research communications
Some
derived from thiophene-3-carbaldehyde: synthesis and crystal structuresaFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cC Hai Hau High School, Con Town, Hai Hau District, Nam Dinh Province, Vietnam, dInstitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, eGraduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and fDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, Luc.VanMeervelt@kuleuven.be
The synthesis, spectroscopic data and crystal and molecular structures of four 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives, namely 1-(4-hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four have been synthesized by reaction of thiophene-3-carbaldehyde with an acetophenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thiophene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thiophene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The molecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O interactions. In addition, C—H⋯π(thiophene) interactions in 2 and C—H⋯S(thiophene) interactions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thiophene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.
1. Chemical context
β-position of the unsaturated system (Amslinger, 2010). Many chalcone derivatives containing an α,β-unsaturated carbonyl show potential biological applications such as being effective against amyloid β-induced cytotoxicity (Bukhari et al., 2014) and irreversibly angiotensin-converting enzyme inhibitors (Hea-Young Park Choo et al., 2000).
typically referred to as Michael acceptors, can react with nucleophiles at the electrophilicThiophene, C4H4S, belongs to a class of aromatic five-membered heterocycles containing one S heteroatom. Many thiophene derivatives exhibit biological activities: antibacterial (Mishra et al., 2012), antiallergic (Gillespie et al., 1985), analgesic (Laddi et al., 1998), and act as anti-inflammatory agents (Ferreira et al., 2006), antioxidant agents (Jarak et al., 2005) and antitumor agents (Gadad et al., 1994). With the introduction of a thiophene ring into it was hoped to design with interesting new structures and properties. The addition of the thiophene ring to an α,β-unsaturated carbonyl group has also been investigated for a substitution at the Cα atom of the thiophene ring (Harrison et al., 2006).
Recently, some thiophene derivatives, such as N-(4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)-2-(thiophen-3-yl)acetamide (Vu Quoc et al., 2017) and 4-phenyl-3-(thiophen-3-yl-methyl)-1H-1,2,4-triazole-5(4H)-thione (Vu Quoc et al., 2018), were synthesized by us and their crystal structures were investigated by X-ray diffraction.
In this study, we present the synthesis and 1–4) containing a thiophene ring: 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives containing –OH, –OCH3, –OCH2CH3 and –Br at the para position of the phenyl ring.
of four (2. Structural commentary
The asymmetric units of 1, 2, 3 and 4 are illustrated in Figs. 1, 2, 3 and 4, respectively. The thiophene group in 4 is disordered over two orientations by a rotation of about 180° about the C3—C6 bond in a 0.702 (4): 0.298 (4) ratio. Chalcone 1 bearing the –OH substituent is almost planar, with the dihedral angle between the thiophene and phenyl rings being 4.73 (12)°. For the other the deviation from planarity is significant, as illustrated by the dihedral angles: 12.36 (11)° for 2, 17.44 (11)° for 3 and 46.1 (6) and 48.6 (6)° for 4. The C6=C7 bond lengths [1.329 (3) Å for 1, 1.328 (3) Å for 2, 1.319 (3) Å for 3 and 1.325 (5) Å for 4] are almost identical. The configuration of the C6=C7 bond can be described as E [torsion angles C3—C6—C7—C8 are −175.4 (2), −177.8 (2), 179.75 (18) and −174.3 (3)° for 1–4, respectively]. For 1, this E configuration gives rise to an intramolecular C6—H6⋯O9 interaction (Table 1). The substituent at the para-position of the phenyl ring has no significant influence on the C8=O9 bond length [1.232 (3) Å in 1, 1.228 (3) Å in 2, 1.224 (2) Å in 3 and 1.224 (4) Å in 4].
3. Supramolecular features
In chalcone derivative 1, which crystallizes in the orthorhombic Pbca, the –OH substituent is involved as donor in intermolecular O16—H16⋯O9i [symmetry code: (i) x + , y, − z] hydrogen bonding, resulting in the formation of chains of molecules running in the a-axis direction (Fig. 5, Table 1). As acceptor, the –OH substituent interacts by intermolecular C11—H11⋯O16 hydrogen bonding (Fig. 5, Table 1).
Crystals of 2–4 belong to the monoclinic P21/c. The crystal packing of 2 is characterized by inversion-dimer formation between the methoxy groups by weak C17—H17B⋯O16i interactions [H17⋯O16i = 2.61 Å; symmetry code (i): −x + 1, −y + 2, −z + 2] and C—H⋯π(thiophene) interactions (C5—H5⋯Cg1ii and C11—H11⋯Cg1iii; for details see Table 2 and Fig. 6).
|
In the packing of 3, C2—H2⋯O9i interactions result in dimeric units forming rings of R22(14) graph-set motif [symmetry code (i): 1 − x, 1 − y, 2 − z; Table 3, Fig. 7]. In addition, two weaker interactions are present in the packing. Inversion dimers are formed by C14—H14⋯O16ii interactions [H14⋯O16ii = 2.71 Å; symmetry code: (ii) −x + 2, −y + 1, −z + 2] enclosing an R22(8) ring motif. Chains of molecules running in the a-axis direction are the consequence of C18iii—H18Aiii⋯S1 interactions [H18Aiii⋯S1 = 3.05 Å; symmetry code: (iii) x − 1, y, z]. These intermolecular interactions result in the formation of sheets of molecules parallel to the ac plane (Fig. 7).
In the packing of 4, chains running in the c-axis direction are formed by C5—H5⋯π(thiophene) interactions (Table 4, Fig. 8). At the other side of the molecule, the closest contact for the Br16 atom is with H14 [Br16⋯H14i = 3.23 Å; Fig.8]. The shortest Br⋯Br distance [4.4621 (11) Å] in the crystal packing is Br16⋯Br16ii [symmetry code: (ii) −x + 2, −y + 1, −z + 2].
No voids or π–π stackings are observed in the crystal packing of 1–4.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016) for 3-(3-thienyl)prop-2-en-1-one gave three hits, viz. AYUPIU (Shalini et al., 2011), IBIRUJ (Oyarce et al., 2017) and UNAJIE (Baggio et al., 2016).
The configuration about the double bonds in the symmetrical 1,5-bis(thiophen-3-yl)penta-1,4-dien-3-one (AYUPIU; Shalini et al., 2011) is twice E. The dihedral angle between the terminal thiophene rings is 15.45 (10)°. In the crystal packing, C—H⋯O interactions link the molecules into arrays in the ac plane that are further connected by C—H⋯π interactions.
Both thiophene rings in 3-hydroxy-1-(thiophen-2-yl)-3-(thiophen-3-yl)prop-2-en-1-one (IBIRUJ; Oyarce et al., 2017) are disordered; the major-disorder components are inclined to each other by 12.1 (3)°. Chains of molecules running in the c-axis direction are formed through C—H⋯O interactions.
In the crystal of 1,3-bis(3-thienyl)prop-2-en-1-one (UNAJIE; Baggio et al., 2016), the stereochemistry about the double bond is E and the dihedral angle between the thiophene rings is 8.88 (10)°. Columns of stacking molecules along [010] indicate that π–π interactions play an important role in the crystal packing, together with C—H⋯O hydrogen bonds between the columns.
A search for 1-phenyl-3-(2-thienyl)prop-2-en-1-one allowing substitution at the phenyl ring resulted in 19 hits of which the compound 1-(4-bromophenyl)-3-(2-thienyl)prop-2-en-1-one (GENXED; Patil et al., 2006; GENXED01; Arshad et al., 2017) is the 2-thienyl derivative of 4. In addition to similar cell parameters, the thiophene ring also shows rotational disorder [ratio 0.791 (2):0.209 (2) for GENXED; Patil et al., 2006] and the angles between thiophene and phenyl rings are comparable [46.49 (11) and 48.4 (3)° for GENXED; Patil et al., 2006].
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces of compounds 1–4 mapped over dnorm are given in Fig. 9. The relative distributions from the different interatomic contacts to the Hirshfeld surfaces are presented in Table 5.
|
The bright-red spots in Fig. 9a near atoms O16 and O9 are indicative for the O16—H16⋯O9 hydrogen bond in the crystal packing of 1. The additional faint-red spots illustrate C—H⋯O interactions. The most significant contributions to the Hirshfeld surface are from C⋯H/H⋯C (30.4%), H⋯H (28.8%) and O⋯H/H⋯O (18.5%) contacts (Table 5).
For compound 2, the donor and acceptor of the relatively weak C17—H17B⋯O16 interaction are viewed as diminutive red spots near atoms H17B and O16 in Fig. 9b. The C—H⋯π(thiophene) interactions are indicated by the high contribution from C⋯H/H⋯C contacts (33.9%) to the Hirshfeld surface (Table 5).
The bright-red spots in Fig. 9c near atoms O9 and H2 of 3 refer to the strong C2—H2⋯O9 dimer formation, while the faint-red spots near atoms O16 and H14 are indicative for the relatively weak C14—H14⋯O16 dimer formation. Near atom C2 another faint-red spot refers to a contact (2.73 Å) with atom H5.
The Hirshfeld surface mapped over dnorm for 4 (Fig. 9d) shows no short interatomic contacts. Again the C—H⋯π interaction with the disordered thiophene ring is reflected in the high contribution from C⋯H/H⋯C contacts (32.6%) to the Hirshfeld surface (Table 5).
For the four derivatives, the largest contributions of interatomic contacts to the Hirshfeld surface are contacts in which H atoms are involved (Table 5).
6. Synthesis and crystallization
The reaction scheme to synthesize the title compounds 1–4 is given in Fig. 10.
Synthesis of α,β-unsaturated ketone compounds 1–4:
In a 250 mL beaker, thiophene-3-carbaldehyde (0.1 mole) and substituted acetophenone (0.1 mol) were dissolved in ethanol (100 mL). To this mixture, a 50% KOH (10 mL) solution was added and the mixture was stirred by a magnetic stirrer for 5 h at room temperature until a precipitate appeared. The products 1–4 were obtained as solids, which were filtered under low pressure and recrystallized from ethanol.
Data for 3-(3-(4-hydroxyphenyl)prop-1-ene-3-one-1-yl)thiophene (1):
Yellow crystals; yield 90%; m.p. 388 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3456.8 (OH), 2983.3 (CH aromatic, alkene), 1643.1 (C=O), 1596.8 (C=C, C=N), 1037.4 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 6.93 (d, 2H, J = 9.0, H11,11′), 7.34 (d, 1H, J = 15.5, H7), 7.37 (d, 1H, J = 2, J = 3, H2), 7.41 (dd, 1H, J = 5, H4), 7.59 (dd, 1H, J = 5.5, H5), 7.79 (d, 1H, J = 15.5, H6), 7.98 (d, 2H, J = 8.5, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.63 (C2); 128.79 (C3), 126.98 (C4); 125.26 (C5); 131.39 (C6); 131.07 (C7); 189.0 (C8); 159.84 (C9); 138.33 (C10,10′); 137.64 (C11,11′); 115.4 (C12). Calculation for C13H10O2S: M = 230 au.
Data for 3-(3-(4-methoxyphenyl)prop-1-ene-3-one-1-yl)thiophene (2):
White crystals; yield 70%; m.p. 378 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3009.3 (CH alkane), 2974.3 (CH aromatic, alkene), 1651.1 (C=O), 1597.5 (C=C, C=N), 1017.2 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 3.89 (s, 3H, OCH3), 6.98 (d, 2H, J = 9.0, H11,11′), 7.35 (d, 1H, J = 15.5, H7), 7.36 (dd, 1H, J = 2.5, J = 5, H2), 7.42 (d, 1H, J = 5, H4), 7.58 (dd, 1H, J = 2.5, H5), 7.79 (d, 1H, J = 16, H6), 8.02 (d, 2H, J = 9, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.70 (C2), 128.68 (C3), 126.94 (C4), 125.28 (C5), 131.19 (C6), 130.74 (C7), 188.96 (C8), 163.41 (C9), 138.37 (C10,10′), 137.44 (C11,11′), 113.85 (C12), 55.5 (OCH3). Calculation for C14H12O2S: M = 244 au.
Data for 3-(3-(4-ethoxyphenyl)prop-1-ene-3-one-1-yl)thiophene (3):
White crystals; yield 50%; m.p. 380 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3010.6 (CH alkane), 2983.3 (CH aromatic, alkene), 1657.1 (C=O), 1596.7 (C=C, C=N), 1011.4 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 1.53 (t, 3H, J = 7, OCH2CH3), 4.12 (q, 2H, J = 7, 7, OCH2CH3), 6.96 (d, 2H, J = 9.0, H11,11′), 7.36 (d, 1H, J = 15.5, H7), 7.36 (d, 1H, J = 2, J = 3, H2), 7.42 (dd, 1H, J = 1.5, J = 5, H4), 7.58 (dd, 1H, J = 1.5, J = 5.5, H5), 7.78 (d, 1H, J = 15.5, H6), 8.01 (d, 2H, J = 9, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.73 (C2); 128.63 (C3), 126.93 (C4); 125.29 (C5); 131.00 (C6); 130.75 (C7); 188.96 (C8); 162.85 (C9); 138.4 (C10,10′); 137.37 (C11,11′); 114.3 (C12); 63.80 (OCH2CH3); 14.7 (OCH2CH3). Calculation for C15H14O2S: M = 258 au.
Data for 3-(3-(4-bromophenyl)prop-1-ene-3-one-1-yl)thiophene (4):
Bright-yellow crystals; yield 99%; m.p. 353 K; IR (Nicolet Impact 410 FT–IR, KBr, cm−1): 3090.7 (CH aromatic, alkene), 1654.5 (C=O), 1595.8 (C=C, C=N), 1006.1 [–CH=(trans)]; 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 6.69 (d, 2H, J = 9.0, H11,11′), 7.35 (d, 1H, J = 15.5, H7), 7.36 (dd, 1H, J = 3, J = 5.5, H2), 7.41 (d, 1H, J = 5.5, H4), 7.56 (dd, 1H, J = 3, H5), 7.77(d, 1H, J = 15.5, H6), 7.91 (d, 2H, J = 8.5, H10,10′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 121.29 (C2), 127.81 (C3), 127.18 (C4), 125.21 (C5), 129.97 (C6), 131.93 (C7), 189.66 (C8), 138.81 (C9), 138.81 (C10,10′), 138.05(C11,11′), 129.50 (C12). Calculation for C13H9OSBr: M = 293 au.
7. Refinement
Crystal data, data collection and structure .
details are summarized in Table 6
|
All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.93 (aromatic and =CH), 0.96 (CH3) and 0.97 Å (CH2), and O—H distances of 0.82 Å (rotating OH).
In 4, the thiophene ring was disordered over two positions [population parameters 0.702 (4) and 0.298 (4)] and was refined with restraints for the bond lengths and angles in the ring. The anisotropic temperature factors for atoms S1, C2, C4 and C5 in both orientations were constrained to be equal. In the final cycles of two and one outliers were omitted for 1 and 2, respectively.
Supporting information
https://doi.org/10.1107/S2056989019007503/lh5905sup1.cif
contains datablocks 1, 2, 3, 4. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019007503/lh59051sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019007503/lh59052sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989019007503/lh59053sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989019007503/lh59054sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007503/lh59051sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007503/lh59052sup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007503/lh59053sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007503/lh59054sup9.cml
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H10O2S | Dx = 1.341 Mg m−3 |
Mr = 230.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3900 reflections |
a = 11.0808 (5) Å | θ = 3.0–27.0° |
b = 9.0251 (5) Å | µ = 0.26 mm−1 |
c = 22.8157 (10) Å | T = 294 K |
V = 2281.69 (19) Å3 | Block, yellow |
Z = 8 | 0.4 × 0.3 × 0.07 mm |
F(000) = 960 |
SuperNova, single source at offset/far, Eos diffractometer | 2333 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1814 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.019 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −4→11 |
Tmin = 0.522, Tmax = 1.000 | l = −27→28 |
9745 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0463P)2 + 1.4972P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2333 reflections | Δρmax = 0.20 e Å−3 |
146 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.89495 (8) | 0.20994 (11) | 0.39007 (3) | 0.0907 (3) | |
C2 | 0.8168 (2) | 0.3325 (4) | 0.43118 (11) | 0.0783 (8) | |
H2 | 0.749344 | 0.383495 | 0.417667 | 0.094* | |
C3 | 0.8629 (2) | 0.3490 (3) | 0.48637 (9) | 0.0533 (6) | |
C4 | 0.9650 (2) | 0.2575 (3) | 0.49383 (11) | 0.0637 (7) | |
H4 | 1.008933 | 0.252750 | 0.528507 | 0.076* | |
C5 | 0.9932 (2) | 0.1760 (3) | 0.44462 (11) | 0.0704 (7) | |
H5 | 1.058032 | 0.110896 | 0.441931 | 0.085* | |
C6 | 0.8079 (2) | 0.4425 (3) | 0.53031 (10) | 0.0550 (6) | |
H6 | 0.738492 | 0.493292 | 0.519204 | 0.066* | |
C7 | 0.8460 (2) | 0.4637 (3) | 0.58489 (9) | 0.0521 (5) | |
H7 | 0.918191 | 0.420470 | 0.596709 | 0.062* | |
C8 | 0.77790 (19) | 0.5528 (2) | 0.62690 (9) | 0.0486 (5) | |
O9 | 0.67534 (14) | 0.5953 (2) | 0.61457 (7) | 0.0621 (5) | |
C10 | 0.83162 (18) | 0.5889 (2) | 0.68496 (9) | 0.0458 (5) | |
C11 | 0.9339 (2) | 0.5188 (3) | 0.70693 (10) | 0.0511 (5) | |
H11 | 0.973899 | 0.449440 | 0.683877 | 0.061* | |
C12 | 0.9773 (2) | 0.5503 (3) | 0.76226 (10) | 0.0536 (6) | |
H12 | 1.044085 | 0.499832 | 0.776762 | 0.064* | |
C13 | 0.92110 (19) | 0.6570 (2) | 0.79603 (9) | 0.0477 (5) | |
C14 | 0.8212 (2) | 0.7312 (3) | 0.77412 (10) | 0.0545 (6) | |
H14 | 0.784258 | 0.804822 | 0.796302 | 0.065* | |
C15 | 0.77688 (19) | 0.6960 (3) | 0.71980 (10) | 0.0518 (5) | |
H15 | 0.708722 | 0.744893 | 0.705920 | 0.062* | |
O16 | 0.95988 (15) | 0.6936 (2) | 0.85077 (6) | 0.0601 (5) | |
H16 | 1.025310 | 0.654151 | 0.857006 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0964 (6) | 0.1162 (8) | 0.0596 (4) | 0.0193 (5) | −0.0060 (4) | −0.0214 (4) |
C2 | 0.0726 (17) | 0.104 (2) | 0.0583 (15) | 0.0212 (17) | −0.0110 (13) | −0.0091 (15) |
C3 | 0.0502 (12) | 0.0622 (14) | 0.0475 (12) | 0.0007 (11) | 0.0014 (10) | 0.0023 (11) |
C4 | 0.0598 (14) | 0.0797 (17) | 0.0515 (13) | 0.0102 (13) | −0.0034 (11) | 0.0004 (12) |
C5 | 0.0670 (15) | 0.0795 (19) | 0.0647 (16) | 0.0183 (15) | 0.0016 (13) | −0.0065 (14) |
C6 | 0.0479 (12) | 0.0638 (15) | 0.0533 (13) | 0.0051 (11) | 0.0010 (10) | 0.0052 (11) |
C7 | 0.0478 (12) | 0.0562 (13) | 0.0522 (12) | 0.0038 (10) | 0.0000 (10) | 0.0012 (10) |
C8 | 0.0475 (12) | 0.0483 (12) | 0.0500 (12) | −0.0017 (10) | 0.0024 (9) | 0.0060 (10) |
O9 | 0.0497 (9) | 0.0816 (12) | 0.0550 (9) | 0.0138 (9) | −0.0052 (7) | −0.0024 (8) |
C10 | 0.0427 (11) | 0.0441 (12) | 0.0507 (12) | −0.0017 (9) | 0.0037 (9) | 0.0038 (9) |
C11 | 0.0498 (12) | 0.0477 (12) | 0.0558 (13) | 0.0051 (10) | −0.0003 (10) | −0.0054 (10) |
C12 | 0.0482 (12) | 0.0522 (13) | 0.0604 (14) | 0.0072 (11) | −0.0063 (10) | −0.0014 (11) |
C13 | 0.0466 (11) | 0.0492 (12) | 0.0474 (11) | −0.0054 (10) | 0.0022 (9) | 0.0005 (10) |
C14 | 0.0498 (12) | 0.0562 (14) | 0.0577 (13) | 0.0065 (11) | 0.0043 (10) | −0.0082 (11) |
C15 | 0.0442 (11) | 0.0523 (13) | 0.0590 (13) | 0.0079 (10) | −0.0022 (10) | 0.0005 (11) |
O16 | 0.0580 (10) | 0.0712 (11) | 0.0510 (9) | 0.0040 (9) | −0.0045 (7) | −0.0082 (8) |
S1—C2 | 1.689 (3) | C8—C10 | 1.488 (3) |
S1—C5 | 1.682 (3) | C10—C11 | 1.392 (3) |
C2—H2 | 0.9300 | C10—C15 | 1.391 (3) |
C2—C3 | 1.367 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.411 (3) | C11—C12 | 1.380 (3) |
C3—C6 | 1.446 (3) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.382 (3) |
C4—C5 | 1.378 (3) | C13—C14 | 1.387 (3) |
C5—H5 | 0.9300 | C13—O16 | 1.361 (2) |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C6—C7 | 1.329 (3) | C14—C15 | 1.370 (3) |
C7—H7 | 0.9300 | C15—H15 | 0.9300 |
C7—C8 | 1.461 (3) | O16—H16 | 0.8200 |
C8—O9 | 1.232 (3) | ||
C5—S1—C2 | 92.31 (13) | O9—C8—C10 | 120.3 (2) |
S1—C2—H2 | 123.5 | C11—C10—C8 | 123.2 (2) |
C3—C2—S1 | 113.0 (2) | C15—C10—C8 | 119.10 (19) |
C3—C2—H2 | 123.5 | C15—C10—C11 | 117.7 (2) |
C2—C3—C4 | 110.3 (2) | C10—C11—H11 | 119.4 |
C2—C3—C6 | 123.0 (2) | C12—C11—C10 | 121.3 (2) |
C4—C3—C6 | 126.6 (2) | C12—C11—H11 | 119.4 |
C3—C4—H4 | 123.3 | C11—C12—H12 | 120.1 |
C5—C4—C3 | 113.3 (2) | C11—C12—C13 | 119.8 (2) |
C5—C4—H4 | 123.3 | C13—C12—H12 | 120.1 |
S1—C5—H5 | 124.5 | C12—C13—C14 | 119.7 (2) |
C4—C5—S1 | 111.0 (2) | O16—C13—C12 | 122.6 (2) |
C4—C5—H5 | 124.5 | O16—C13—C14 | 117.8 (2) |
C3—C6—H6 | 116.6 | C13—C14—H14 | 120.0 |
C7—C6—C3 | 126.9 (2) | C15—C14—C13 | 120.0 (2) |
C7—C6—H6 | 116.6 | C15—C14—H14 | 120.0 |
C6—C7—H7 | 119.0 | C10—C15—H15 | 119.3 |
C6—C7—C8 | 122.0 (2) | C14—C15—C10 | 121.4 (2) |
C8—C7—H7 | 119.0 | C14—C15—H15 | 119.3 |
C7—C8—C10 | 119.85 (19) | C13—O16—H16 | 109.5 |
O9—C8—C7 | 119.9 (2) | ||
S1—C2—C3—C4 | 0.1 (3) | C7—C8—C10—C15 | 167.8 (2) |
S1—C2—C3—C6 | −177.0 (2) | C8—C10—C11—C12 | −176.7 (2) |
C2—S1—C5—C4 | 0.5 (3) | C8—C10—C15—C14 | 178.6 (2) |
C2—C3—C4—C5 | 0.3 (4) | O9—C8—C10—C11 | 165.4 (2) |
C2—C3—C6—C7 | 179.4 (3) | O9—C8—C10—C15 | −13.6 (3) |
C3—C4—C5—S1 | −0.5 (3) | C10—C11—C12—C13 | −2.3 (4) |
C3—C6—C7—C8 | −175.4 (2) | C11—C10—C15—C14 | −0.5 (3) |
C4—C3—C6—C7 | 2.7 (4) | C11—C12—C13—C14 | 0.3 (3) |
C5—S1—C2—C3 | −0.3 (3) | C11—C12—C13—O16 | −179.7 (2) |
C6—C3—C4—C5 | 177.3 (2) | C12—C13—C14—C15 | 1.6 (3) |
C6—C7—C8—O9 | 9.1 (4) | C13—C14—C15—C10 | −1.5 (4) |
C6—C7—C8—C10 | −172.3 (2) | C15—C10—C11—C12 | 2.4 (3) |
C7—C8—C10—C11 | −13.2 (3) | O16—C13—C14—C15 | −178.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O9i | 0.82 | 1.86 | 2.667 (2) | 167 |
C6—H6···O9 | 0.93 | 2.46 | 2.785 (3) | 100 |
C11—H11···O16ii | 0.93 | 2.55 | 3.425 (3) | 157 |
Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) −x+2, y−1/2, −z+3/2. |
C14H12O2S | F(000) = 512 |
Mr = 244.30 | Dx = 1.350 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.4118 (13) Å | Cell parameters from 1920 reflections |
b = 5.8387 (5) Å | θ = 3.2–27.3° |
c = 12.6456 (9) Å | µ = 0.26 mm−1 |
β = 97.279 (7)° | T = 294 K |
V = 1201.98 (16) Å3 | Block, white |
Z = 4 | 0.45 × 0.3 × 0.15 mm |
SuperNova, single source at offset/far, Eos diffractometer | 2457 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1771 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −19→20 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −4→7 |
Tmin = 0.803, Tmax = 1.000 | l = −15→15 |
5075 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0416P)2 + 0.3903P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.118 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.16 e Å−3 |
2457 reflections | Δρmin = −0.26 e Å−3 |
156 parameters | Extinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0141 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.04793 (4) | 0.76040 (12) | 0.07886 (5) | 0.0654 (3) | |
C2 | 0.10560 (14) | 0.9740 (4) | 0.14100 (16) | 0.0519 (6) | |
H2 | 0.116506 | 1.111424 | 0.108336 | 0.062* | |
C3 | 0.13426 (12) | 0.9216 (4) | 0.24447 (15) | 0.0421 (5) | |
C4 | 0.10869 (13) | 0.6985 (4) | 0.27105 (18) | 0.0494 (6) | |
H4 | 0.122905 | 0.631591 | 0.337572 | 0.059* | |
C5 | 0.06133 (14) | 0.5929 (4) | 0.18926 (18) | 0.0558 (6) | |
H5 | 0.039091 | 0.447129 | 0.193370 | 0.067* | |
C6 | 0.18106 (12) | 1.0798 (4) | 0.31699 (16) | 0.0463 (5) | |
H6 | 0.191362 | 1.224036 | 0.290462 | 0.056* | |
C7 | 0.21052 (13) | 1.0373 (4) | 0.41779 (16) | 0.0477 (5) | |
H7 | 0.202752 | 0.892707 | 0.445659 | 0.057* | |
C8 | 0.25502 (13) | 1.2111 (4) | 0.48691 (17) | 0.0468 (5) | |
O9 | 0.25416 (11) | 1.4134 (3) | 0.46020 (13) | 0.0657 (5) | |
C10 | 0.30162 (12) | 1.1378 (4) | 0.58960 (15) | 0.0430 (5) | |
C11 | 0.28855 (13) | 0.9319 (4) | 0.63854 (16) | 0.0499 (6) | |
H11 | 0.249747 | 0.830772 | 0.605098 | 0.060* | |
C12 | 0.33136 (13) | 0.8718 (4) | 0.73559 (16) | 0.0522 (6) | |
H12 | 0.320424 | 0.733792 | 0.767704 | 0.063* | |
C13 | 0.39048 (13) | 1.0180 (4) | 0.78457 (16) | 0.0467 (5) | |
C14 | 0.40604 (15) | 1.2229 (4) | 0.73538 (19) | 0.0588 (7) | |
H14 | 0.446764 | 1.320516 | 0.767118 | 0.071* | |
C15 | 0.36170 (15) | 1.2817 (4) | 0.64040 (18) | 0.0565 (6) | |
H15 | 0.371979 | 1.421195 | 0.609103 | 0.068* | |
O16 | 0.43757 (9) | 0.9765 (3) | 0.87912 (11) | 0.0586 (5) | |
C17 | 0.42397 (17) | 0.7696 (5) | 0.93373 (19) | 0.0679 (7) | |
H17A | 0.367631 | 0.762376 | 0.946635 | 0.102* | |
H17B | 0.459086 | 0.765633 | 1.000460 | 0.102* | |
H17C | 0.436021 | 0.641159 | 0.890914 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0659 (4) | 0.0704 (5) | 0.0552 (4) | 0.0009 (3) | −0.0104 (3) | −0.0052 (3) |
C2 | 0.0571 (13) | 0.0487 (14) | 0.0489 (12) | 0.0044 (11) | 0.0019 (10) | 0.0049 (11) |
C3 | 0.0414 (11) | 0.0426 (13) | 0.0418 (11) | 0.0067 (9) | 0.0036 (9) | 0.0015 (10) |
C4 | 0.0497 (12) | 0.0462 (14) | 0.0515 (12) | 0.0020 (10) | 0.0033 (10) | 0.0054 (11) |
C5 | 0.0510 (13) | 0.0420 (13) | 0.0730 (15) | −0.0027 (11) | 0.0029 (11) | −0.0003 (12) |
C6 | 0.0475 (12) | 0.0419 (13) | 0.0489 (12) | 0.0019 (10) | 0.0042 (10) | 0.0038 (10) |
C7 | 0.0507 (12) | 0.0444 (13) | 0.0470 (12) | −0.0033 (10) | 0.0027 (10) | 0.0024 (11) |
C8 | 0.0487 (12) | 0.0454 (14) | 0.0469 (12) | −0.0009 (10) | 0.0086 (9) | 0.0006 (11) |
O9 | 0.0854 (13) | 0.0450 (10) | 0.0631 (10) | −0.0029 (9) | −0.0039 (9) | 0.0039 (9) |
C10 | 0.0458 (11) | 0.0421 (12) | 0.0415 (11) | −0.0038 (10) | 0.0072 (9) | −0.0039 (10) |
C11 | 0.0523 (13) | 0.0500 (14) | 0.0455 (12) | −0.0152 (11) | −0.0013 (10) | −0.0011 (11) |
C12 | 0.0595 (14) | 0.0490 (14) | 0.0465 (12) | −0.0131 (11) | 0.0007 (10) | 0.0038 (11) |
C13 | 0.0449 (12) | 0.0523 (14) | 0.0420 (11) | −0.0022 (10) | 0.0026 (9) | −0.0064 (11) |
C14 | 0.0611 (14) | 0.0541 (15) | 0.0578 (14) | −0.0200 (12) | −0.0058 (11) | −0.0068 (12) |
C15 | 0.0686 (15) | 0.0452 (14) | 0.0544 (13) | −0.0158 (12) | 0.0027 (11) | 0.0005 (11) |
O16 | 0.0583 (10) | 0.0640 (11) | 0.0495 (9) | −0.0088 (8) | −0.0083 (7) | −0.0020 (8) |
C17 | 0.0807 (18) | 0.0666 (18) | 0.0513 (14) | −0.0019 (14) | −0.0108 (12) | 0.0017 (13) |
S1—C2 | 1.697 (2) | C10—C11 | 1.381 (3) |
S1—C5 | 1.696 (2) | C10—C15 | 1.390 (3) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.368 (3) | C11—C12 | 1.380 (3) |
C3—C4 | 1.422 (3) | C12—H12 | 0.9300 |
C3—C6 | 1.451 (3) | C12—C13 | 1.379 (3) |
C4—H4 | 0.9300 | C13—C14 | 1.387 (3) |
C4—C5 | 1.360 (3) | C13—O16 | 1.361 (2) |
C5—H5 | 0.9300 | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C14—C15 | 1.367 (3) |
C6—C7 | 1.328 (3) | C15—H15 | 0.9300 |
C7—H7 | 0.9300 | O16—C17 | 1.423 (3) |
C7—C8 | 1.471 (3) | C17—H17A | 0.9600 |
C8—O9 | 1.228 (3) | C17—H17B | 0.9600 |
C8—C10 | 1.484 (3) | C17—H17C | 0.9600 |
C5—S1—C2 | 92.07 (11) | C15—C10—C8 | 119.1 (2) |
S1—C2—H2 | 123.8 | C10—C11—H11 | 119.0 |
C3—C2—S1 | 112.49 (18) | C12—C11—C10 | 122.0 (2) |
C3—C2—H2 | 123.8 | C12—C11—H11 | 119.0 |
C2—C3—C4 | 110.8 (2) | C11—C12—H12 | 120.3 |
C2—C3—C6 | 123.5 (2) | C13—C12—C11 | 119.5 (2) |
C4—C3—C6 | 125.60 (19) | C13—C12—H12 | 120.3 |
C3—C4—H4 | 123.4 | C12—C13—C14 | 119.44 (19) |
C5—C4—C3 | 113.1 (2) | O16—C13—C12 | 125.0 (2) |
C5—C4—H4 | 123.4 | O16—C13—C14 | 115.54 (19) |
S1—C5—H5 | 124.3 | C13—C14—H14 | 119.9 |
C4—C5—S1 | 111.50 (18) | C15—C14—C13 | 120.2 (2) |
C4—C5—H5 | 124.3 | C15—C14—H14 | 119.9 |
C3—C6—H6 | 117.0 | C10—C15—H15 | 119.3 |
C7—C6—C3 | 125.9 (2) | C14—C15—C10 | 121.4 (2) |
C7—C6—H6 | 117.0 | C14—C15—H15 | 119.3 |
C6—C7—H7 | 118.8 | C13—O16—C17 | 118.08 (18) |
C6—C7—C8 | 122.3 (2) | O16—C17—H17A | 109.5 |
C8—C7—H7 | 118.8 | O16—C17—H17B | 109.5 |
C7—C8—C10 | 118.9 (2) | O16—C17—H17C | 109.5 |
O9—C8—C7 | 120.8 (2) | H17A—C17—H17B | 109.5 |
O9—C8—C10 | 120.3 (2) | H17A—C17—H17C | 109.5 |
C11—C10—C8 | 123.42 (19) | H17B—C17—H17C | 109.5 |
C11—C10—C15 | 117.43 (19) | ||
S1—C2—C3—C4 | 1.0 (2) | C8—C10—C11—C12 | −178.1 (2) |
S1—C2—C3—C6 | −176.32 (16) | C8—C10—C15—C14 | 179.6 (2) |
C2—S1—C5—C4 | −0.02 (19) | O9—C8—C10—C11 | 162.0 (2) |
C2—C3—C4—C5 | −1.1 (3) | O9—C8—C10—C15 | −17.9 (3) |
C2—C3—C6—C7 | −179.7 (2) | C10—C11—C12—C13 | −1.6 (4) |
C3—C4—C5—S1 | 0.6 (3) | C11—C10—C15—C14 | −0.3 (4) |
C3—C6—C7—C8 | −177.8 (2) | C11—C12—C13—C14 | −0.1 (3) |
C4—C3—C6—C7 | 3.3 (4) | C11—C12—C13—O16 | −178.9 (2) |
C5—S1—C2—C3 | −0.60 (18) | C12—C13—C14—C15 | 1.6 (4) |
C6—C3—C4—C5 | 176.2 (2) | C12—C13—O16—C17 | −1.6 (3) |
C6—C7—C8—O9 | 13.0 (3) | C13—C14—C15—C10 | −1.4 (4) |
C6—C7—C8—C10 | −166.6 (2) | C14—C13—O16—C17 | 179.5 (2) |
C7—C8—C10—C11 | −18.4 (3) | C15—C10—C11—C12 | 1.8 (3) |
C7—C8—C10—C15 | 161.7 (2) | O16—C13—C14—C15 | −179.5 (2) |
Cg1 is the centroid of the S1/C2–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1i | 0.93 | 2.94 | 3.602 (2) | 129 |
C11—H11···Cg1ii | 0.93 | 2.99 | 3.598 (2) | 125 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2. |
C15H14O2S | F(000) = 544 |
Mr = 258.32 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.5120 (8) Å | Cell parameters from 4827 reflections |
b = 7.7851 (5) Å | θ = 3.3–27.9° |
c = 10.4913 (5) Å | µ = 0.23 mm−1 |
β = 96.813 (4)° | T = 294 K |
V = 1339.11 (13) Å3 | Block, white |
Z = 4 | 0.5 × 0.35 × 0.15 mm |
SuperNova, single source at offset/far, Eos diffractometer | 2734 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2162 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −9→9 |
Tmin = 0.733, Tmax = 1.000 | l = −12→13 |
13246 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4069P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.141 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.19 e Å−3 |
2734 reflections | Δρmin = −0.28 e Å−3 |
165 parameters | Extinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0073 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.28921 (3) | 0.41932 (9) | 0.57261 (6) | 0.0697 (3) | |
C2 | 0.35583 (12) | 0.4427 (3) | 0.70816 (19) | 0.0558 (5) | |
H2 | 0.340852 | 0.481608 | 0.785855 | 0.067* | |
C3 | 0.43322 (11) | 0.3985 (2) | 0.69052 (17) | 0.0458 (4) | |
C4 | 0.43736 (12) | 0.3435 (3) | 0.56166 (18) | 0.0551 (5) | |
H4 | 0.485324 | 0.307932 | 0.531318 | 0.066* | |
C5 | 0.36332 (13) | 0.3486 (3) | 0.4872 (2) | 0.0588 (5) | |
H5 | 0.354921 | 0.317238 | 0.401153 | 0.071* | |
C6 | 0.50131 (12) | 0.4082 (2) | 0.79107 (18) | 0.0483 (5) | |
H6 | 0.489859 | 0.443268 | 0.871763 | 0.058* | |
C7 | 0.57803 (12) | 0.3718 (3) | 0.77867 (18) | 0.0518 (5) | |
H7 | 0.591201 | 0.335993 | 0.699110 | 0.062* | |
C8 | 0.64340 (12) | 0.3860 (3) | 0.88615 (17) | 0.0490 (5) | |
O9 | 0.62809 (9) | 0.3934 (2) | 0.99739 (13) | 0.0670 (5) | |
C10 | 0.72986 (12) | 0.3954 (2) | 0.85742 (17) | 0.0476 (5) | |
C11 | 0.75356 (12) | 0.3597 (3) | 0.73833 (18) | 0.0540 (5) | |
H11 | 0.714251 | 0.329023 | 0.671266 | 0.065* | |
C12 | 0.83455 (13) | 0.3684 (3) | 0.7166 (2) | 0.0594 (5) | |
H12 | 0.849281 | 0.344313 | 0.635592 | 0.071* | |
C13 | 0.89322 (13) | 0.4129 (3) | 0.8157 (2) | 0.0568 (5) | |
C14 | 0.87043 (13) | 0.4512 (3) | 0.9360 (2) | 0.0618 (6) | |
H14 | 0.909675 | 0.483056 | 1.002823 | 0.074* | |
C15 | 0.79065 (13) | 0.4420 (3) | 0.95555 (19) | 0.0571 (5) | |
H15 | 0.776104 | 0.467265 | 1.036427 | 0.069* | |
O16 | 0.97471 (9) | 0.4227 (2) | 0.80525 (16) | 0.0762 (5) | |
C17 | 1.00141 (16) | 0.3853 (4) | 0.6849 (3) | 0.0901 (9) | |
H17A | 0.978364 | 0.467414 | 0.621098 | 0.108* | |
H17B | 0.983604 | 0.271209 | 0.656990 | 0.108* | |
C18 | 1.09277 (17) | 0.3952 (5) | 0.6991 (4) | 0.1138 (13) | |
H18A | 1.111988 | 0.364258 | 0.619307 | 0.171* | |
H18B | 1.115025 | 0.317438 | 0.765128 | 0.171* | |
H18C | 1.109771 | 0.510223 | 0.721773 | 0.171* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0502 (4) | 0.0898 (5) | 0.0684 (4) | 0.0040 (3) | 0.0052 (3) | 0.0000 (3) |
C2 | 0.0549 (12) | 0.0668 (13) | 0.0479 (11) | 0.0079 (10) | 0.0153 (9) | 0.0016 (9) |
C3 | 0.0481 (10) | 0.0477 (10) | 0.0430 (10) | 0.0015 (8) | 0.0115 (8) | 0.0017 (8) |
C4 | 0.0505 (11) | 0.0663 (13) | 0.0500 (11) | 0.0015 (9) | 0.0128 (9) | −0.0087 (9) |
C5 | 0.0619 (13) | 0.0676 (13) | 0.0472 (11) | 0.0005 (10) | 0.0072 (9) | −0.0116 (10) |
C6 | 0.0522 (11) | 0.0544 (11) | 0.0397 (9) | 0.0043 (8) | 0.0118 (8) | 0.0013 (8) |
C7 | 0.0507 (11) | 0.0654 (13) | 0.0400 (10) | 0.0021 (9) | 0.0090 (8) | −0.0020 (9) |
C8 | 0.0506 (11) | 0.0582 (12) | 0.0387 (10) | 0.0054 (9) | 0.0077 (8) | 0.0025 (8) |
O9 | 0.0584 (9) | 0.1032 (13) | 0.0407 (8) | 0.0094 (8) | 0.0111 (6) | 0.0024 (7) |
C10 | 0.0506 (11) | 0.0527 (11) | 0.0393 (9) | 0.0030 (8) | 0.0047 (8) | 0.0035 (8) |
C11 | 0.0491 (11) | 0.0707 (14) | 0.0422 (10) | −0.0022 (9) | 0.0049 (8) | −0.0041 (9) |
C12 | 0.0534 (12) | 0.0780 (15) | 0.0476 (11) | −0.0027 (10) | 0.0098 (9) | −0.0075 (10) |
C13 | 0.0461 (11) | 0.0669 (14) | 0.0580 (12) | −0.0025 (9) | 0.0089 (9) | 0.0003 (10) |
C14 | 0.0550 (12) | 0.0813 (16) | 0.0472 (11) | −0.0048 (11) | −0.0020 (9) | −0.0035 (10) |
C15 | 0.0553 (12) | 0.0759 (14) | 0.0398 (10) | 0.0003 (10) | 0.0045 (9) | −0.0005 (9) |
O16 | 0.0476 (9) | 0.1096 (15) | 0.0726 (11) | −0.0107 (8) | 0.0115 (7) | −0.0139 (9) |
C17 | 0.0590 (15) | 0.121 (2) | 0.095 (2) | −0.0131 (14) | 0.0279 (14) | −0.0264 (17) |
C18 | 0.0593 (16) | 0.135 (3) | 0.153 (3) | −0.0193 (16) | 0.0391 (18) | −0.049 (2) |
S1—C2 | 1.701 (2) | C11—H11 | 0.9300 |
S1—C5 | 1.692 (2) | C11—C12 | 1.385 (3) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.357 (3) | C12—C13 | 1.379 (3) |
C3—C4 | 1.427 (3) | C13—C14 | 1.392 (3) |
C3—C6 | 1.450 (3) | C13—O16 | 1.365 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.371 (3) | C14—C15 | 1.359 (3) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | O16—C17 | 1.416 (3) |
C6—C7 | 1.319 (3) | C17—H17A | 0.9700 |
C7—H7 | 0.9300 | C17—H17B | 0.9700 |
C7—C8 | 1.470 (3) | C17—C18 | 1.500 (4) |
C8—O9 | 1.224 (2) | C18—H18A | 0.9600 |
C8—C10 | 1.496 (3) | C18—H18B | 0.9600 |
C10—C11 | 1.381 (3) | C18—H18C | 0.9600 |
C10—C15 | 1.398 (3) | ||
C5—S1—C2 | 92.34 (10) | C12—C11—H11 | 119.3 |
S1—C2—H2 | 123.7 | C11—C12—H12 | 120.2 |
C3—C2—S1 | 112.62 (15) | C13—C12—C11 | 119.60 (19) |
C3—C2—H2 | 123.7 | C13—C12—H12 | 120.2 |
C2—C3—C4 | 110.92 (18) | C12—C13—C14 | 119.8 (2) |
C2—C3—C6 | 123.30 (17) | O16—C13—C12 | 124.39 (19) |
C4—C3—C6 | 125.79 (17) | O16—C13—C14 | 115.84 (19) |
C3—C4—H4 | 123.5 | C13—C14—H14 | 120.1 |
C5—C4—C3 | 113.01 (18) | C15—C14—C13 | 119.78 (19) |
C5—C4—H4 | 123.5 | C15—C14—H14 | 120.1 |
S1—C5—H5 | 124.4 | C10—C15—H15 | 119.1 |
C4—C5—S1 | 111.11 (15) | C14—C15—C10 | 121.80 (19) |
C4—C5—H5 | 124.4 | C14—C15—H15 | 119.1 |
C3—C6—H6 | 117.0 | C13—O16—C17 | 118.30 (18) |
C7—C6—C3 | 126.00 (18) | O16—C17—H17A | 110.0 |
C7—C6—H6 | 117.0 | O16—C17—H17B | 110.0 |
C6—C7—H7 | 118.8 | O16—C17—C18 | 108.5 (2) |
C6—C7—C8 | 122.31 (18) | H17A—C17—H17B | 108.4 |
C8—C7—H7 | 118.8 | C18—C17—H17A | 110.0 |
C7—C8—C10 | 118.74 (16) | C18—C17—H17B | 110.0 |
O9—C8—C7 | 121.26 (18) | C17—C18—H18A | 109.5 |
O9—C8—C10 | 119.99 (17) | C17—C18—H18B | 109.5 |
C11—C10—C8 | 123.51 (17) | C17—C18—H18C | 109.5 |
C11—C10—C15 | 117.56 (18) | H18A—C18—H18B | 109.5 |
C15—C10—C8 | 118.92 (17) | H18A—C18—H18C | 109.5 |
C10—C11—H11 | 119.3 | H18B—C18—H18C | 109.5 |
C10—C11—C12 | 121.47 (19) | ||
S1—C2—C3—C4 | −0.1 (2) | C8—C10—C15—C14 | 179.3 (2) |
S1—C2—C3—C6 | 179.55 (15) | O9—C8—C10—C11 | 168.8 (2) |
C2—S1—C5—C4 | −0.05 (18) | O9—C8—C10—C15 | −10.9 (3) |
C2—C3—C4—C5 | 0.1 (3) | C10—C11—C12—C13 | 0.3 (3) |
C2—C3—C6—C7 | −177.9 (2) | C11—C10—C15—C14 | −0.4 (3) |
C3—C4—C5—S1 | 0.0 (2) | C11—C12—C13—C14 | −1.0 (3) |
C3—C6—C7—C8 | 179.75 (18) | C11—C12—C13—O16 | 178.9 (2) |
C4—C3—C6—C7 | 1.8 (3) | C12—C13—C14—C15 | 1.0 (3) |
C5—S1—C2—C3 | 0.11 (18) | C12—C13—O16—C17 | 0.2 (3) |
C6—C3—C4—C5 | −179.58 (19) | C13—C14—C15—C10 | −0.3 (4) |
C6—C7—C8—O9 | 17.1 (3) | C13—O16—C17—C18 | −177.0 (2) |
C6—C7—C8—C10 | −161.57 (19) | C14—C13—O16—C17 | −179.9 (2) |
C7—C8—C10—C11 | −12.6 (3) | C15—C10—C11—C12 | 0.4 (3) |
C7—C8—C10—C15 | 167.75 (19) | O16—C13—C14—C15 | −178.9 (2) |
C8—C10—C11—C12 | −179.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O9i | 0.93 | 2.47 | 3.324 (2) | 153 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
C13H9BrOS | F(000) = 584 |
Mr = 293.17 | Dx = 1.667 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.1245 (7) Å | Cell parameters from 4399 reflections |
b = 14.2016 (13) Å | θ = 2.9–27.3° |
c = 5.8809 (4) Å | µ = 3.67 mm−1 |
β = 98.081 (6)° | T = 293 K |
V = 1167.93 (15) Å3 | Plate, yellow |
Z = 4 | 0.4 × 0.4 × 0.05 mm |
SuperNova, single source at offset/far, Eos diffractometer | 2392 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1683 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.045 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −17→17 |
Tmin = 0.367, Tmax = 1.000 | l = −7→7 |
12050 measured reflections |
Refinement on F2 | 20 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7623P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2392 reflections | Δρmax = 0.40 e Å−3 |
158 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1A | 0.07255 (13) | 0.3898 (2) | 0.4329 (4) | 0.0574 (6) | 0.702 (4) |
S1B | 0.1418 (5) | 0.3457 (7) | 0.2749 (13) | 0.0574 (6) | 0.298 (4) |
C2A | 0.1532 (7) | 0.412 (2) | 0.663 (3) | 0.048 (3) | 0.702 (4) |
H2A | 0.137355 | 0.439712 | 0.795694 | 0.058* | 0.702 (4) |
C2B | 0.2476 (16) | 0.341 (5) | 0.438 (6) | 0.048 (3) | 0.298 (4) |
H2B | 0.301123 | 0.310516 | 0.397088 | 0.058* | 0.298 (4) |
C3 | 0.2452 (2) | 0.3858 (2) | 0.6388 (5) | 0.0417 (8) | |
C4A | 0.2461 (7) | 0.3456 (17) | 0.416 (2) | 0.048 (3) | 0.702 (4) |
H4A | 0.302496 | 0.326195 | 0.365401 | 0.058* | 0.702 (4) |
C4B | 0.1551 (18) | 0.422 (5) | 0.664 (6) | 0.048 (3) | 0.298 (4) |
H4B | 0.142572 | 0.455562 | 0.792513 | 0.058* | 0.298 (4) |
C5A | 0.1586 (7) | 0.3375 (9) | 0.2809 (18) | 0.053 (3) | 0.702 (4) |
H5A | 0.146845 | 0.309732 | 0.136500 | 0.063* | 0.702 (4) |
C5B | 0.0855 (10) | 0.4021 (19) | 0.475 (3) | 0.053 (3) | 0.298 (4) |
H5B | 0.020804 | 0.416891 | 0.461047 | 0.063* | 0.298 (4) |
C6 | 0.3264 (2) | 0.3933 (2) | 0.8186 (6) | 0.0451 (8) | |
H6 | 0.313682 | 0.414696 | 0.960622 | 0.054* | |
C7 | 0.4168 (2) | 0.3729 (2) | 0.8023 (6) | 0.0485 (9) | |
H7 | 0.433284 | 0.356673 | 0.659823 | 0.058* | |
C8 | 0.4916 (3) | 0.3752 (2) | 1.0027 (6) | 0.0460 (8) | |
O9 | 0.4718 (2) | 0.3764 (2) | 1.1988 (4) | 0.0676 (8) | |
C10 | 0.5938 (2) | 0.3754 (2) | 0.9658 (5) | 0.0403 (8) | |
C11 | 0.6238 (2) | 0.4075 (2) | 0.7646 (6) | 0.0451 (8) | |
H11 | 0.578794 | 0.428136 | 0.644229 | 0.054* | |
C12 | 0.7202 (3) | 0.4092 (3) | 0.7410 (6) | 0.0470 (8) | |
H12 | 0.740087 | 0.432427 | 0.607649 | 0.056* | |
C13 | 0.7860 (2) | 0.3760 (2) | 0.9180 (6) | 0.0434 (8) | |
C14 | 0.7584 (3) | 0.3438 (3) | 1.1203 (6) | 0.0491 (9) | |
H14 | 0.803570 | 0.322082 | 1.239069 | 0.059* | |
C15 | 0.6624 (2) | 0.3447 (2) | 1.1429 (6) | 0.0447 (8) | |
H15 | 0.643292 | 0.324227 | 1.279603 | 0.054* | |
Br16 | 0.91660 (3) | 0.37156 (4) | 0.88024 (8) | 0.0730 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0459 (8) | 0.0718 (14) | 0.0532 (11) | 0.0051 (8) | 0.0029 (6) | −0.0014 (9) |
S1B | 0.0459 (8) | 0.0718 (14) | 0.0532 (11) | 0.0051 (8) | 0.0029 (6) | −0.0014 (9) |
C2A | 0.044 (4) | 0.056 (10) | 0.045 (4) | 0.006 (4) | 0.010 (3) | −0.004 (4) |
C2B | 0.044 (4) | 0.056 (10) | 0.045 (4) | 0.006 (4) | 0.010 (3) | −0.004 (4) |
C3 | 0.0453 (19) | 0.0398 (19) | 0.0417 (18) | −0.0020 (15) | 0.0115 (15) | 0.0021 (15) |
C4A | 0.052 (4) | 0.051 (5) | 0.043 (5) | −0.002 (3) | 0.013 (3) | −0.006 (5) |
C4B | 0.052 (4) | 0.051 (5) | 0.043 (5) | −0.002 (3) | 0.013 (3) | −0.006 (5) |
C5A | 0.058 (6) | 0.055 (5) | 0.051 (4) | 0.015 (4) | 0.025 (4) | −0.013 (3) |
C5B | 0.058 (6) | 0.055 (5) | 0.051 (4) | 0.015 (4) | 0.025 (4) | −0.013 (3) |
C6 | 0.045 (2) | 0.051 (2) | 0.0416 (19) | −0.0044 (16) | 0.0107 (15) | −0.0040 (15) |
C7 | 0.047 (2) | 0.054 (2) | 0.0452 (19) | −0.0018 (17) | 0.0105 (16) | −0.0068 (16) |
C8 | 0.0447 (19) | 0.050 (2) | 0.045 (2) | 0.0020 (16) | 0.0112 (16) | −0.0036 (16) |
O9 | 0.0531 (16) | 0.107 (3) | 0.0450 (15) | 0.0056 (14) | 0.0139 (12) | 0.0000 (14) |
C10 | 0.0455 (19) | 0.0372 (18) | 0.0386 (18) | −0.0011 (15) | 0.0075 (15) | −0.0038 (14) |
C11 | 0.049 (2) | 0.050 (2) | 0.0350 (18) | 0.0028 (17) | 0.0007 (15) | 0.0004 (15) |
C12 | 0.054 (2) | 0.051 (2) | 0.0366 (18) | −0.0055 (17) | 0.0101 (16) | 0.0013 (16) |
C13 | 0.0382 (18) | 0.045 (2) | 0.048 (2) | −0.0061 (15) | 0.0075 (15) | −0.0056 (16) |
C14 | 0.051 (2) | 0.050 (2) | 0.0426 (19) | −0.0004 (17) | −0.0036 (16) | 0.0041 (16) |
C15 | 0.050 (2) | 0.048 (2) | 0.0363 (18) | −0.0041 (17) | 0.0062 (15) | 0.0021 (15) |
Br16 | 0.0430 (3) | 0.0970 (4) | 0.0803 (4) | −0.0074 (2) | 0.0128 (2) | 0.0047 (2) |
S1A—C2A | 1.671 (8) | C6—H6 | 0.9300 |
C2A—H2A | 0.9300 | C6—C7 | 1.325 (5) |
S1B—C2B | 1.661 (16) | C7—H7 | 0.9300 |
C2B—H2B | 0.9300 | C7—C8 | 1.469 (5) |
C2A—C3 | 1.378 (9) | C8—O9 | 1.224 (4) |
C2B—C3 | 1.347 (16) | C8—C10 | 1.489 (5) |
C4A—H4A | 0.9300 | C10—C11 | 1.389 (5) |
C4B—H4B | 0.9300 | C10—C15 | 1.390 (5) |
S1A—C5A | 1.770 (8) | C11—H11 | 0.9300 |
C4A—C5A | 1.378 (11) | C11—C12 | 1.388 (5) |
C5A—H5A | 0.9300 | C12—H12 | 0.9300 |
S1B—C5B | 1.708 (15) | C12—C13 | 1.378 (5) |
C4B—C5B | 1.407 (16) | C13—C14 | 1.381 (5) |
C5B—H5B | 0.9300 | C13—Br16 | 1.890 (3) |
C3—C4A | 1.431 (8) | C14—H14 | 0.9300 |
C3—C4B | 1.400 (16) | C14—C15 | 1.381 (5) |
C3—C6 | 1.451 (5) | C15—H15 | 0.9300 |
C4A—C5A—S1A | 107.3 (6) | C7—C6—C3 | 127.0 (3) |
C4B—C5B—S1B | 107.4 (9) | C7—C6—H6 | 116.5 |
S1A—C2A—H2A | 122.9 | C6—C7—H7 | 119.0 |
S1B—C2B—H2B | 124.6 | C6—C7—C8 | 121.9 (3) |
C5A—C4A—C3 | 116.0 (7) | C8—C7—H7 | 119.0 |
C5A—C4A—H4A | 122.0 | C7—C8—C10 | 119.1 (3) |
C5B—C4B—H4B | 123.6 | O9—C8—C7 | 121.5 (3) |
C2A—S1A—C5A | 92.8 (4) | O9—C8—C10 | 119.5 (3) |
S1A—C5A—H5A | 126.3 | C11—C10—C8 | 122.9 (3) |
C4A—C5A—H5A | 126.3 | C11—C10—C15 | 118.5 (3) |
C2B—S1B—C5B | 95.2 (7) | C15—C10—C8 | 118.6 (3) |
C4B—C5B—H5B | 126.3 | C10—C11—H11 | 119.6 |
S1B—C5B—H5B | 126.3 | C12—C11—C10 | 120.8 (3) |
C2A—C3—C4A | 109.4 (5) | C12—C11—H11 | 119.6 |
C2B—C3—C4B | 113.8 (9) | C11—C12—H12 | 120.5 |
C4A—C3—C6 | 126.0 (4) | C13—C12—C11 | 119.1 (3) |
C4B—C3—C6 | 122.2 (7) | C13—C12—H12 | 120.5 |
C2B—C3—C6 | 124.0 (7) | C12—C13—C14 | 121.5 (3) |
C2A—C3—C6 | 124.5 (5) | C12—C13—Br16 | 119.2 (3) |
C3—C6—H6 | 116.5 | C14—C13—Br16 | 119.3 (3) |
C3—C2A—S1A | 114.3 (5) | C13—C14—H14 | 120.7 |
C3—C2B—S1B | 110.7 (9) | C15—C14—C13 | 118.7 (3) |
C3—C2A—H2A | 122.9 | C15—C14—H14 | 120.7 |
C3—C2B—H2B | 124.6 | C10—C15—H15 | 119.3 |
C3—C4A—H4A | 122.0 | C14—C15—C10 | 121.5 (3) |
C3—C4B—H4B | 123.6 | C14—C15—H15 | 119.3 |
C3—C4B—C5B | 112.7 (11) | ||
C2A—S1A—C5A—C4A | −3 (2) | C6—C3—C4B—C5B | −176 (3) |
C2B—S1B—C5B—C4B | 4 (5) | C6—C7—C8—O9 | 15.6 (6) |
C5B—S1B—C2B—C3 | −4 (5) | C6—C7—C8—C10 | −164.9 (3) |
C5A—S1A—C2A—C3 | 2 (2) | C7—C8—C10—C11 | 24.4 (5) |
S1A—C2A—C3—C4A | 0 (2) | C7—C8—C10—C15 | −157.6 (3) |
S1B—C2B—C3—C4B | 2 (5) | C8—C10—C11—C12 | 177.8 (3) |
S1B—C2B—C3—C6 | 179.7 (18) | C8—C10—C15—C14 | −179.4 (3) |
S1A—C2A—C3—C6 | −176.6 (10) | O9—C8—C10—C11 | −156.0 (4) |
C2A—C3—C6—C7 | −177.0 (17) | O9—C8—C10—C15 | 22.0 (5) |
C2B—C3—C6—C7 | 13 (4) | C10—C11—C12—C13 | 1.8 (5) |
C4A—C3—C6—C7 | 6.9 (15) | C11—C10—C15—C14 | −1.3 (5) |
C4B—C3—C6—C7 | −170 (4) | C11—C12—C13—C14 | −2.0 (5) |
C2A—C3—C4A—C5A | −3 (2) | C11—C12—C13—Br16 | 176.5 (3) |
C2B—C3—C4B—C5B | 1 (6) | C12—C13—C14—C15 | 0.5 (5) |
C3—C4B—C5B—S1B | −4 (7) | C13—C14—C15—C10 | 1.2 (5) |
C3—C4A—C5A—S1A | 4 (2) | C15—C10—C11—C12 | −0.2 (5) |
C3—C6—C7—C8 | −174.3 (3) | Br16—C13—C14—C15 | −177.9 (3) |
C6—C3—C4A—C5A | 173.8 (12) |
Cg1 and Cg2 are the centroids of the major- and minor-disorder components of the thiophene ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5A—H5A···Cg1i | 0.93 | 2.80 | 3.493 (14) | 132 |
C5A—H5A···Cg2i | 0.93 | 2.85 | 3.52 (2) | 130 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Contact | 1 | 2 | 3 | 4 |
H···H | 28.8 | 33.5 | 44.5 | 28.5 |
S···H/H···S | 13.0 | 11.6 | 10.2 | 3.9 |
C···H/H···C | 30.4 | 33.9 | 22.1 | 32.6 |
O···H/H···O | 18.5 | 15.8 | 13.8 | 11.1 |
C···C | 3.2 | 0.7 | 4.5 | 2.4 |
C···S/S···C | 3.7 | 0.9 | 3.5 | 0.0 |
S···S | 0.0 | 1.5 | 0.0 | 0.0 |
S···O/O···S | 0.3 | 0.0 | 0.1 | 0.0 |
C···O/O···C | 1.8 | 1.6 | 1.0 | 1.0 |
O···O | 0.0 | 0.6 | 0.0 | 0.0 |
Br···S/S···Br | 2.8 | |||
Br···C/C···Br | 0.6 | |||
Br···H/H···Br | 16.5 | |||
Br···O/O···Br | 0.0 | |||
Br···Br | 0.5 |
Funding information
This research was funded by the Vietnam Ministry of Education and Training under grant number B2019-SPH.562–05. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.
References
Amslinger, S. (2010). Chem. Med. Chem. 5, 351–356. Web of Science CrossRef CAS PubMed Google Scholar
Arshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142–156. Web of Science CSD CrossRef CAS Google Scholar
Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1–7. Web of Science CSD CrossRef CAS Google Scholar
Bukhari, S. N., Jantan, I., Masand, V. H., Mahajan, D. T., Sher, M., Naeem-ul-Hassan, M. & Amjad, M. W. (2014). Eur. J. Med. Chem. 83, 355–365. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387. Web of Science CrossRef PubMed CAS Google Scholar
Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301. Google Scholar
Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660. CrossRef CAS PubMed Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164–o4165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360. Web of Science CSD CrossRef PubMed CAS Google Scholar
Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509–513. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336. CAS Google Scholar
Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277–284. Web of Science CSD CrossRef CAS Google Scholar
Park Choo, H. Y., Peak, K.-H., Park, J., Kim, D. H. & Chung, H. S. (2000). Eur. J. Med. Chem. 35, 643–648. Web of Science PubMed CAS Google Scholar
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718–o3720. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.