
C4—C5—C6121.10 (13)C13—C14—H14119.8
C4—C5—H5119.5C15—C14—H14119.8
C6—C5—H5119.5C14—C15—C10121.06 (14)
C1—C6—C5118.69 (12)C14—C15—H15119.5
C1—C6—C7123.47 (12)C10—C15—H15119.5
C5—C6—C7117.82 (12)O1—C16—H16A109.5
O3—C7—C8120.58 (13)O1—C16—H16B109.5
O3—C7—C6119.93 (13)H16A—C16—H16B109.5
C8—C7—C6119.47 (13)O1—C16—H16C109.5
C9—C8—C7122.13 (15)H16A—C16—H16C109.5
C9—C8—H8118.9H16B—C16—H16C109.5
C7—C8—H8118.9O2—C17—H17A109.5
C8—C9—C10127.13 (15)O2—C17—H17B109.5
C8—C9—H9116.4H17A—C17—H17B109.5
C10—C9—H9116.4O2—C17—H17C109.5
C11—C10—C15118.09 (14)H17A—C17—H17C109.5
C11—C10—C9119.29 (14)H17B—C17—H17C109.5
C15—C10—C9122.62 (13)
C6—C1—C2—C30.4 (2)O3—C7—C8—C90.0 (3)
C16—O1—C3—C27.1 (2)C6—C7—C8—C9178.49 (15)
C16—O1—C3—C4172.50 (14)C7—C8—C9—C10179.00 (15)
C1—C2—C3—O1178.37 (14)C8—C9—C10—C11178.22 (17)
C1—C2—C3—C41.2 (2)C8—C9—C10—C152.1 (3)
C17—O2—C4—C511.5 (2)C15—C10—C11—C120.9 (3)
C17—O2—C4—C3168.72 (13)C9—C10—C11—C12179.46 (15)
O1—C3—C4—O21.91 (18)C10—C11—C12—F1179.59 (16)
C2—C3—C4—O2178.50 (13)C10—C11—C12—C130.0 (3)
O1—C3—C4—C5178.26 (13)F1—C12—C13—C14179.06 (17)
C2—C3—C4—C51.3 (2)C11—C12—C13—C140.6 (3)
O2—C4—C5—C6179.07 (13)F1—C12—C13—Cl10.4 (2)
C3—C4—C5—C60.7 (2)C11—C12—C13—Cl1179.23 (14)
C2—C1—C6—C50.2 (2)C12—C13—C14—F1A177.6 (5)
C2—C1—C6—C7178.27 (14)Cl1—C13—C14—F1A3.8 (5)
C4—C5—C6—C10.0 (2)C12—C13—C14—C150.2 (3)
C4—C5—C6—C7178.21 (13)Cl1—C13—C14—C15178.81 (15)
C1—C6—C7—O3174.71 (16)F1A—C14—C15—C10176.7 (5)
C5—C6—C7—O33.4 (2)C13—C14—C15—C100.8 (3)
C1—C6—C7—C83.8 (2)C11—C10—C15—C141.3 (3)
C5—C6—C7—C8178.12 (14)C9—C10—C15—C14179.08 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.573.426 (2)152
C2—H2···Cg1ii0.932.813.5832 (16)142
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018a). Acta Cryst. E74, 935–938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Atioğlu, Z., Akkurt, M., Veeraiah, M. K., Quah, C. K., Chidan Kumar, C. S. & Siddaraju, B. P. (2018b). Acta Cryst. E74, 1063–1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShetty, T. C. S., Chidan Kumar, C. S., Patel, K. N. G., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.  Google Scholar
First citationShetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B122, 205–213.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta, A153, 625–636.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds