research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cC Hai Hau High School, Con Town, Hai Hau District, Nam Dinh Province, Vietnam, dInstitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, eGraduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and fDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, Luc.VanMeervelt@kuleuven.be

Edited by A. J. Lough, University of Toronto, Canada (Received 7 May 2019; accepted 23 May 2019; online 4 June 2019)

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.

1. Chemical context

Chalcones, typically referred to as Michael acceptors, can react with nucleophiles at the electrophilic β-position of the unsaturated system (Amslinger, 2010[Amslinger, S. (2010). Chem. Med. Chem. 5, 351-356.]). Many chalcone deriv­atives containing an α,β-unsaturated carbonyl show potential biological applications such as being effective against amyloid β-induced cytotoxicity (Bukhari et al., 2014[Bukhari, S. N., Jantan, I., Masand, V. H., Mahajan, D. T., Sher, M., Naeem-ul-Hassan, M. & Amjad, M. W. (2014). Eur. J. Med. Chem. 83, 355-365.]) and irreversibly angiotensin-converting enzyme inhibitors (Hea-Young Park Choo et al., 2000[Park Choo, H. Y., Peak, K.-H., Park, J., Kim, D. H. & Chung, H. S. (2000). Eur. J. Med. Chem. 35, 643-648.]).

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles containing one S heteroatom. Many thio­phene derivatives exhibit biological activities: anti­bacterial (Mishra et al., 2012[Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332-336.]), anti­allergic (Gillespie et al., 1985[Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655-660.]), analgesic (Laddi et al., 1998[Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509-513.]), and act as anti-inflammatory agents (Ferreira et al., 2006[Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]), anti­oxidant agents (Jarak et al., 2005[Jarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346-2360.]) and anti­tumor agents (Gadad et al., 1994[Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298-301.]). With the introduction of a thio­phene ring into chalcones, it was hoped to design chalcones with inter­esting new structures and properties. The addition of the thio­phene ring to an α,β-unsaturated carbonyl group has also been investigated for a substitution at the Cα atom of the thio­phene ring (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164-o4165.]).

Recently, some thio­phene derivatives, such as N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide (Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]) and 4-phenyl-3-(thio­phen-3-yl-meth­yl)-1H-1,2,4-triazole-5(4H)-thione (Vu Quoc et al., 2018[Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812-815.]), were synthesized by us and their crystal structures were investigated by X-ray diffraction.

[Scheme 1]

In this study, we present the synthesis and crystal structure of four chalcones (14) containing a thio­phene ring: 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives contain­ing –OH, –OCH3, –OCH2CH3 and –Br at the para position of the phenyl ring.

2. Structural commentary

The asymmetric units of 1, 2, 3 and 4 are illustrated in Figs. 1[link], 2[link], 3[link] and 4[link], respectively. The thio­phene group in 4 is disordered over two orientations by a rotation of about 180° about the C3—C6 bond in a 0.702 (4): 0.298 (4) ratio. Chalcone 1 bearing the –OH substituent is almost planar, with the dihedral angle between the thio­phene and phenyl rings being 4.73 (12)°. For the other chalcones, the deviation from planarity is significant, as illustrated by the dihedral angles: 12.36 (11)° for 2, 17.44 (11)° for 3 and 46.1 (6) and 48.6 (6)° for 4. The C6=C7 bond lengths [1.329 (3) Å for 1, 1.328 (3) Å for 2, 1.319 (3) Å for 3 and 1.325 (5) Å for 4] are almost identical. The configuration of the C6=C7 bond can be described as E [torsion angles C3—C6—C7—C8 are −175.4 (2), −177.8 (2), 179.75 (18) and −174.3 (3)° for 14, respectively]. For 1, this E configuration gives rise to an intra­molecular C6—H6⋯O9 inter­action (Table 1[link]). The substituent at the para-position of the phenyl ring has no significant influence on the C8=O9 bond length [1.232 (3) Å in 1, 1.228 (3) Å in 2, 1.224 (2) Å in 3 and 1.224 (4) Å in 4].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O9i 0.82 1.86 2.667 (2) 167
C6—H6⋯O9 0.93 2.46 2.785 (3) 100
C11—H11⋯O16ii 0.93 2.55 3.425 (3) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­eculare structure of 1 showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
The mol­eculare structure of 2 showing 50% displacement ellipsoids.
[Figure 3]
Figure 3
The mol­eculare structure of 3 showing 50% displacement ellipsoids.
[Figure 4]
Figure 4
The mol­eculare structure of 4 showing 50% displacement ellipsoids. The minor-disorder component is shown in light blue.

3. Supra­molecular features

In chalcone derivative 1, which crystallizes in the ortho­rhom­bic space group Pbca, the –OH substituent is involved as donor in inter­molecular O16—H16⋯O9i [symmetry code: (i) x + [1\over2], y, [3\over2] − z] hydrogen bonding, resulting in the formation of chains of mol­ecules running in the a-axis direction (Fig. 5[link], Table 1[link]). As acceptor, the –OH substituent inter­acts by inter­molecular C11—H11⋯O16 hydrogen bonding (Fig. 5[link], Table 1[link]).

[Figure 5]
Figure 5
Partial crystal packing of 1 showing the inter­molecular hydrogen-bonding inter­actions as red dashed lines (see Table 1[link] for details).

Crystals of 24 belong to the monoclinic space group P21/c. The crystal packing of 2 is characterized by inversion-dimer formation between the meth­oxy groups by weak C17—H17B⋯O16i inter­actions [H17⋯O16i = 2.61 Å; symmetry code (i): −x + 1, −y + 2, −z + 2] and C—H⋯π(thio­phene) inter­actions (C5—H5⋯Cg1ii and C11—H11⋯Cg1iii; for details see Table 2[link] and Fig. 6[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg1 is the centroid of the S1/C2–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1ii 0.93 2.94 3.602 (2) 129
C11—H11⋯Cg1iii 0.93 2.99 3.598 (2) 125
Symmetry codes: (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Partial crystal packing of 2 showing dimer formation through C—H⋯O (red dashed lines) and C—H⋯π inter­actions [grey dashed lines; Cg1 is the centroid of the thio­phene ring; symmetry codes: (i) −x + 1, −y + 2, z + 2, (ii) x, −y + [{3\over 2}], z + [{1\over 2}], (iii) −x, y − [{1\over 2}], −z + [{1\over 2}]].

In the packing of 3, C2—H2⋯O9i inter­actions result in dimeric units forming rings of R22(14) graph-set motif [symmetry code (i): 1 − x, 1 − y, 2 − z; Table 3[link], Fig. 7[link]]. In addition, two weaker inter­actions are present in the packing. Inversion dimers are formed by C14—H14⋯O16ii inter­actions [H14⋯O16ii = 2.71 Å; symmetry code: (ii) −x + 2, −y + 1, −z + 2] enclosing an R22(8) ring motif. Chains of mol­ecules running in the a-axis direction are the consequence of C18iii—H18Aiii⋯S1 inter­actions [H18Aiii⋯S1 = 3.05 Å; symmetry code: (iii) x − 1, y, z]. These inter­molecular inter­actions result in the formation of sheets of mol­ecules parallel to the ac plane (Fig. 7[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O9i 0.93 2.47 3.324 (2) 153
Symmetry code: (i) -x+1, -y+1, -z+2.
[Figure 7]
Figure 7
Formation of sheets of mol­ecules of 3 by C—H⋯O and C—H⋯S inter­actions [red dashed lines; symmetry codes: (i) −x + 1, −y + 1, −z + 2, (ii) −x + 2, −y + 1, −z + 2, (iii) x − 1, y, z]

In the packing of 4, chains running in the c-axis direction are formed by C5—H5⋯π(thio­phene) inter­actions (Table 4[link], Fig. 8[link]). At the other side of the mol­ecule, the closest contact for the Br16 atom is with H14 [Br16⋯H14i = 3.23 Å; Fig.8]. The shortest Br⋯Br distance [4.4621 (11) Å] in the crystal packing is Br16⋯Br16ii [symmetry code: (ii) −x + 2, −y + 1, −z + 2].

Table 4
Hydrogen-bond geometry (Å, °) for 4[link]

Cg1 and Cg2 are the centroids of the major- and minor-disorder components of the thio­phene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5ACg1i 0.93 2.80 3.493 (14) 132
C5A—H5ACg2i 0.93 2.85 3.52 (2) 130
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 8]
Figure 8
Chains of mol­ecules in 4 running in the c-axis direction formed by C5A—H5ACg1i inter­actions [grey dashed lines, Cg1 is the centroid of the major-disorder component of the thio­phene ring; symmetry code: (i) x, [1\over2] − y, z − [1\over2]].

No voids or ππ stackings are observed in the crystal packing of 14.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-(3-thien­yl)prop-2-en-1-one gave three hits, viz. AYUPIU (Shalini et al., 2011[Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.]), IBIRUJ (Oyarce et al., 2017[Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277-284.]) and UNAJIE (Baggio et al., 2016[Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1-7.]).

The configuration about the double bonds in the symmet­rical 1,5-bis­(thio­phen-3-yl)penta-1,4-dien-3-one (AYUPIU; Shalini et al., 2011[Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.]) is twice E. The dihedral angle between the terminal thio­phene rings is 15.45 (10)°. In the crystal packing, C—H⋯O inter­actions link the mol­ecules into arrays in the ac plane that are further connected by C—H⋯π inter­actions.

Both thio­phene rings in 3-hy­droxy-1-(thio­phen-2-yl)-3-(thio­phen-3-yl)prop-2-en-1-one (IBIRUJ; Oyarce et al., 2017[Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277-284.]) are disordered; the major-disorder components are inclined to each other by 12.1 (3)°. Chains of mol­ecules running in the c-axis direction are formed through C—H⋯O inter­actions.

In the crystal of 1,3-bis­(3-thien­yl)prop-2-en-1-one (UNAJIE; Baggio et al., 2016[Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1-7.]), the stereochemistry about the double bond is E and the dihedral angle between the thio­phene rings is 8.88 (10)°. Columns of stacking mol­ecules along [010] indicate that ππ inter­actions play an important role in the crystal packing, together with C—H⋯O hydrogen bonds between the columns.

A search for 1-phenyl-3-(2-thien­yl)prop-2-en-1-one allowing substitution at the phenyl ring resulted in 19 hits of which the compound 1-(4-bromo­phen­yl)-3-(2-thien­yl)prop-2-en-1-one (GENXED; Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.]; GENXED01; Arshad et al., 2017[Arshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142-156.]) is the 2-thienyl derivative of 4. In addition to similar cell parameters, the thio­phene ring also shows rotational disorder [ratio 0.791 (2):0.209 (2) for GENXED; Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.]] and the angles between thio­phene and phenyl rings are comparable [46.49 (11) and 48.4 (3)° for GENXED; Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.]].

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces of compounds 14 mapped over dnorm are given in Fig. 9[link]. The relative distributions from the different inter­atomic contacts to the Hirshfeld surfaces are presented in Table 5[link].

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for compounds (14)

Contact 1 2 3 4
H⋯H 28.8 33.5 44.5 28.5
S⋯H/H⋯S 13.0 11.6 10.2 3.9
C⋯H/H⋯C 30.4 33.9 22.1 32.6
O⋯H/H⋯O 18.5 15.8 13.8 11.1
C⋯C 3.2 0.7 4.5 2.4
C⋯S/S⋯C 3.7 0.9 3.5 0.0
S⋯S 0.0 1.5 0.0 0.0
S⋯O/O⋯S 0.3 0.0 0.1 0.0
C⋯O/O⋯C 1.8 1.6 1.0 1.0
O⋯O 0.0 0.6 0.0 0.0
Br⋯S/S⋯Br       2.8
Br⋯C/C⋯Br       0.6
Br⋯H/H⋯Br       16.5
Br⋯O/O⋯Br       0.0
Br⋯Br       0.5
[Figure 9]
Figure 9
The Hirshfeld surface mapped over dnorm for (a) compound 1 in the range −0.704 to 1.267 a.u., (b) compound 2 in the range −0.059 to 1.101 a.u., (c) compound 3 in the range −0.200 to 1.439 a.u. and (d) compound 4 in the range 0.007 to 0.942 a.u.

The bright-red spots in Fig. 9[link]a near atoms O16 and O9 are indicative for the O16—H16⋯O9 hydrogen bond in the crystal packing of 1. The additional faint-red spots illustrate C—H⋯O inter­actions. The most significant contributions to the Hirshfeld surface are from C⋯H/H⋯C (30.4%), H⋯H (28.8%) and O⋯H/H⋯O (18.5%) contacts (Table 5[link]).

For compound 2, the donor and acceptor of the relatively weak C17—H17B⋯O16 inter­action are viewed as diminutive red spots near atoms H17B and O16 in Fig. 9[link]b. The C—H⋯π(thio­phene) inter­actions are indicated by the high contribution from C⋯H/H⋯C contacts (33.9%) to the Hirshfeld surface (Table 5[link]).

The bright-red spots in Fig. 9[link]c near atoms O9 and H2 of 3 refer to the strong C2—H2⋯O9 dimer formation, while the faint-red spots near atoms O16 and H14 are indicative for the relatively weak C14—H14⋯O16 dimer formation. Near atom C2 another faint-red spot refers to a contact (2.73 Å) with atom H5.

The Hirshfeld surface mapped over dnorm for 4 (Fig. 9[link]d) shows no short inter­atomic contacts. Again the C—H⋯π inter­action with the disordered thio­phene ring is reflected in the high contribution from C⋯H/H⋯C contacts (32.6%) to the Hirshfeld surface (Table 5[link]).

For the four derivatives, the largest contributions of inter­atomic contacts to the Hirshfeld surface are contacts in which H atoms are involved (Table 5[link]).

6. Synthesis and crystallization

The reaction scheme to synthesize the title compounds 14 is given in Fig. 10[link].

[Figure 10]
Figure 10
Reaction scheme for the title compounds 14.

Synthesis of α,β-unsaturated ketone compounds 14:

In a 250 mL beaker, thio­phene-3-carbaldehyde (0.1 mole) and substituted aceto­phenone (0.1 mol) were dissolved in ethanol (100 mL). To this mixture, a 50% KOH (10 mL) solution was added and the mixture was stirred by a magnetic stirrer for 5 h at room temperature until a precipitate appeared. The products 14 were obtained as solids, which were filtered under low pressure and recrystallized from ethanol.

Data for 3-(3-(4-hy­droxy­phen­yl)prop-1-ene-3-one-1-yl)thio­phene (1):

Yellow crystals; yield 90%; m.p. 388 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3456.8 (OH), 2983.3 (CH aromatic, alkene), 1643.1 (C=O), 1596.8 (C=C, C=N), 1037.4 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 6.93 (d, 2H, J = 9.0, H11,11′), 7.34 (d, 1H, J = 15.5, H7), 7.37 (d, 1H, J = 2, J = 3, H2), 7.41 (dd, 1H, J = 5, H4), 7.59 (dd, 1H, J = 5.5, H5), 7.79 (d, 1H, J = 15.5, H6), 7.98 (d, 2H, J = 8.5, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.63 (C2); 128.79 (C3), 126.98 (C4); 125.26 (C5); 131.39 (C6); 131.07 (C7); 189.0 (C8); 159.84 (C9); 138.33 (C10,10′); 137.64 (C11,11′); 115.4 (C12). Calculation for C13H10O2S: M = 230 au.

Data for 3-(3-(4-meth­oxy­phen­yl)prop-1-ene-3-one-1-yl)thio­phene (2):

White crystals; yield 70%; m.p. 378 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3009.3 (CH alkane), 2974.3 (CH aromatic, alkene), 1651.1 (C=O), 1597.5 (C=C, C=N), 1017.2 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 3.89 (s, 3H, OCH3), 6.98 (d, 2H, J = 9.0, H11,11′), 7.35 (d, 1H, J = 15.5, H7), 7.36 (dd, 1H, J = 2.5, J = 5, H2), 7.42 (d, 1H, J = 5, H4), 7.58 (dd, 1H, J = 2.5, H5), 7.79 (d, 1H, J = 16, H6), 8.02 (d, 2H, J = 9, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.70 (C2), 128.68 (C3), 126.94 (C4), 125.28 (C5), 131.19 (C6), 130.74 (C7), 188.96 (C8), 163.41 (C9), 138.37 (C10,10′), 137.44 (C11,11′), 113.85 (C12), 55.5 (OCH3). Calculation for C14H12O2S: M = 244 au.

Data for 3-(3-(4-eth­oxy­phen­yl)prop-1-ene-3-one-1-yl)thio­phene (3):

White crystals; yield 50%; m.p. 380 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3010.6 (CH alkane), 2983.3 (CH aromatic, alkene), 1657.1 (C=O), 1596.7 (C=C, C=N), 1011.4 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 1.53 (t, 3H, J = 7, OCH2CH3), 4.12 (q, 2H, J = 7, 7, OCH2CH3), 6.96 (d, 2H, J = 9.0, H11,11′), 7.36 (d, 1H, J = 15.5, H7), 7.36 (d, 1H, J = 2, J = 3, H2), 7.42 (dd, 1H, J = 1.5, J = 5, H4), 7.58 (dd, 1H, J = 1.5, J = 5.5, H5), 7.78 (d, 1H, J = 15.5, H6), 8.01 (d, 2H, J = 9, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.73 (C2); 128.63 (C3), 126.93 (C4); 125.29 (C5); 131.00 (C6); 130.75 (C7); 188.96 (C8); 162.85 (C9); 138.4 (C10,10′); 137.37 (C11,11′); 114.3 (C12); 63.80 (OCH2CH3); 14.7 (OCH2CH3). Calculation for C15H14O2S: M = 258 au.

Data for 3-(3-(4-bromo­phen­yl)prop-1-ene-3-one-1-yl)thio­phene (4):

Bright-yellow crystals; yield 99%; m.p. 353 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3090.7 (CH aromatic, alkene), 1654.5 (C=O), 1595.8 (C=C, C=N), 1006.1 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 6.69 (d, 2H, J = 9.0, H11,11′), 7.35 (d, 1H, J = 15.5, H7), 7.36 (dd, 1H, J = 3, J = 5.5, H2), 7.41 (d, 1H, J = 5.5, H4), 7.56 (dd, 1H, J = 3, H5), 7.77(d, 1H, J = 15.5, H6), 7.91 (d, 2H, J = 8.5, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.29 (C2), 127.81 (C3), 127.18 (C4), 125.21 (C5), 129.97 (C6), 131.93 (C7), 189.66 (C8), 138.81 (C9), 138.81 (C10,10′), 138.05(C11,11′), 129.50 (C12). Calculation for C13H9OSBr: M = 293 au.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link].

Table 6
Experimental details

  1 3 2 4
Crystal data
Chemical formula C13H10O2S C14H12O2S C15H14O2S C13H9BrOS
Mr 230.27 244.30 258.32 293.17
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 294 294 294 293
a, b, c (Å) 11.0808 (5), 9.0251 (5), 22.8157 (10) 16.4118 (13), 5.8387 (5), 12.6456 (9) 16.5120 (8), 7.7851 (5), 10.4913 (5) 14.1245 (7), 14.2016 (13), 5.8809 (4)
α, β, γ (°) 90, 90, 90 90, 97.279 (7), 90 90, 96.813 (4), 90 90, 98.081 (6), 90
V3) 2281.69 (19) 1201.98 (16) 1339.11 (13) 1167.93 (15)
Z 8 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 0.26 0.23 3.67
Crystal size (mm) 0.4 × 0.3 × 0.07 0.45 × 0.3 × 0.15 0.5 × 0.35 × 0.15 0.4 × 0.4 × 0.05
 
Data collection
Diffractometer SuperNova, single source at offset/far, Eos SuperNova, single source at offset/far, Eos SuperNova, single source at offset/far, Eos SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.522, 1.000 0.803, 1.000 0.733, 1.000 0.367, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9745, 2333, 1814 5075, 2457, 1771 13246, 2734, 2162 12050, 2392, 1683
Rint 0.019 0.021 0.035 0.045
(sin θ/λ)max−1) 0.625 0.625 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.05 0.046, 0.118, 1.04 0.047, 0.141, 1.05 0.043, 0.107, 1.02
No. of reflections 2333 2457 2734 2392
No. of parameters 146 156 165 158
No. of restraints 0 0 0 20
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.35 0.16, −0.26 0.19, −0.28 0.40, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.93 (aromatic and =CH), 0.96 (CH3) and 0.97 Å (CH2), and O—H distances of 0.82 Å (rotating OH).

In 4, the thio­phene ring was disordered over two positions [population parameters 0.702 (4) and 0.298 (4)] and was refined with restraints for the bond lengths and angles in the ring. The anisotropic temperature factors for atoms S1, C2, C4 and C5 in both orientations were constrained to be equal. In the final cycles of refinement, two and one outliers were omitted for 1 and 2, respectively.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(4-Hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one (1) top
Crystal data top
C13H10O2SDx = 1.341 Mg m3
Mr = 230.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3900 reflections
a = 11.0808 (5) Åθ = 3.0–27.0°
b = 9.0251 (5) ŵ = 0.26 mm1
c = 22.8157 (10) ÅT = 294 K
V = 2281.69 (19) Å3Block, yellow
Z = 80.4 × 0.3 × 0.07 mm
F(000) = 960
Data collection top
SuperNova, single source at offset/far, Eos
diffractometer
2333 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1814 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 411
Tmin = 0.522, Tmax = 1.000l = 2728
9745 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.4972P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.20 e Å3
146 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89495 (8)0.20994 (11)0.39007 (3)0.0907 (3)
C20.8168 (2)0.3325 (4)0.43118 (11)0.0783 (8)
H20.7493440.3834950.4176670.094*
C30.8629 (2)0.3490 (3)0.48637 (9)0.0533 (6)
C40.9650 (2)0.2575 (3)0.49383 (11)0.0637 (7)
H41.0089330.2527500.5285070.076*
C50.9932 (2)0.1760 (3)0.44462 (11)0.0704 (7)
H51.0580320.1108960.4419310.085*
C60.8079 (2)0.4425 (3)0.53031 (10)0.0550 (6)
H60.7384920.4932920.5192040.066*
C70.8460 (2)0.4637 (3)0.58489 (9)0.0521 (5)
H70.9181910.4204700.5967090.062*
C80.77790 (19)0.5528 (2)0.62690 (9)0.0486 (5)
O90.67534 (14)0.5953 (2)0.61457 (7)0.0621 (5)
C100.83162 (18)0.5889 (2)0.68496 (9)0.0458 (5)
C110.9339 (2)0.5188 (3)0.70693 (10)0.0511 (5)
H110.9738990.4494400.6838770.061*
C120.9773 (2)0.5503 (3)0.76226 (10)0.0536 (6)
H121.0440850.4998320.7767620.064*
C130.92110 (19)0.6570 (2)0.79603 (9)0.0477 (5)
C140.8212 (2)0.7312 (3)0.77412 (10)0.0545 (6)
H140.7842580.8048220.7963020.065*
C150.77688 (19)0.6960 (3)0.71980 (10)0.0518 (5)
H150.7087220.7448930.7059200.062*
O160.95988 (15)0.6936 (2)0.85077 (6)0.0601 (5)
H161.0253100.6541510.8570060.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0964 (6)0.1162 (8)0.0596 (4)0.0193 (5)0.0060 (4)0.0214 (4)
C20.0726 (17)0.104 (2)0.0583 (15)0.0212 (17)0.0110 (13)0.0091 (15)
C30.0502 (12)0.0622 (14)0.0475 (12)0.0007 (11)0.0014 (10)0.0023 (11)
C40.0598 (14)0.0797 (17)0.0515 (13)0.0102 (13)0.0034 (11)0.0004 (12)
C50.0670 (15)0.0795 (19)0.0647 (16)0.0183 (15)0.0016 (13)0.0065 (14)
C60.0479 (12)0.0638 (15)0.0533 (13)0.0051 (11)0.0010 (10)0.0052 (11)
C70.0478 (12)0.0562 (13)0.0522 (12)0.0038 (10)0.0000 (10)0.0012 (10)
C80.0475 (12)0.0483 (12)0.0500 (12)0.0017 (10)0.0024 (9)0.0060 (10)
O90.0497 (9)0.0816 (12)0.0550 (9)0.0138 (9)0.0052 (7)0.0024 (8)
C100.0427 (11)0.0441 (12)0.0507 (12)0.0017 (9)0.0037 (9)0.0038 (9)
C110.0498 (12)0.0477 (12)0.0558 (13)0.0051 (10)0.0003 (10)0.0054 (10)
C120.0482 (12)0.0522 (13)0.0604 (14)0.0072 (11)0.0063 (10)0.0014 (11)
C130.0466 (11)0.0492 (12)0.0474 (11)0.0054 (10)0.0022 (9)0.0005 (10)
C140.0498 (12)0.0562 (14)0.0577 (13)0.0065 (11)0.0043 (10)0.0082 (11)
C150.0442 (11)0.0523 (13)0.0590 (13)0.0079 (10)0.0022 (10)0.0005 (11)
O160.0580 (10)0.0712 (11)0.0510 (9)0.0040 (9)0.0045 (7)0.0082 (8)
Geometric parameters (Å, º) top
S1—C21.689 (3)C8—C101.488 (3)
S1—C51.682 (3)C10—C111.392 (3)
C2—H20.9300C10—C151.391 (3)
C2—C31.367 (3)C11—H110.9300
C3—C41.411 (3)C11—C121.380 (3)
C3—C61.446 (3)C12—H120.9300
C4—H40.9300C12—C131.382 (3)
C4—C51.378 (3)C13—C141.387 (3)
C5—H50.9300C13—O161.361 (2)
C6—H60.9300C14—H140.9300
C6—C71.329 (3)C14—C151.370 (3)
C7—H70.9300C15—H150.9300
C7—C81.461 (3)O16—H160.8200
C8—O91.232 (3)
C5—S1—C292.31 (13)O9—C8—C10120.3 (2)
S1—C2—H2123.5C11—C10—C8123.2 (2)
C3—C2—S1113.0 (2)C15—C10—C8119.10 (19)
C3—C2—H2123.5C15—C10—C11117.7 (2)
C2—C3—C4110.3 (2)C10—C11—H11119.4
C2—C3—C6123.0 (2)C12—C11—C10121.3 (2)
C4—C3—C6126.6 (2)C12—C11—H11119.4
C3—C4—H4123.3C11—C12—H12120.1
C5—C4—C3113.3 (2)C11—C12—C13119.8 (2)
C5—C4—H4123.3C13—C12—H12120.1
S1—C5—H5124.5C12—C13—C14119.7 (2)
C4—C5—S1111.0 (2)O16—C13—C12122.6 (2)
C4—C5—H5124.5O16—C13—C14117.8 (2)
C3—C6—H6116.6C13—C14—H14120.0
C7—C6—C3126.9 (2)C15—C14—C13120.0 (2)
C7—C6—H6116.6C15—C14—H14120.0
C6—C7—H7119.0C10—C15—H15119.3
C6—C7—C8122.0 (2)C14—C15—C10121.4 (2)
C8—C7—H7119.0C14—C15—H15119.3
C7—C8—C10119.85 (19)C13—O16—H16109.5
O9—C8—C7119.9 (2)
S1—C2—C3—C40.1 (3)C7—C8—C10—C15167.8 (2)
S1—C2—C3—C6177.0 (2)C8—C10—C11—C12176.7 (2)
C2—S1—C5—C40.5 (3)C8—C10—C15—C14178.6 (2)
C2—C3—C4—C50.3 (4)O9—C8—C10—C11165.4 (2)
C2—C3—C6—C7179.4 (3)O9—C8—C10—C1513.6 (3)
C3—C4—C5—S10.5 (3)C10—C11—C12—C132.3 (4)
C3—C6—C7—C8175.4 (2)C11—C10—C15—C140.5 (3)
C4—C3—C6—C72.7 (4)C11—C12—C13—C140.3 (3)
C5—S1—C2—C30.3 (3)C11—C12—C13—O16179.7 (2)
C6—C3—C4—C5177.3 (2)C12—C13—C14—C151.6 (3)
C6—C7—C8—O99.1 (4)C13—C14—C15—C101.5 (4)
C6—C7—C8—C10172.3 (2)C15—C10—C11—C122.4 (3)
C7—C8—C10—C1113.2 (3)O16—C13—C14—C15178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O9i0.821.862.667 (2)167
C6—H6···O90.932.462.785 (3)100
C11—H11···O16ii0.932.553.425 (3)157
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+2, y1/2, z+3/2.
1-(4-Methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one (2) top
Crystal data top
C14H12O2SF(000) = 512
Mr = 244.30Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.4118 (13) ÅCell parameters from 1920 reflections
b = 5.8387 (5) Åθ = 3.2–27.3°
c = 12.6456 (9) ŵ = 0.26 mm1
β = 97.279 (7)°T = 294 K
V = 1201.98 (16) Å3Block, white
Z = 40.45 × 0.3 × 0.15 mm
Data collection top
SuperNova, single source at offset/far, Eos
diffractometer
2457 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1771 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1920
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 47
Tmin = 0.803, Tmax = 1.000l = 1515
5075 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.3903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.16 e Å3
2457 reflectionsΔρmin = 0.26 e Å3
156 parametersExtinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0141 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04793 (4)0.76040 (12)0.07886 (5)0.0654 (3)
C20.10560 (14)0.9740 (4)0.14100 (16)0.0519 (6)
H20.1165061.1114240.1083360.062*
C30.13426 (12)0.9216 (4)0.24447 (15)0.0421 (5)
C40.10869 (13)0.6985 (4)0.27105 (18)0.0494 (6)
H40.1229050.6315910.3375720.059*
C50.06133 (14)0.5929 (4)0.18926 (18)0.0558 (6)
H50.0390910.4471290.1933700.067*
C60.18106 (12)1.0798 (4)0.31699 (16)0.0463 (5)
H60.1913621.2240360.2904620.056*
C70.21052 (13)1.0373 (4)0.41779 (16)0.0477 (5)
H70.2027520.8927070.4456590.057*
C80.25502 (13)1.2111 (4)0.48691 (17)0.0468 (5)
O90.25416 (11)1.4134 (3)0.46020 (13)0.0657 (5)
C100.30162 (12)1.1378 (4)0.58960 (15)0.0430 (5)
C110.28855 (13)0.9319 (4)0.63854 (16)0.0499 (6)
H110.2497470.8307720.6050980.060*
C120.33136 (13)0.8718 (4)0.73559 (16)0.0522 (6)
H120.3204240.7337920.7677040.063*
C130.39048 (13)1.0180 (4)0.78457 (16)0.0467 (5)
C140.40604 (15)1.2229 (4)0.73538 (19)0.0588 (7)
H140.4467641.3205160.7671180.071*
C150.36170 (15)1.2817 (4)0.64040 (18)0.0565 (6)
H150.3719791.4211950.6091030.068*
O160.43757 (9)0.9765 (3)0.87912 (11)0.0586 (5)
C170.42397 (17)0.7696 (5)0.93373 (19)0.0679 (7)
H17A0.3676310.7623760.9466350.102*
H17B0.4590860.7656331.0004600.102*
H17C0.4360210.6411590.8909140.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0659 (4)0.0704 (5)0.0552 (4)0.0009 (3)0.0104 (3)0.0052 (3)
C20.0571 (13)0.0487 (14)0.0489 (12)0.0044 (11)0.0019 (10)0.0049 (11)
C30.0414 (11)0.0426 (13)0.0418 (11)0.0067 (9)0.0036 (9)0.0015 (10)
C40.0497 (12)0.0462 (14)0.0515 (12)0.0020 (10)0.0033 (10)0.0054 (11)
C50.0510 (13)0.0420 (13)0.0730 (15)0.0027 (11)0.0029 (11)0.0003 (12)
C60.0475 (12)0.0419 (13)0.0489 (12)0.0019 (10)0.0042 (10)0.0038 (10)
C70.0507 (12)0.0444 (13)0.0470 (12)0.0033 (10)0.0027 (10)0.0024 (11)
C80.0487 (12)0.0454 (14)0.0469 (12)0.0009 (10)0.0086 (9)0.0006 (11)
O90.0854 (13)0.0450 (10)0.0631 (10)0.0029 (9)0.0039 (9)0.0039 (9)
C100.0458 (11)0.0421 (12)0.0415 (11)0.0038 (10)0.0072 (9)0.0039 (10)
C110.0523 (13)0.0500 (14)0.0455 (12)0.0152 (11)0.0013 (10)0.0011 (11)
C120.0595 (14)0.0490 (14)0.0465 (12)0.0131 (11)0.0007 (10)0.0038 (11)
C130.0449 (12)0.0523 (14)0.0420 (11)0.0022 (10)0.0026 (9)0.0064 (11)
C140.0611 (14)0.0541 (15)0.0578 (14)0.0200 (12)0.0058 (11)0.0068 (12)
C150.0686 (15)0.0452 (14)0.0544 (13)0.0158 (12)0.0027 (11)0.0005 (11)
O160.0583 (10)0.0640 (11)0.0495 (9)0.0088 (8)0.0083 (7)0.0020 (8)
C170.0807 (18)0.0666 (18)0.0513 (14)0.0019 (14)0.0108 (12)0.0017 (13)
Geometric parameters (Å, º) top
S1—C21.697 (2)C10—C111.381 (3)
S1—C51.696 (2)C10—C151.390 (3)
C2—H20.9300C11—H110.9300
C2—C31.368 (3)C11—C121.380 (3)
C3—C41.422 (3)C12—H120.9300
C3—C61.451 (3)C12—C131.379 (3)
C4—H40.9300C13—C141.387 (3)
C4—C51.360 (3)C13—O161.361 (2)
C5—H50.9300C14—H140.9300
C6—H60.9300C14—C151.367 (3)
C6—C71.328 (3)C15—H150.9300
C7—H70.9300O16—C171.423 (3)
C7—C81.471 (3)C17—H17A0.9600
C8—O91.228 (3)C17—H17B0.9600
C8—C101.484 (3)C17—H17C0.9600
C5—S1—C292.07 (11)C15—C10—C8119.1 (2)
S1—C2—H2123.8C10—C11—H11119.0
C3—C2—S1112.49 (18)C12—C11—C10122.0 (2)
C3—C2—H2123.8C12—C11—H11119.0
C2—C3—C4110.8 (2)C11—C12—H12120.3
C2—C3—C6123.5 (2)C13—C12—C11119.5 (2)
C4—C3—C6125.60 (19)C13—C12—H12120.3
C3—C4—H4123.4C12—C13—C14119.44 (19)
C5—C4—C3113.1 (2)O16—C13—C12125.0 (2)
C5—C4—H4123.4O16—C13—C14115.54 (19)
S1—C5—H5124.3C13—C14—H14119.9
C4—C5—S1111.50 (18)C15—C14—C13120.2 (2)
C4—C5—H5124.3C15—C14—H14119.9
C3—C6—H6117.0C10—C15—H15119.3
C7—C6—C3125.9 (2)C14—C15—C10121.4 (2)
C7—C6—H6117.0C14—C15—H15119.3
C6—C7—H7118.8C13—O16—C17118.08 (18)
C6—C7—C8122.3 (2)O16—C17—H17A109.5
C8—C7—H7118.8O16—C17—H17B109.5
C7—C8—C10118.9 (2)O16—C17—H17C109.5
O9—C8—C7120.8 (2)H17A—C17—H17B109.5
O9—C8—C10120.3 (2)H17A—C17—H17C109.5
C11—C10—C8123.42 (19)H17B—C17—H17C109.5
C11—C10—C15117.43 (19)
S1—C2—C3—C41.0 (2)C8—C10—C11—C12178.1 (2)
S1—C2—C3—C6176.32 (16)C8—C10—C15—C14179.6 (2)
C2—S1—C5—C40.02 (19)O9—C8—C10—C11162.0 (2)
C2—C3—C4—C51.1 (3)O9—C8—C10—C1517.9 (3)
C2—C3—C6—C7179.7 (2)C10—C11—C12—C131.6 (4)
C3—C4—C5—S10.6 (3)C11—C10—C15—C140.3 (4)
C3—C6—C7—C8177.8 (2)C11—C12—C13—C140.1 (3)
C4—C3—C6—C73.3 (4)C11—C12—C13—O16178.9 (2)
C5—S1—C2—C30.60 (18)C12—C13—C14—C151.6 (4)
C6—C3—C4—C5176.2 (2)C12—C13—O16—C171.6 (3)
C6—C7—C8—O913.0 (3)C13—C14—C15—C101.4 (4)
C6—C7—C8—C10166.6 (2)C14—C13—O16—C17179.5 (2)
C7—C8—C10—C1118.4 (3)C15—C10—C11—C121.8 (3)
C7—C8—C10—C15161.7 (2)O16—C13—C14—C15179.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C2–C5 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.943.602 (2)129
C11—H11···Cg1ii0.932.993.598 (2)125
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.
1-(4-Ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one (3) top
Crystal data top
C15H14O2SF(000) = 544
Mr = 258.32Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.5120 (8) ÅCell parameters from 4827 reflections
b = 7.7851 (5) Åθ = 3.3–27.9°
c = 10.4913 (5) ŵ = 0.23 mm1
β = 96.813 (4)°T = 294 K
V = 1339.11 (13) Å3Block, white
Z = 40.5 × 0.35 × 0.15 mm
Data collection top
SuperNova, single source at offset/far, Eos
diffractometer
2734 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2162 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 99
Tmin = 0.733, Tmax = 1.000l = 1213
13246 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4069P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
2734 reflectionsΔρmin = 0.28 e Å3
165 parametersExtinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0073 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28921 (3)0.41932 (9)0.57261 (6)0.0697 (3)
C20.35583 (12)0.4427 (3)0.70816 (19)0.0558 (5)
H20.3408520.4816080.7858550.067*
C30.43322 (11)0.3985 (2)0.69052 (17)0.0458 (4)
C40.43736 (12)0.3435 (3)0.56166 (18)0.0551 (5)
H40.4853240.3079320.5313180.066*
C50.36332 (13)0.3486 (3)0.4872 (2)0.0588 (5)
H50.3549210.3172380.4011530.071*
C60.50131 (12)0.4082 (2)0.79107 (18)0.0483 (5)
H60.4898590.4432680.8717630.058*
C70.57803 (12)0.3718 (3)0.77867 (18)0.0518 (5)
H70.5912010.3359930.6991100.062*
C80.64340 (12)0.3860 (3)0.88615 (17)0.0490 (5)
O90.62809 (9)0.3934 (2)0.99739 (13)0.0670 (5)
C100.72986 (12)0.3954 (2)0.85742 (17)0.0476 (5)
C110.75356 (12)0.3597 (3)0.73833 (18)0.0540 (5)
H110.7142510.3290230.6712660.065*
C120.83455 (13)0.3684 (3)0.7166 (2)0.0594 (5)
H120.8492810.3443130.6355920.071*
C130.89322 (13)0.4129 (3)0.8157 (2)0.0568 (5)
C140.87043 (13)0.4512 (3)0.9360 (2)0.0618 (6)
H140.9096750.4830561.0028230.074*
C150.79065 (13)0.4420 (3)0.95555 (19)0.0571 (5)
H150.7761040.4672651.0364270.069*
O160.97471 (9)0.4227 (2)0.80525 (16)0.0762 (5)
C171.00141 (16)0.3853 (4)0.6849 (3)0.0901 (9)
H17A0.9783640.4674140.6210980.108*
H17B0.9836040.2712090.6569900.108*
C181.09277 (17)0.3952 (5)0.6991 (4)0.1138 (13)
H18A1.1119880.3642580.6193070.171*
H18B1.1150250.3174380.7651280.171*
H18C1.1097710.5102230.7217730.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0502 (4)0.0898 (5)0.0684 (4)0.0040 (3)0.0052 (3)0.0000 (3)
C20.0549 (12)0.0668 (13)0.0479 (11)0.0079 (10)0.0153 (9)0.0016 (9)
C30.0481 (10)0.0477 (10)0.0430 (10)0.0015 (8)0.0115 (8)0.0017 (8)
C40.0505 (11)0.0663 (13)0.0500 (11)0.0015 (9)0.0128 (9)0.0087 (9)
C50.0619 (13)0.0676 (13)0.0472 (11)0.0005 (10)0.0072 (9)0.0116 (10)
C60.0522 (11)0.0544 (11)0.0397 (9)0.0043 (8)0.0118 (8)0.0013 (8)
C70.0507 (11)0.0654 (13)0.0400 (10)0.0021 (9)0.0090 (8)0.0020 (9)
C80.0506 (11)0.0582 (12)0.0387 (10)0.0054 (9)0.0077 (8)0.0025 (8)
O90.0584 (9)0.1032 (13)0.0407 (8)0.0094 (8)0.0111 (6)0.0024 (7)
C100.0506 (11)0.0527 (11)0.0393 (9)0.0030 (8)0.0047 (8)0.0035 (8)
C110.0491 (11)0.0707 (14)0.0422 (10)0.0022 (9)0.0049 (8)0.0041 (9)
C120.0534 (12)0.0780 (15)0.0476 (11)0.0027 (10)0.0098 (9)0.0075 (10)
C130.0461 (11)0.0669 (14)0.0580 (12)0.0025 (9)0.0089 (9)0.0003 (10)
C140.0550 (12)0.0813 (16)0.0472 (11)0.0048 (11)0.0020 (9)0.0035 (10)
C150.0553 (12)0.0759 (14)0.0398 (10)0.0003 (10)0.0045 (9)0.0005 (9)
O160.0476 (9)0.1096 (15)0.0726 (11)0.0107 (8)0.0115 (7)0.0139 (9)
C170.0590 (15)0.121 (2)0.095 (2)0.0131 (14)0.0279 (14)0.0264 (17)
C180.0593 (16)0.135 (3)0.153 (3)0.0193 (16)0.0391 (18)0.049 (2)
Geometric parameters (Å, º) top
S1—C21.701 (2)C11—H110.9300
S1—C51.692 (2)C11—C121.385 (3)
C2—H20.9300C12—H120.9300
C2—C31.357 (3)C12—C131.379 (3)
C3—C41.427 (3)C13—C141.392 (3)
C3—C61.450 (3)C13—O161.365 (3)
C4—H40.9300C14—H140.9300
C4—C51.371 (3)C14—C151.359 (3)
C5—H50.9300C15—H150.9300
C6—H60.9300O16—C171.416 (3)
C6—C71.319 (3)C17—H17A0.9700
C7—H70.9300C17—H17B0.9700
C7—C81.470 (3)C17—C181.500 (4)
C8—O91.224 (2)C18—H18A0.9600
C8—C101.496 (3)C18—H18B0.9600
C10—C111.381 (3)C18—H18C0.9600
C10—C151.398 (3)
C5—S1—C292.34 (10)C12—C11—H11119.3
S1—C2—H2123.7C11—C12—H12120.2
C3—C2—S1112.62 (15)C13—C12—C11119.60 (19)
C3—C2—H2123.7C13—C12—H12120.2
C2—C3—C4110.92 (18)C12—C13—C14119.8 (2)
C2—C3—C6123.30 (17)O16—C13—C12124.39 (19)
C4—C3—C6125.79 (17)O16—C13—C14115.84 (19)
C3—C4—H4123.5C13—C14—H14120.1
C5—C4—C3113.01 (18)C15—C14—C13119.78 (19)
C5—C4—H4123.5C15—C14—H14120.1
S1—C5—H5124.4C10—C15—H15119.1
C4—C5—S1111.11 (15)C14—C15—C10121.80 (19)
C4—C5—H5124.4C14—C15—H15119.1
C3—C6—H6117.0C13—O16—C17118.30 (18)
C7—C6—C3126.00 (18)O16—C17—H17A110.0
C7—C6—H6117.0O16—C17—H17B110.0
C6—C7—H7118.8O16—C17—C18108.5 (2)
C6—C7—C8122.31 (18)H17A—C17—H17B108.4
C8—C7—H7118.8C18—C17—H17A110.0
C7—C8—C10118.74 (16)C18—C17—H17B110.0
O9—C8—C7121.26 (18)C17—C18—H18A109.5
O9—C8—C10119.99 (17)C17—C18—H18B109.5
C11—C10—C8123.51 (17)C17—C18—H18C109.5
C11—C10—C15117.56 (18)H18A—C18—H18B109.5
C15—C10—C8118.92 (17)H18A—C18—H18C109.5
C10—C11—H11119.3H18B—C18—H18C109.5
C10—C11—C12121.47 (19)
S1—C2—C3—C40.1 (2)C8—C10—C15—C14179.3 (2)
S1—C2—C3—C6179.55 (15)O9—C8—C10—C11168.8 (2)
C2—S1—C5—C40.05 (18)O9—C8—C10—C1510.9 (3)
C2—C3—C4—C50.1 (3)C10—C11—C12—C130.3 (3)
C2—C3—C6—C7177.9 (2)C11—C10—C15—C140.4 (3)
C3—C4—C5—S10.0 (2)C11—C12—C13—C141.0 (3)
C3—C6—C7—C8179.75 (18)C11—C12—C13—O16178.9 (2)
C4—C3—C6—C71.8 (3)C12—C13—C14—C151.0 (3)
C5—S1—C2—C30.11 (18)C12—C13—O16—C170.2 (3)
C6—C3—C4—C5179.58 (19)C13—C14—C15—C100.3 (4)
C6—C7—C8—O917.1 (3)C13—O16—C17—C18177.0 (2)
C6—C7—C8—C10161.57 (19)C14—C13—O16—C17179.9 (2)
C7—C8—C10—C1112.6 (3)C15—C10—C11—C120.4 (3)
C7—C8—C10—C15167.75 (19)O16—C13—C14—C15178.9 (2)
C8—C10—C11—C12179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O9i0.932.473.324 (2)153
Symmetry code: (i) x+1, y+1, z+2.
1-(4-Bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one (4) top
Crystal data top
C13H9BrOSF(000) = 584
Mr = 293.17Dx = 1.667 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.1245 (7) ÅCell parameters from 4399 reflections
b = 14.2016 (13) Åθ = 2.9–27.3°
c = 5.8809 (4) ŵ = 3.67 mm1
β = 98.081 (6)°T = 293 K
V = 1167.93 (15) Å3Plate, yellow
Z = 40.4 × 0.4 × 0.05 mm
Data collection top
SuperNova, single source at offset/far, Eos
diffractometer
2392 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1683 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1717
Tmin = 0.367, Tmax = 1.000l = 77
12050 measured reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7623P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2392 reflectionsΔρmax = 0.40 e Å3
158 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.07255 (13)0.3898 (2)0.4329 (4)0.0574 (6)0.702 (4)
S1B0.1418 (5)0.3457 (7)0.2749 (13)0.0574 (6)0.298 (4)
C2A0.1532 (7)0.412 (2)0.663 (3)0.048 (3)0.702 (4)
H2A0.1373550.4397120.7956940.058*0.702 (4)
C2B0.2476 (16)0.341 (5)0.438 (6)0.048 (3)0.298 (4)
H2B0.3011230.3105160.3970880.058*0.298 (4)
C30.2452 (2)0.3858 (2)0.6388 (5)0.0417 (8)
C4A0.2461 (7)0.3456 (17)0.416 (2)0.048 (3)0.702 (4)
H4A0.3024960.3261950.3654010.058*0.702 (4)
C4B0.1551 (18)0.422 (5)0.664 (6)0.048 (3)0.298 (4)
H4B0.1425720.4555620.7925130.058*0.298 (4)
C5A0.1586 (7)0.3375 (9)0.2809 (18)0.053 (3)0.702 (4)
H5A0.1468450.3097320.1365000.063*0.702 (4)
C5B0.0855 (10)0.4021 (19)0.475 (3)0.053 (3)0.298 (4)
H5B0.0208040.4168910.4610470.063*0.298 (4)
C60.3264 (2)0.3933 (2)0.8186 (6)0.0451 (8)
H60.3136820.4146960.9606220.054*
C70.4168 (2)0.3729 (2)0.8023 (6)0.0485 (9)
H70.4332840.3566730.6598230.058*
C80.4916 (3)0.3752 (2)1.0027 (6)0.0460 (8)
O90.4718 (2)0.3764 (2)1.1988 (4)0.0676 (8)
C100.5938 (2)0.3754 (2)0.9658 (5)0.0403 (8)
C110.6238 (2)0.4075 (2)0.7646 (6)0.0451 (8)
H110.5787940.4281360.6442290.054*
C120.7202 (3)0.4092 (3)0.7410 (6)0.0470 (8)
H120.7400870.4324270.6076490.056*
C130.7860 (2)0.3760 (2)0.9180 (6)0.0434 (8)
C140.7584 (3)0.3438 (3)1.1203 (6)0.0491 (9)
H140.8035700.3220821.2390690.059*
C150.6624 (2)0.3447 (2)1.1429 (6)0.0447 (8)
H150.6432920.3242271.2796030.054*
Br160.91660 (3)0.37156 (4)0.88024 (8)0.0730 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0459 (8)0.0718 (14)0.0532 (11)0.0051 (8)0.0029 (6)0.0014 (9)
S1B0.0459 (8)0.0718 (14)0.0532 (11)0.0051 (8)0.0029 (6)0.0014 (9)
C2A0.044 (4)0.056 (10)0.045 (4)0.006 (4)0.010 (3)0.004 (4)
C2B0.044 (4)0.056 (10)0.045 (4)0.006 (4)0.010 (3)0.004 (4)
C30.0453 (19)0.0398 (19)0.0417 (18)0.0020 (15)0.0115 (15)0.0021 (15)
C4A0.052 (4)0.051 (5)0.043 (5)0.002 (3)0.013 (3)0.006 (5)
C4B0.052 (4)0.051 (5)0.043 (5)0.002 (3)0.013 (3)0.006 (5)
C5A0.058 (6)0.055 (5)0.051 (4)0.015 (4)0.025 (4)0.013 (3)
C5B0.058 (6)0.055 (5)0.051 (4)0.015 (4)0.025 (4)0.013 (3)
C60.045 (2)0.051 (2)0.0416 (19)0.0044 (16)0.0107 (15)0.0040 (15)
C70.047 (2)0.054 (2)0.0452 (19)0.0018 (17)0.0105 (16)0.0068 (16)
C80.0447 (19)0.050 (2)0.045 (2)0.0020 (16)0.0112 (16)0.0036 (16)
O90.0531 (16)0.107 (3)0.0450 (15)0.0056 (14)0.0139 (12)0.0000 (14)
C100.0455 (19)0.0372 (18)0.0386 (18)0.0011 (15)0.0075 (15)0.0038 (14)
C110.049 (2)0.050 (2)0.0350 (18)0.0028 (17)0.0007 (15)0.0004 (15)
C120.054 (2)0.051 (2)0.0366 (18)0.0055 (17)0.0101 (16)0.0013 (16)
C130.0382 (18)0.045 (2)0.048 (2)0.0061 (15)0.0075 (15)0.0056 (16)
C140.051 (2)0.050 (2)0.0426 (19)0.0004 (17)0.0036 (16)0.0041 (16)
C150.050 (2)0.048 (2)0.0363 (18)0.0041 (17)0.0062 (15)0.0021 (15)
Br160.0430 (3)0.0970 (4)0.0803 (4)0.0074 (2)0.0128 (2)0.0047 (2)
Geometric parameters (Å, º) top
S1A—C2A1.671 (8)C6—H60.9300
C2A—H2A0.9300C6—C71.325 (5)
S1B—C2B1.661 (16)C7—H70.9300
C2B—H2B0.9300C7—C81.469 (5)
C2A—C31.378 (9)C8—O91.224 (4)
C2B—C31.347 (16)C8—C101.489 (5)
C4A—H4A0.9300C10—C111.389 (5)
C4B—H4B0.9300C10—C151.390 (5)
S1A—C5A1.770 (8)C11—H110.9300
C4A—C5A1.378 (11)C11—C121.388 (5)
C5A—H5A0.9300C12—H120.9300
S1B—C5B1.708 (15)C12—C131.378 (5)
C4B—C5B1.407 (16)C13—C141.381 (5)
C5B—H5B0.9300C13—Br161.890 (3)
C3—C4A1.431 (8)C14—H140.9300
C3—C4B1.400 (16)C14—C151.381 (5)
C3—C61.451 (5)C15—H150.9300
C4A—C5A—S1A107.3 (6)C7—C6—C3127.0 (3)
C4B—C5B—S1B107.4 (9)C7—C6—H6116.5
S1A—C2A—H2A122.9C6—C7—H7119.0
S1B—C2B—H2B124.6C6—C7—C8121.9 (3)
C5A—C4A—C3116.0 (7)C8—C7—H7119.0
C5A—C4A—H4A122.0C7—C8—C10119.1 (3)
C5B—C4B—H4B123.6O9—C8—C7121.5 (3)
C2A—S1A—C5A92.8 (4)O9—C8—C10119.5 (3)
S1A—C5A—H5A126.3C11—C10—C8122.9 (3)
C4A—C5A—H5A126.3C11—C10—C15118.5 (3)
C2B—S1B—C5B95.2 (7)C15—C10—C8118.6 (3)
C4B—C5B—H5B126.3C10—C11—H11119.6
S1B—C5B—H5B126.3C12—C11—C10120.8 (3)
C2A—C3—C4A109.4 (5)C12—C11—H11119.6
C2B—C3—C4B113.8 (9)C11—C12—H12120.5
C4A—C3—C6126.0 (4)C13—C12—C11119.1 (3)
C4B—C3—C6122.2 (7)C13—C12—H12120.5
C2B—C3—C6124.0 (7)C12—C13—C14121.5 (3)
C2A—C3—C6124.5 (5)C12—C13—Br16119.2 (3)
C3—C6—H6116.5C14—C13—Br16119.3 (3)
C3—C2A—S1A114.3 (5)C13—C14—H14120.7
C3—C2B—S1B110.7 (9)C15—C14—C13118.7 (3)
C3—C2A—H2A122.9C15—C14—H14120.7
C3—C2B—H2B124.6C10—C15—H15119.3
C3—C4A—H4A122.0C14—C15—C10121.5 (3)
C3—C4B—H4B123.6C14—C15—H15119.3
C3—C4B—C5B112.7 (11)
C2A—S1A—C5A—C4A3 (2)C6—C3—C4B—C5B176 (3)
C2B—S1B—C5B—C4B4 (5)C6—C7—C8—O915.6 (6)
C5B—S1B—C2B—C34 (5)C6—C7—C8—C10164.9 (3)
C5A—S1A—C2A—C32 (2)C7—C8—C10—C1124.4 (5)
S1A—C2A—C3—C4A0 (2)C7—C8—C10—C15157.6 (3)
S1B—C2B—C3—C4B2 (5)C8—C10—C11—C12177.8 (3)
S1B—C2B—C3—C6179.7 (18)C8—C10—C15—C14179.4 (3)
S1A—C2A—C3—C6176.6 (10)O9—C8—C10—C11156.0 (4)
C2A—C3—C6—C7177.0 (17)O9—C8—C10—C1522.0 (5)
C2B—C3—C6—C713 (4)C10—C11—C12—C131.8 (5)
C4A—C3—C6—C76.9 (15)C11—C10—C15—C141.3 (5)
C4B—C3—C6—C7170 (4)C11—C12—C13—C142.0 (5)
C2A—C3—C4A—C5A3 (2)C11—C12—C13—Br16176.5 (3)
C2B—C3—C4B—C5B1 (6)C12—C13—C14—C150.5 (5)
C3—C4B—C5B—S1B4 (7)C13—C14—C15—C101.2 (5)
C3—C4A—C5A—S1A4 (2)C15—C10—C11—C120.2 (5)
C3—C6—C7—C8174.3 (3)Br16—C13—C14—C15177.9 (3)
C6—C3—C4A—C5A173.8 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the major- and minor-disorder components of the thiophene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C5A—H5A···Cg1i0.932.803.493 (14)132
C5A—H5A···Cg2i0.932.853.52 (2)130
Symmetry code: (i) x, y+1/2, z1/2.
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for compounds (1-4). top
Contact1234
H···H28.833.544.528.5
S···H/H···S13.011.610.23.9
C···H/H···C30.433.922.132.6
O···H/H···O18.515.813.811.1
C···C3.20.74.52.4
C···S/S···C3.70.93.50.0
S···S0.01.50.00.0
S···O/O···S0.30.00.10.0
C···O/O···C1.81.61.01.0
O···O0.00.60.00.0
Br···S/S···Br2.8
Br···C/C···Br0.6
Br···H/H···Br16.5
Br···O/O···Br0.0
Br···Br0.5
 

Funding information

This research was funded by the Vietnam Ministry of Education and Training under grant number B2019-SPH.562–05. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

References

First citationAmslinger, S. (2010). Chem. Med. Chem. 5, 351–356.  Web of Science CrossRef CAS PubMed Google Scholar
First citationArshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationBukhari, S. N., Jantan, I., Masand, V. H., Mahajan, D. T., Sher, M., Naeem-ul-Hassan, M. & Amjad, M. W. (2014). Eur. J. Med. Chem. 83, 355–365.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301.  Google Scholar
First citationGillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164–o4165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLaddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509–513.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.  CAS Google Scholar
First citationOyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark Choo, H. Y., Peak, K.-H., Park, J., Kim, D. H. & Chung, H. S. (2000). Eur. J. Med. Chem. 35, 643–648.  Web of Science PubMed CAS Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718–o3720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds