research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(di­phenyl­phosphor­yl)-2-meth­­oxy­benzamide

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, str. 64, 01601 Kyiv, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: natalia_kariaka@i.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 1 May 2019; accepted 25 May 2019; online 4 June 2019)

In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacyl­amido­phosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intra­molecular hydrogen bond. In the crystal, mol­ecules do not form strong inter­molecular inter­actions but the mol­ecules are linked via weak C—H⋯π inter­actions, forming chains along [001].

1. Chemical context

P,N-substituted analogues of β-diketones, carbac­ylamido­phosphates (CAPh) (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology ,ch. 7, edited by P. Gawryszewska & P. Smolenski, pp. 199-248. New York: Nova Science Publishers.]) that contain a C(O)NHP(O) structural fragment are known for their wide range of biological activity (Adams et al., 2002[Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004-2005.]; Grimes et al., 2008[Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936-1945.]; Grynyuk et al., 2016[Grynyuk, I. I., Prylutska, S. V., Franskevych, D. V., Trush, V. A., Sliva, T. Y., Slobodyanik, M. S., Hurmach, V. V., Prylutskyy, Y. I., Matyshevska, O. P. & Ritter, U. (2016). Mat.-Wiss. u. Werkstofftech. 47, 98-104.]). They act as powerful chelating ligands (Skopenko et al., 2004[Skopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Russ. Chem. Rev. 73, 737-752.]; Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology ,ch. 7, edited by P. Gawryszewska & P. Smolenski, pp. 199-248. New York: Nova Science Publishers.]) and as lanthanide luminescence sensitizers (Kariaka et al., 2016[Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123-134.]; Pham et al., 2017[Pham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197-200.]; Kariaka et al., 2018[Kariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108-115.]). Thus, the syntheses and structure analysis of CAPhs are of increased inter­est and some structural and conformation studies of related CAPh type mol­ecules were reported recently (Breuer et al., 1990[Breuer, E., Schlossman, A., Safadi, M., Gibson, D., Chorev, M. & Leader, H. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 3263-3269.]; Amirkhanov et al., 1997[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331-1336.]; Milton et al., 2004a[Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004a). Polyhedron, 23, 2575-2585.],b[Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004b). Polyhedron, 23, 3211-3220.]; Kariaka et al., 2014[Kariaka, N. S., Trush, V. A., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). J. Mol. Struct. 1068, 71-76.]). Herein we report synthesis and crystal structure of a new CAPh, N-(di­phenyl­phosphor­yl)-2-meth­oxy­benzamide (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bonds lengths in the C(O)NHP(O) fragment are typical for CAPh type ligands. The C=O and P=O groups are located in a synclinal position relatively to each other as evidenced by the O1—P1—N1—C13 torsion angle of −45.5 (2)°, O2—C13—N1—P1 torsion angle of −2.7 (3)°, and the O1—P1⋯C13—O2 pseudo-torsion angle of −42.9 (2)°. As a result the CAPh fragment conformation is pre-organized for bidentate chelate coordination of metal ions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The conjugation between the carbamide group and the anisole substituent is broken, as evidenced by the value of the C13—C14 bond length of 1.496 (3) Å, which is comparable to the mean value for non-conjugated Car—Csp2 bonds (1.488 Å; Burgi & Dunitz, 1994[Burgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]). At the same time, the anisole and carbamide fragments are slightly non-coplanar. The C19—C14—C13—N1 torsion angle is 13.6 (3)° despite the formation of the N1—H1⋯O3 strong enough hydrogen bond (the H1⋯O3 distance is 1.93 Å and the N1—H1⋯O3 angle is 137°; Table 1[link]). The methyl group of the meth­oxy substituent lies in the plane of the attached benzene ring despite the significant steric repulsion [the shortened intra­molecular contacts are: H20A⋯H18 = 2.26 Å (the sum of the vdW radii is 2.32 Å; Zefirov, 1997[Zefirov, Y. V. (1997). Crystallogr. Rep. 42, 865-886.]), H20C⋯H18 = 2.28 Å and C20⋯H18 = 2.48 Å (the sum of the vdW radii is 2.87 Å)]. The phospho­rus atom environment has a distorted tetra­hedral configuration. The C1–C6 phenyl ring is almost coplanar with the P=O bond [the C6—C1—P1—O1 torsion angle is −5.7 (2)°] while the C7–C12 phenyl ring is rotated significantly relatively to the P=O bond as defined by the C8—C7—P1—O1 torsion angle of −72.7 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.93 2.628 (2) 137
C18—H18⋯Cgi 0.93 2.99 3.864 (3) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

3. Supra­molecular features

It has been shown that CAPhs display different solid-state motifs (Breuer et al., 1990[Breuer, E., Schlossman, A., Safadi, M., Gibson, D., Chorev, M. & Leader, H. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 3263-3269.]; Amirkhanov et al.,1997[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331-1336.]; Milton et al., 2004a[Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004a). Polyhedron, 23, 2575-2585.],b[Milton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004b). Polyhedron, 23, 3211-3220.]; Kariaka et al., 2014[Kariaka, N. S., Trush, V. A., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). J. Mol. Struct. 1068, 71-76.]), i.e. chains, dimers and more seldom monomers. These motifs are realized through existence of hydrogen bonds with participation of the –N—H group. In crystal of (I)[link], the –N—-H group participates in an intra­molecular hydrogen bond. There are no strong proton donors capable of forming inter­molecular hydrogen bonds in this mol­ecule. Thus the title mol­ecules form only weak C—H⋯π inter­actions leading to chains of mol­ecules along the c-axis direction (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
A section of a chain along the c axis formed by weak C—H⋯π inter­actions (shown as blue dotted lines).
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing CAPh ligands yielded 189 hits. In the CAPh fragments, the mean C=O bond length is 1.222 Å, the mean C—N bond length is 1.364 Å, the mean N—P bond length is 1.686 Å and the mean P=O bond length is 1.504 Å.

5. Synthesis and crystallization

N-(di­phenyl­phosphor­yl)-2-meth­oxy­benzamide (I)[link] was prepared according to a two-step reaction (Fig. 4[link]).

[Figure 4]
Figure 4
The two-step reaction for the preparation of the title compound (I)[link].

To a solution of o-meth­oxy­benzamide (1.51 g, 0.01 mol) and tri­ethyl­amine (2.03 g, 2.8 ml, 0.02 mol) in 20 ml of dioxane was added chloro­diphenyl­phosphine (2.2 g, 1.79 ml, 0.01 mol) under an inert atmosphere. The mixture was stirred under reflux for 60 min and evaporated to dryness to give a pasty residue, which was mixed with 20 ml of acetone and then a solution of 0.01 mol of H2O2 in 5 ml of acetone was added dropwise under vigorous stirring at 273 K. The brownish solution was evaporated and the residue was mixed with 50 ml of 10% aqueous HOAc. The solid precipitate was filtered, washed with cold water (2 × 20 ml) and recrystallized from i-PrOH [2.8 g (80%)]. Single crystals suitable for X-ray diffraction were grown from dilute i-PrOH solution by slow evaporation after one week.

M.p. 431–434 K. IR (KBr pellet, cm−1): 3271m [ν(NH)], 3059w, 3011w, 2985w, 2949w, 2924w, 2843w, 1671vs [ν(CO)], 1601m, 1486w, 1461vs (Amide-II), 1436s, 1294m, 1242m, 1225vs [ν(PO)], 1181m, 1160w, 1125s, 1109m, 1045w, 1012m, 868w [(PN)], 840m, 786m, 767m, 754s, 726m, 702m, 668w, 634w, 592w, 543m, 524s, 512m, 487m, 442w. 1H NMR (DMSO-d6): C—H 3.95 (s, 3H), 7.07 (t, 1H), 7.22 (d, 1H), 7.58 (t, 7H), 7.67 (d, 1H), 7.88 (m, 4H), N—H 9.90 (d, 1H) ppm. UV–Vis abs. (CH2Cl2, λmax, nm): 240, 295.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (N—H = 0.86, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C20H18NO3P
Mr 351.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 294
a, b, c (Å) 8.317 (2), 12.657 (2), 16.763 (3)
V3) 1764.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.5 × 0.4 × 0.3
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.986, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18281, 5691, 4247
Rint 0.032
(sin θ/λ)max−1) 0.749
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.11
No. of reflections 5691
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.32
Absolute structure Flack x determined using 1430 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-(Diphenylphosphoryl)-2-methoxybenzamide top
Crystal data top
C20H18NO3PDx = 1.322 Mg m3
Mr = 351.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5505 reflections
a = 8.317 (2) Åθ = 3.2–30.6°
b = 12.657 (2) ŵ = 0.17 mm1
c = 16.763 (3) ÅT = 294 K
V = 1764.6 (6) Å3Block, colourless
Z = 40.5 × 0.4 × 0.3 mm
F(000) = 736
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
5691 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1827 pixels mm-1θmax = 32.2°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1716
Tmin = 0.986, Tmax = 1.000l = 2324
18281 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.23 e Å3
5691 reflectionsΔρmin = 0.32 e Å3
227 parametersAbsolute structure: Flack x determined using 1430 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.75683 (6)0.34774 (4)0.68054 (3)0.03788 (14)
O10.8432 (2)0.33778 (15)0.75665 (10)0.0522 (4)
O20.8579 (2)0.57607 (14)0.70208 (11)0.0601 (5)
O30.8588 (2)0.48946 (15)0.46564 (10)0.0574 (5)
N10.8291 (2)0.43972 (14)0.61711 (11)0.0420 (4)
H10.8391310.4207760.5680980.050*
C10.7720 (3)0.23277 (18)0.61801 (14)0.0454 (5)
C20.6930 (4)0.2254 (2)0.54479 (17)0.0585 (7)
H20.6245780.2793550.5284700.070*
C30.7160 (4)0.1383 (3)0.4964 (2)0.0768 (10)
H30.6655540.1345630.4470090.092*
C40.8138 (5)0.0571 (3)0.5216 (2)0.0815 (11)
H40.8278020.0019370.4892920.098*
C50.8912 (5)0.0626 (3)0.5942 (2)0.0802 (10)
H50.9562310.0070640.6109050.096*
C60.8722 (3)0.1509 (2)0.64224 (18)0.0591 (6)
H60.9264690.1553110.6906430.071*
C70.5462 (3)0.37685 (18)0.69283 (13)0.0410 (5)
C80.4455 (3)0.2966 (2)0.72018 (16)0.0528 (6)
H80.4863110.2290640.7281940.063*
C90.2844 (3)0.3171 (3)0.73552 (18)0.0653 (8)
H90.2170610.2627770.7521710.078*
C100.2247 (3)0.4165 (3)0.72626 (17)0.0669 (8)
H100.1174150.4301920.7380740.080*
C110.3223 (3)0.4969 (3)0.6995 (2)0.0706 (9)
H110.2809300.5646450.6929760.085*
C120.4832 (3)0.4765 (2)0.68216 (19)0.0553 (6)
H120.5485970.5306410.6632570.066*
C130.8734 (3)0.54108 (18)0.63499 (14)0.0405 (5)
C140.9427 (3)0.60615 (19)0.56888 (14)0.0417 (5)
C151.0164 (3)0.7003 (2)0.59123 (18)0.0557 (6)
H151.0208940.7186200.6449150.067*
C161.0828 (4)0.7669 (3)0.5352 (3)0.0769 (10)
H161.1306140.8300770.5507530.092*
C171.0775 (4)0.7386 (3)0.4553 (2)0.0814 (10)
H171.1247420.7825600.4175360.098*
C181.0042 (4)0.6472 (3)0.43069 (19)0.0662 (7)
H180.9998390.6302350.3767500.079*
C190.9367 (3)0.58040 (19)0.48673 (15)0.0460 (5)
C200.8551 (5)0.4599 (3)0.38290 (17)0.0768 (9)
H20A0.8006720.5135210.3527650.115*
H20B0.7991390.3939590.3771710.115*
H20C0.9631010.4523060.3634870.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0406 (3)0.0420 (3)0.0310 (2)0.0018 (2)0.0008 (2)0.0024 (2)
O10.0519 (8)0.0658 (11)0.0389 (8)0.0029 (8)0.0059 (7)0.0059 (8)
O20.0794 (12)0.0568 (11)0.0442 (10)0.0133 (9)0.0112 (9)0.0149 (8)
O30.0811 (12)0.0574 (11)0.0335 (9)0.0146 (9)0.0021 (9)0.0008 (8)
N10.0548 (11)0.0402 (9)0.0311 (9)0.0092 (8)0.0059 (8)0.0012 (7)
C10.0509 (12)0.0405 (11)0.0446 (12)0.0045 (9)0.0086 (10)0.0009 (9)
C20.0654 (16)0.0594 (16)0.0508 (15)0.0080 (12)0.0012 (12)0.0084 (12)
C30.089 (2)0.083 (2)0.0590 (18)0.0218 (19)0.0111 (16)0.0255 (16)
C40.097 (3)0.0608 (19)0.086 (3)0.0094 (17)0.035 (2)0.0242 (18)
C50.092 (2)0.0549 (17)0.094 (3)0.0149 (16)0.027 (2)0.0013 (17)
C60.0638 (15)0.0519 (14)0.0616 (16)0.0086 (13)0.0087 (13)0.0025 (13)
C70.0408 (10)0.0489 (12)0.0331 (11)0.0032 (8)0.0014 (8)0.0044 (9)
C80.0548 (13)0.0565 (15)0.0469 (14)0.0089 (12)0.0052 (11)0.0011 (11)
C90.0491 (14)0.095 (2)0.0517 (15)0.0219 (14)0.0053 (11)0.0048 (14)
C100.0392 (13)0.104 (2)0.0573 (17)0.0016 (15)0.0015 (11)0.0209 (16)
C110.0511 (15)0.076 (2)0.085 (2)0.0148 (14)0.0076 (15)0.0170 (17)
C120.0454 (12)0.0560 (14)0.0646 (16)0.0004 (10)0.0037 (12)0.0033 (13)
C130.0398 (10)0.0424 (12)0.0391 (11)0.0023 (9)0.0021 (9)0.0032 (9)
C140.0362 (10)0.0422 (11)0.0466 (13)0.0018 (9)0.0011 (9)0.0036 (10)
C150.0512 (13)0.0511 (14)0.0648 (17)0.0109 (11)0.0025 (12)0.0049 (12)
C160.0706 (19)0.0583 (18)0.102 (3)0.0270 (15)0.0064 (18)0.0094 (17)
C170.084 (2)0.078 (2)0.083 (3)0.0257 (18)0.0138 (19)0.0254 (19)
C180.0763 (18)0.0690 (18)0.0532 (15)0.0094 (16)0.0102 (14)0.0132 (14)
C190.0463 (12)0.0458 (13)0.0460 (13)0.0034 (10)0.0053 (10)0.0063 (10)
C200.107 (3)0.086 (2)0.0374 (14)0.012 (2)0.0033 (16)0.0083 (14)
Geometric parameters (Å, º) top
P1—O11.4695 (17)C8—C91.389 (4)
P1—N11.6871 (19)C9—H90.9300
P1—C11.798 (2)C9—C101.361 (5)
P1—C71.802 (2)C10—H100.9300
O2—C131.215 (3)C10—C111.377 (5)
O3—C191.368 (3)C11—H110.9300
O3—C201.437 (3)C11—C121.394 (4)
N1—H10.8600C12—H120.9300
N1—C131.368 (3)C13—C141.496 (3)
C1—C21.396 (4)C14—C151.392 (3)
C1—C61.391 (4)C14—C191.416 (3)
C2—H20.9300C15—H150.9300
C2—C31.382 (4)C15—C161.377 (4)
C3—H30.9300C16—H160.9300
C3—C41.377 (5)C16—C171.388 (5)
C4—H40.9300C17—H170.9300
C4—C51.378 (6)C17—C181.371 (5)
C5—H50.9300C18—H180.9300
C5—C61.387 (4)C18—C191.382 (4)
C6—H60.9300C20—H20A0.9600
C7—C81.394 (3)C20—H20B0.9600
C7—C121.378 (3)C20—H20C0.9600
C8—H80.9300
O1—P1—N1115.61 (10)C9—C10—H10119.8
O1—P1—C1113.72 (11)C9—C10—C11120.3 (2)
O1—P1—C7113.17 (10)C11—C10—H10119.8
N1—P1—C199.56 (10)C10—C11—H11120.1
N1—P1—C7106.09 (11)C10—C11—C12119.8 (3)
C1—P1—C7107.49 (11)C12—C11—H11120.1
C19—O3—C20118.6 (2)C7—C12—C11120.5 (3)
P1—N1—H1116.4C7—C12—H12119.7
C13—N1—P1127.23 (16)C11—C12—H12119.7
C13—N1—H1116.4O2—C13—N1121.0 (2)
C2—C1—P1122.3 (2)O2—C13—C14121.7 (2)
C6—C1—P1118.4 (2)N1—C13—C14117.24 (19)
C6—C1—C2119.3 (2)C15—C14—C13116.2 (2)
C1—C2—H2119.9C15—C14—C19118.3 (2)
C3—C2—C1120.3 (3)C19—C14—C13125.4 (2)
C3—C2—H2119.9C14—C15—H15119.4
C2—C3—H3120.1C16—C15—C14121.1 (3)
C4—C3—C2119.9 (3)C16—C15—H15119.4
C4—C3—H3120.1C15—C16—H16120.4
C3—C4—H4119.7C15—C16—C17119.2 (3)
C3—C4—C5120.6 (3)C17—C16—H16120.4
C5—C4—H4119.7C16—C17—H17119.2
C4—C5—H5120.0C18—C17—C16121.5 (3)
C4—C5—C6120.0 (3)C18—C17—H17119.2
C6—C5—H5120.0C17—C18—H18120.3
C1—C6—H6120.0C17—C18—C19119.5 (3)
C5—C6—C1119.9 (3)C19—C18—H18120.3
C5—C6—H6120.0O3—C19—C14117.5 (2)
C8—C7—P1118.24 (19)O3—C19—C18122.1 (2)
C12—C7—P1122.82 (18)C18—C19—C14120.4 (2)
C12—C7—C8118.8 (2)O3—C20—H20A109.5
C7—C8—H8119.8O3—C20—H20B109.5
C9—C8—C7120.3 (3)O3—C20—H20C109.5
C9—C8—H8119.8H20A—C20—H20B109.5
C8—C9—H9119.9H20A—C20—H20C109.5
C10—C9—C8120.2 (3)H20B—C20—H20C109.5
C10—C9—H9119.9
P1—N1—C13—O22.7 (3)C3—C4—C5—C60.6 (5)
P1—N1—C13—C14176.74 (16)C4—C5—C6—C11.5 (5)
P1—C1—C2—C3176.0 (2)C6—C1—C2—C30.9 (4)
P1—C1—C6—C5177.8 (2)C7—P1—N1—C1380.8 (2)
P1—C7—C8—C9175.8 (2)C7—P1—C1—C251.3 (2)
P1—C7—C12—C11174.1 (2)C7—P1—C1—C6131.8 (2)
O1—P1—N1—C1345.5 (2)C7—C8—C9—C102.0 (4)
O1—P1—C1—C2177.4 (2)C8—C7—C12—C110.9 (4)
O1—P1—C1—C65.7 (2)C8—C9—C10—C111.8 (4)
O1—P1—C7—C872.7 (2)C9—C10—C11—C120.3 (5)
O1—P1—C7—C12102.2 (2)C10—C11—C12—C71.0 (5)
O2—C13—C14—C1512.0 (3)C12—C7—C8—C90.6 (4)
O2—C13—C14—C19166.9 (2)C13—C14—C15—C16179.3 (2)
N1—P1—C1—C259.0 (2)C13—C14—C19—O31.2 (4)
N1—P1—C1—C6117.90 (19)C13—C14—C19—C18179.5 (2)
N1—P1—C7—C8159.47 (19)C14—C15—C16—C170.8 (5)
N1—P1—C7—C1225.6 (2)C15—C14—C19—O3177.7 (2)
N1—C13—C14—C15167.5 (2)C15—C14—C19—C180.6 (4)
N1—C13—C14—C1913.6 (3)C15—C16—C17—C181.7 (6)
C1—P1—N1—C13167.8 (2)C16—C17—C18—C191.4 (5)
C1—P1—C7—C853.7 (2)C17—C18—C19—O3178.4 (3)
C1—P1—C7—C12131.3 (2)C17—C18—C19—C140.2 (4)
C1—C2—C3—C41.8 (5)C19—C14—C15—C160.3 (4)
C2—C1—C6—C50.7 (4)C20—O3—C19—C14178.1 (3)
C2—C3—C4—C51.0 (5)C20—O3—C19—C183.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.932.628 (2)137
C18—H18···Cgi0.932.993.864 (3)158
Symmetry code: (i) x+3/2, y+1, z1/2.
 

References

First citationAdams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004–2005.  Web of Science CrossRef Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology ,ch. 7, edited by P. Gawryszewska & P. Smolenski, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationAmirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.  CrossRef CAS Google Scholar
First citationBreuer, E., Schlossman, A., Safadi, M., Gibson, D., Chorev, M. & Leader, H. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 3263–3269.  CSD CrossRef Web of Science Google Scholar
First citationBurgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrynyuk, I. I., Prylutska, S. V., Franskevych, D. V., Trush, V. A., Sliva, T. Y., Slobodyanik, M. S., Hurmach, V. V., Prylutskyy, Y. I., Matyshevska, O. P. & Ritter, U. (2016). Mat.-Wiss. u. Werkstofftech. 47, 98–104.  Web of Science CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2014). J. Mol. Struct. 1068, 71–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004a). Polyhedron, 23, 2575–2585.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilton, H. L., Wheatley, M. V., Slawin, A. M. Z. & Woollins, J. D. (2004b). Polyhedron, 23, 3211–3220.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Russ. Chem. Rev. 73, 737–752.  CrossRef CAS Google Scholar
First citationZefirov, Y. V. (1997). Crystallogr. Rep. 42, 865–886.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds