research communications
N-(diphenylphosphoryl)-2-methoxybenzamide
ofaDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, str. 64, 01601 Kyiv, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: natalia_kariaka@i.ua
In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacylamidophosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intramolecular hydrogen bond. In the crystal, molecules do not form strong intermolecular interactions but the molecules are linked via weak C—H⋯π interactions, forming chains along [001].
Keywords: crystal structure; carbacylamidophosphate.
CCDC reference: 1918613
1. Chemical context
P,N-substituted analogues of β-diketones, carbacylamidophosphates (CAPh) (Amirkhanov et al., 2014) that contain a C(O)NHP(O) structural fragment are known for their wide range of biological activity (Adams et al., 2002; Grimes et al., 2008; Grynyuk et al., 2016). They act as powerful chelating ligands (Skopenko et al., 2004; Amirkhanov et al., 2014) and as lanthanide luminescence sensitizers (Kariaka et al., 2016; Pham et al., 2017; Kariaka et al., 2018). Thus, the syntheses and structure analysis of CAPhs are of increased interest and some structural and conformation studies of related CAPh type molecules were reported recently (Breuer et al., 1990; Amirkhanov et al., 1997; Milton et al., 2004a,b; Kariaka et al., 2014). Herein we report synthesis and of a new CAPh, N-(diphenylphosphoryl)-2-methoxybenzamide (I).
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The bonds lengths in the C(O)NHP(O) fragment are typical for CAPh type ligands. The C=O and P=O groups are located in a synclinal position relatively to each other as evidenced by the O1—P1—N1—C13 torsion angle of −45.5 (2)°, O2—C13—N1—P1 torsion angle of −2.7 (3)°, and the O1—P1⋯C13—O2 pseudo-torsion angle of −42.9 (2)°. As a result the CAPh fragment conformation is pre-organized for bidentate chelate coordination of metal ions.
The conjugation between the carbamide group and the anisole substituent is broken, as evidenced by the value of the C13—C14 bond length of 1.496 (3) Å, which is comparable to the mean value for non-conjugated Car—Csp2 bonds (1.488 Å; Burgi & Dunitz, 1994). At the same time, the anisole and carbamide fragments are slightly non-coplanar. The C19—C14—C13—N1 torsion angle is 13.6 (3)° despite the formation of the N1—H1⋯O3 strong enough hydrogen bond (the H1⋯O3 distance is 1.93 Å and the N1—H1⋯O3 angle is 137°; Table 1). The methyl group of the methoxy substituent lies in the plane of the attached benzene ring despite the significant steric repulsion [the shortened intramolecular contacts are: H20A⋯H18 = 2.26 Å (the sum of the vdW radii is 2.32 Å; Zefirov, 1997), H20C⋯H18 = 2.28 Å and C20⋯H18 = 2.48 Å (the sum of the vdW radii is 2.87 Å)]. The phosphorus atom environment has a distorted tetrahedral configuration. The C1–C6 phenyl ring is almost coplanar with the P=O bond [the C6—C1—P1—O1 torsion angle is −5.7 (2)°] while the C7–C12 phenyl ring is rotated significantly relatively to the P=O bond as defined by the C8—C7—P1—O1 torsion angle of −72.7 (2)°.
3. Supramolecular features
It has been shown that CAPhs display different solid-state motifs (Breuer et al., 1990; Amirkhanov et al.,1997; Milton et al., 2004a,b; Kariaka et al., 2014), i.e. chains, dimers and more seldom monomers. These motifs are realized through existence of hydrogen bonds with participation of the –N—H group. In crystal of (I), the –N—-H group participates in an intramolecular hydrogen bond. There are no strong proton donors capable of forming intermolecular hydrogen bonds in this molecule. Thus the title molecules form only weak C—H⋯π interactions leading to chains of molecules along the c-axis direction (Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for complexes containing CAPh ligands yielded 189 hits. In the CAPh fragments, the mean C=O bond length is 1.222 Å, the mean C—N bond length is 1.364 Å, the mean N—P bond length is 1.686 Å and the mean P=O bond length is 1.504 Å.
5. Synthesis and crystallization
N-(diphenylphosphoryl)-2-methoxybenzamide (I) was prepared according to a two-step reaction (Fig. 4).
To a solution of o-methoxybenzamide (1.51 g, 0.01 mol) and triethylamine (2.03 g, 2.8 ml, 0.02 mol) in 20 ml of dioxane was added chlorodiphenylphosphine (2.2 g, 1.79 ml, 0.01 mol) under an inert atmosphere. The mixture was stirred under reflux for 60 min and evaporated to dryness to give a pasty residue, which was mixed with 20 ml of acetone and then a solution of 0.01 mol of H2O2 in 5 ml of acetone was added dropwise under vigorous stirring at 273 K. The brownish solution was evaporated and the residue was mixed with 50 ml of 10% aqueous HOAc. The solid precipitate was filtered, washed with cold water (2 × 20 ml) and recrystallized from i-PrOH [2.8 g (80%)]. Single crystals suitable for X-ray diffraction were grown from dilute i-PrOH solution by slow evaporation after one week.
M.p. 431–434 K. IR (KBr pellet, cm−1): 3271m [ν(NH)], 3059w, 3011w, 2985w, 2949w, 2924w, 2843w, 1671vs [ν(CO)], 1601m, 1486w, 1461vs (Amide-II), 1436s, 1294m, 1242m, 1225vs [ν(PO)], 1181m, 1160w, 1125s, 1109m, 1045w, 1012m, 868w [(PN)], 840m, 786m, 767m, 754s, 726m, 702m, 668w, 634w, 592w, 543m, 524s, 512m, 487m, 442w. 1H NMR (DMSO-d6): C—H 3.95 (s, 3H), 7.07 (t, 1H), 7.22 (d, 1H), 7.58 (t, 7H), 7.67 (d, 1H), 7.88 (m, 4H), N—H 9.90 (d, 1H) ppm. UV–Vis abs. (CH2Cl2, λmax, nm): 240, 295.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (N—H = 0.86, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 1918613
https://doi.org/10.1107/S205698901900762X/lh5904sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901900762X/lh5904Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901900762X/lh5904Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H18NO3P | Dx = 1.322 Mg m−3 |
Mr = 351.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5505 reflections |
a = 8.317 (2) Å | θ = 3.2–30.6° |
b = 12.657 (2) Å | µ = 0.17 mm−1 |
c = 16.763 (3) Å | T = 294 K |
V = 1764.6 (6) Å3 | Block, colourless |
Z = 4 | 0.5 × 0.4 × 0.3 mm |
F(000) = 736 |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 5691 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4247 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 32.2°, θmin = 3.2° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −17→16 |
Tmin = 0.986, Tmax = 1.000 | l = −23→24 |
18281 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0551P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.23 e Å−3 |
5691 reflections | Δρmin = −0.32 e Å−3 |
227 parameters | Absolute structure: Flack x determined using 1430 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.01 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.75683 (6) | 0.34774 (4) | 0.68054 (3) | 0.03788 (14) | |
O1 | 0.8432 (2) | 0.33778 (15) | 0.75665 (10) | 0.0522 (4) | |
O2 | 0.8579 (2) | 0.57607 (14) | 0.70208 (11) | 0.0601 (5) | |
O3 | 0.8588 (2) | 0.48946 (15) | 0.46564 (10) | 0.0574 (5) | |
N1 | 0.8291 (2) | 0.43972 (14) | 0.61711 (11) | 0.0420 (4) | |
H1 | 0.839131 | 0.420776 | 0.568098 | 0.050* | |
C1 | 0.7720 (3) | 0.23277 (18) | 0.61801 (14) | 0.0454 (5) | |
C2 | 0.6930 (4) | 0.2254 (2) | 0.54479 (17) | 0.0585 (7) | |
H2 | 0.624578 | 0.279355 | 0.528470 | 0.070* | |
C3 | 0.7160 (4) | 0.1383 (3) | 0.4964 (2) | 0.0768 (10) | |
H3 | 0.665554 | 0.134563 | 0.447009 | 0.092* | |
C4 | 0.8138 (5) | 0.0571 (3) | 0.5216 (2) | 0.0815 (11) | |
H4 | 0.827802 | −0.001937 | 0.489292 | 0.098* | |
C5 | 0.8912 (5) | 0.0626 (3) | 0.5942 (2) | 0.0802 (10) | |
H5 | 0.956231 | 0.007064 | 0.610905 | 0.096* | |
C6 | 0.8722 (3) | 0.1509 (2) | 0.64224 (18) | 0.0591 (6) | |
H6 | 0.926469 | 0.155311 | 0.690643 | 0.071* | |
C7 | 0.5462 (3) | 0.37685 (18) | 0.69283 (13) | 0.0410 (5) | |
C8 | 0.4455 (3) | 0.2966 (2) | 0.72018 (16) | 0.0528 (6) | |
H8 | 0.486311 | 0.229064 | 0.728194 | 0.063* | |
C9 | 0.2844 (3) | 0.3171 (3) | 0.73552 (18) | 0.0653 (8) | |
H9 | 0.217061 | 0.262777 | 0.752171 | 0.078* | |
C10 | 0.2247 (3) | 0.4165 (3) | 0.72626 (17) | 0.0669 (8) | |
H10 | 0.117415 | 0.430192 | 0.738074 | 0.080* | |
C11 | 0.3223 (3) | 0.4969 (3) | 0.6995 (2) | 0.0706 (9) | |
H11 | 0.280930 | 0.564645 | 0.692976 | 0.085* | |
C12 | 0.4832 (3) | 0.4765 (2) | 0.68216 (19) | 0.0553 (6) | |
H12 | 0.548597 | 0.530641 | 0.663257 | 0.066* | |
C13 | 0.8734 (3) | 0.54108 (18) | 0.63499 (14) | 0.0405 (5) | |
C14 | 0.9427 (3) | 0.60615 (19) | 0.56888 (14) | 0.0417 (5) | |
C15 | 1.0164 (3) | 0.7003 (2) | 0.59123 (18) | 0.0557 (6) | |
H15 | 1.020894 | 0.718620 | 0.644915 | 0.067* | |
C16 | 1.0828 (4) | 0.7669 (3) | 0.5352 (3) | 0.0769 (10) | |
H16 | 1.130614 | 0.830077 | 0.550753 | 0.092* | |
C17 | 1.0775 (4) | 0.7386 (3) | 0.4553 (2) | 0.0814 (10) | |
H17 | 1.124742 | 0.782560 | 0.417536 | 0.098* | |
C18 | 1.0042 (4) | 0.6472 (3) | 0.43069 (19) | 0.0662 (7) | |
H18 | 0.999839 | 0.630235 | 0.376750 | 0.079* | |
C19 | 0.9367 (3) | 0.58040 (19) | 0.48673 (15) | 0.0460 (5) | |
C20 | 0.8551 (5) | 0.4599 (3) | 0.38290 (17) | 0.0768 (9) | |
H20A | 0.800672 | 0.513521 | 0.352765 | 0.115* | |
H20B | 0.799139 | 0.393959 | 0.377171 | 0.115* | |
H20C | 0.963101 | 0.452306 | 0.363487 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0406 (3) | 0.0420 (3) | 0.0310 (2) | −0.0018 (2) | 0.0008 (2) | 0.0024 (2) |
O1 | 0.0519 (8) | 0.0658 (11) | 0.0389 (8) | 0.0029 (8) | −0.0059 (7) | 0.0059 (8) |
O2 | 0.0794 (12) | 0.0568 (11) | 0.0442 (10) | −0.0133 (9) | 0.0112 (9) | −0.0149 (8) |
O3 | 0.0811 (12) | 0.0574 (11) | 0.0335 (9) | −0.0146 (9) | 0.0021 (9) | 0.0008 (8) |
N1 | 0.0548 (11) | 0.0402 (9) | 0.0311 (9) | −0.0092 (8) | 0.0059 (8) | −0.0012 (7) |
C1 | 0.0509 (12) | 0.0405 (11) | 0.0446 (12) | −0.0045 (9) | 0.0086 (10) | 0.0009 (9) |
C2 | 0.0654 (16) | 0.0594 (16) | 0.0508 (15) | −0.0080 (12) | 0.0012 (12) | −0.0084 (12) |
C3 | 0.089 (2) | 0.083 (2) | 0.0590 (18) | −0.0218 (19) | 0.0111 (16) | −0.0255 (16) |
C4 | 0.097 (3) | 0.0608 (19) | 0.086 (3) | −0.0094 (17) | 0.035 (2) | −0.0242 (18) |
C5 | 0.092 (2) | 0.0549 (17) | 0.094 (3) | 0.0149 (16) | 0.027 (2) | −0.0013 (17) |
C6 | 0.0638 (15) | 0.0519 (14) | 0.0616 (16) | 0.0086 (13) | 0.0087 (13) | 0.0025 (13) |
C7 | 0.0408 (10) | 0.0489 (12) | 0.0331 (11) | −0.0032 (8) | −0.0014 (8) | −0.0044 (9) |
C8 | 0.0548 (13) | 0.0565 (15) | 0.0469 (14) | −0.0089 (12) | 0.0052 (11) | 0.0011 (11) |
C9 | 0.0491 (14) | 0.095 (2) | 0.0517 (15) | −0.0219 (14) | 0.0053 (11) | −0.0048 (14) |
C10 | 0.0392 (13) | 0.104 (2) | 0.0573 (17) | 0.0016 (15) | −0.0015 (11) | −0.0209 (16) |
C11 | 0.0511 (15) | 0.076 (2) | 0.085 (2) | 0.0148 (14) | −0.0076 (15) | −0.0170 (17) |
C12 | 0.0454 (12) | 0.0560 (14) | 0.0646 (16) | −0.0004 (10) | −0.0037 (12) | 0.0033 (13) |
C13 | 0.0398 (10) | 0.0424 (12) | 0.0391 (11) | −0.0023 (9) | 0.0021 (9) | −0.0032 (9) |
C14 | 0.0362 (10) | 0.0422 (11) | 0.0466 (13) | −0.0018 (9) | 0.0011 (9) | 0.0036 (10) |
C15 | 0.0512 (13) | 0.0511 (14) | 0.0648 (17) | −0.0109 (11) | 0.0025 (12) | −0.0049 (12) |
C16 | 0.0706 (19) | 0.0583 (18) | 0.102 (3) | −0.0270 (15) | 0.0064 (18) | 0.0094 (17) |
C17 | 0.084 (2) | 0.078 (2) | 0.083 (3) | −0.0257 (18) | 0.0138 (19) | 0.0254 (19) |
C18 | 0.0763 (18) | 0.0690 (18) | 0.0532 (15) | −0.0094 (16) | 0.0102 (14) | 0.0132 (14) |
C19 | 0.0463 (12) | 0.0458 (13) | 0.0460 (13) | −0.0034 (10) | 0.0053 (10) | 0.0063 (10) |
C20 | 0.107 (3) | 0.086 (2) | 0.0374 (14) | −0.012 (2) | 0.0033 (16) | −0.0083 (14) |
P1—O1 | 1.4695 (17) | C8—C9 | 1.389 (4) |
P1—N1 | 1.6871 (19) | C9—H9 | 0.9300 |
P1—C1 | 1.798 (2) | C9—C10 | 1.361 (5) |
P1—C7 | 1.802 (2) | C10—H10 | 0.9300 |
O2—C13 | 1.215 (3) | C10—C11 | 1.377 (5) |
O3—C19 | 1.368 (3) | C11—H11 | 0.9300 |
O3—C20 | 1.437 (3) | C11—C12 | 1.394 (4) |
N1—H1 | 0.8600 | C12—H12 | 0.9300 |
N1—C13 | 1.368 (3) | C13—C14 | 1.496 (3) |
C1—C2 | 1.396 (4) | C14—C15 | 1.392 (3) |
C1—C6 | 1.391 (4) | C14—C19 | 1.416 (3) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C2—C3 | 1.382 (4) | C15—C16 | 1.377 (4) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.377 (5) | C16—C17 | 1.388 (5) |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C4—C5 | 1.378 (6) | C17—C18 | 1.371 (5) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.387 (4) | C18—C19 | 1.382 (4) |
C6—H6 | 0.9300 | C20—H20A | 0.9600 |
C7—C8 | 1.394 (3) | C20—H20B | 0.9600 |
C7—C12 | 1.378 (3) | C20—H20C | 0.9600 |
C8—H8 | 0.9300 | ||
O1—P1—N1 | 115.61 (10) | C9—C10—H10 | 119.8 |
O1—P1—C1 | 113.72 (11) | C9—C10—C11 | 120.3 (2) |
O1—P1—C7 | 113.17 (10) | C11—C10—H10 | 119.8 |
N1—P1—C1 | 99.56 (10) | C10—C11—H11 | 120.1 |
N1—P1—C7 | 106.09 (11) | C10—C11—C12 | 119.8 (3) |
C1—P1—C7 | 107.49 (11) | C12—C11—H11 | 120.1 |
C19—O3—C20 | 118.6 (2) | C7—C12—C11 | 120.5 (3) |
P1—N1—H1 | 116.4 | C7—C12—H12 | 119.7 |
C13—N1—P1 | 127.23 (16) | C11—C12—H12 | 119.7 |
C13—N1—H1 | 116.4 | O2—C13—N1 | 121.0 (2) |
C2—C1—P1 | 122.3 (2) | O2—C13—C14 | 121.7 (2) |
C6—C1—P1 | 118.4 (2) | N1—C13—C14 | 117.24 (19) |
C6—C1—C2 | 119.3 (2) | C15—C14—C13 | 116.2 (2) |
C1—C2—H2 | 119.9 | C15—C14—C19 | 118.3 (2) |
C3—C2—C1 | 120.3 (3) | C19—C14—C13 | 125.4 (2) |
C3—C2—H2 | 119.9 | C14—C15—H15 | 119.4 |
C2—C3—H3 | 120.1 | C16—C15—C14 | 121.1 (3) |
C4—C3—C2 | 119.9 (3) | C16—C15—H15 | 119.4 |
C4—C3—H3 | 120.1 | C15—C16—H16 | 120.4 |
C3—C4—H4 | 119.7 | C15—C16—C17 | 119.2 (3) |
C3—C4—C5 | 120.6 (3) | C17—C16—H16 | 120.4 |
C5—C4—H4 | 119.7 | C16—C17—H17 | 119.2 |
C4—C5—H5 | 120.0 | C18—C17—C16 | 121.5 (3) |
C4—C5—C6 | 120.0 (3) | C18—C17—H17 | 119.2 |
C6—C5—H5 | 120.0 | C17—C18—H18 | 120.3 |
C1—C6—H6 | 120.0 | C17—C18—C19 | 119.5 (3) |
C5—C6—C1 | 119.9 (3) | C19—C18—H18 | 120.3 |
C5—C6—H6 | 120.0 | O3—C19—C14 | 117.5 (2) |
C8—C7—P1 | 118.24 (19) | O3—C19—C18 | 122.1 (2) |
C12—C7—P1 | 122.82 (18) | C18—C19—C14 | 120.4 (2) |
C12—C7—C8 | 118.8 (2) | O3—C20—H20A | 109.5 |
C7—C8—H8 | 119.8 | O3—C20—H20B | 109.5 |
C9—C8—C7 | 120.3 (3) | O3—C20—H20C | 109.5 |
C9—C8—H8 | 119.8 | H20A—C20—H20B | 109.5 |
C8—C9—H9 | 119.9 | H20A—C20—H20C | 109.5 |
C10—C9—C8 | 120.2 (3) | H20B—C20—H20C | 109.5 |
C10—C9—H9 | 119.9 | ||
P1—N1—C13—O2 | −2.7 (3) | C3—C4—C5—C6 | −0.6 (5) |
P1—N1—C13—C14 | 176.74 (16) | C4—C5—C6—C1 | 1.5 (5) |
P1—C1—C2—C3 | 176.0 (2) | C6—C1—C2—C3 | −0.9 (4) |
P1—C1—C6—C5 | −177.8 (2) | C7—P1—N1—C13 | 80.8 (2) |
P1—C7—C8—C9 | 175.8 (2) | C7—P1—C1—C2 | 51.3 (2) |
P1—C7—C12—C11 | −174.1 (2) | C7—P1—C1—C6 | −131.8 (2) |
O1—P1—N1—C13 | −45.5 (2) | C7—C8—C9—C10 | −2.0 (4) |
O1—P1—C1—C2 | 177.4 (2) | C8—C7—C12—C11 | 0.9 (4) |
O1—P1—C1—C6 | −5.7 (2) | C8—C9—C10—C11 | 1.8 (4) |
O1—P1—C7—C8 | −72.7 (2) | C9—C10—C11—C12 | −0.3 (5) |
O1—P1—C7—C12 | 102.2 (2) | C10—C11—C12—C7 | −1.0 (5) |
O2—C13—C14—C15 | 12.0 (3) | C12—C7—C8—C9 | 0.6 (4) |
O2—C13—C14—C19 | −166.9 (2) | C13—C14—C15—C16 | −179.3 (2) |
N1—P1—C1—C2 | −59.0 (2) | C13—C14—C19—O3 | 1.2 (4) |
N1—P1—C1—C6 | 117.90 (19) | C13—C14—C19—C18 | 179.5 (2) |
N1—P1—C7—C8 | 159.47 (19) | C14—C15—C16—C17 | −0.8 (5) |
N1—P1—C7—C12 | −25.6 (2) | C15—C14—C19—O3 | −177.7 (2) |
N1—C13—C14—C15 | −167.5 (2) | C15—C14—C19—C18 | 0.6 (4) |
N1—C13—C14—C19 | 13.6 (3) | C15—C16—C17—C18 | 1.7 (6) |
C1—P1—N1—C13 | −167.8 (2) | C16—C17—C18—C19 | −1.4 (5) |
C1—P1—C7—C8 | 53.7 (2) | C17—C18—C19—O3 | 178.4 (3) |
C1—P1—C7—C12 | −131.3 (2) | C17—C18—C19—C14 | 0.2 (4) |
C1—C2—C3—C4 | 1.8 (5) | C19—C14—C15—C16 | −0.3 (4) |
C2—C1—C6—C5 | −0.7 (4) | C20—O3—C19—C14 | −178.1 (3) |
C2—C3—C4—C5 | −1.0 (5) | C20—O3—C19—C18 | 3.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.86 | 1.93 | 2.628 (2) | 137 |
C18—H18···Cgi | 0.93 | 2.99 | 3.864 (3) | 158 |
Symmetry code: (i) −x+3/2, −y+1, z−1/2. |
References
Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004–2005. Web of Science CrossRef Google Scholar
Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology ,ch. 7, edited by P. Gawryszewska & P. Smolenski, pp. 199–248. New York: Nova Science Publishers. Google Scholar
Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336. CrossRef CAS Google Scholar
Breuer, E., Schlossman, A., Safadi, M., Gibson, D., Chorev, M. & Leader, H. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 3263–3269. CSD CrossRef Web of Science Google Scholar
Burgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grynyuk, I. I., Prylutska, S. V., Franskevych, D. V., Trush, V. A., Sliva, T. Y., Slobodyanik, M. S., Hurmach, V. V., Prylutskyy, Y. I., Matyshevska, O. P. & Ritter, U. (2016). Mat.-Wiss. u. Werkstofftech. 47, 98–104. Web of Science CrossRef CAS Google Scholar
Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123–134. Web of Science CSD CrossRef CAS Google Scholar
Kariaka, N. S., Trush, V. A., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). J. Mol. Struct. 1068, 71–76. Web of Science CSD CrossRef CAS Google Scholar
Kariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108–115. Web of Science CSD CrossRef CAS Google Scholar
Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004a). Polyhedron, 23, 2575–2585. Web of Science CSD CrossRef CAS Google Scholar
Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004b). Polyhedron, 23, 3211–3220. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197–200. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Russ. Chem. Rev. 73, 737–752. CrossRef CAS Google Scholar
Zefirov, Y. V. (1997). Crystallogr. Rep. 42, 865–886. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.