research communications
E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile
DFT and MEP study of (aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com,ifritsky@univ.kiev.ua
The 15H12N2O2, contains two crystallographically independent molecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intramolecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking interactions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network.
of the title compound, CKeywords: crystal structure; 2-hydroxy-5-methoxybenzaldehyde; weak hydrogen bonding; 2-aminobenzonitrile.
CCDC reference: 1912294
1. Chemical context
Most ). In addition, are important in diverse fields of chemistry and biochemistry owing to their biological activities (Lozier et al., 1975). On the industrial scale, they have a wide range of applications, such as in dyes and pigments, and have also been employed as ligands for the complexation of metal ions (Taggi et al., 2002). and thermochromism are also characteristics of these materials and arise via H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987). In NLO studies, Schiff base provide the key functions of frequency shifting, optical modulation, optical switching, optical logic, and optical memory for the emerging technologies in areas such as telecommunications, signal processing, and optical interconnections (Geskin et al., 2003). The present work is a part of an ongoing structural study of and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a), fluorescence sensors (Faizi et al., 2016b) and coordination compounds (Faizi & Prisyazhnaya, 2015).
have antibacterial, anticancer, anti inflammatory and antitoxic properties (Williams, 1972We report herein on the synthesis, . The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6–311G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
and DFT computational calculation of the new title Schiff base compound, (I)2. Structural commentary
The ; r.m.s. deviation of overlay of the two molecules = 0.035 Å) in which the bond lengths (Allen et al., 1987) and angles are normal and in good agreement with those reported for 5-chloro-2-(2-hydroxybenzylideneamino)benzonitrile (Cheng et al., 2006) and 2-(2-hydroxybenzylideneamino) benzonitrile (Xia et al., 2008). The benzene rings in the two independent molecules [A (C2–C7)/B (C9–C14) and C (C17–C22)/D (C24–C29)] subtend dihedral angles A/B = 13.26 (5) and C/D = 7.87 (5)°. The title compound displays a trans configuration with respect to the C8=N1 and C23=N3 double bonds. In each independent molecule, an intramolecular O—H⋯N hydrogen bond (Table 1) results in the formation of a planar six-membered ring [G (N1/H2/O2/C2/C7/C8) and H (O4/H4/N3/C23/C22/C17)]; these are oriented at dihedral angles of A/G = 1.31 (5) and C/H = 0.42 (5)° with respect to the adjacent benzene rings.
of the title compound contains two crystallographically independent molecules (Fig. 13. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds link both types of independent molecule into chains along [010] while weak C—H⋯N hydrogen bonds link the chains into a two-dimensional network parallel to (011) (Fig. 2 and Table 1). In addition, three types of π–π stacking interactions occur between benzene rings: Cg1⋯Cg3(− + x, − y, − + z) = 3.860 (2) Å, Cg2⋯Cg2(1 − x, 1 − y, −z) = 3.693 (2) Å and Cg2⋯Cg4(− + x, − y, − + z) = 3.931 (2) Å; where Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C9–C14, C17–C22 and C24–C29 rings, respectively (Fig. 3).
4. Frontier molecular orbital analysis
The highest occupied molecular orbitals (HOMOs) and the lowest lying unoccupied molecular orbitals (LUMOs) are termed frontier molecular orbitals (FMOs), which play an important role in the optical and electric properties of compounds, as well as in their quantum chemistry and UV–vis spectra. According to molecular orbital theory, an interaction between HOMO and LUMO orbitals of a structure gives rise to a π–π* type transition. The frontier orbital gap helps to characterize the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft molecule. DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). The DFT structure optimization started from the X-ray geometry and the experimental bond lengths and bond angles were found to match with theoretical values indicating that the 6-311G(d,p) basis set is well suited in its approach to the experimental data. The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the cyano benzene ring. The electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The HOMO molecular orbital exhibits both σ and π character, whereas HOMO−1 is dominated by π-orbital density. The LUMO is mainly composed of π density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is 0.12935 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO are −0.21428 and −0.08493 a.u., respectively.
5. Molecular electrostatic potential surface analysis
Molecular electrostatic potential (MEP) surface analysis is a technique of mapping electrostatic potential onto the iso-electron density surface, providing information about the reactive sites. The surface simultaneously displays molecular size and shape and the electrostatic potential value. In the colour scheme adopted, red indicates an electron-rich region with a partially negative charge and blue an electron-deficient region with partially positive charge, light blue indicates a slightly electron-deficient region, yellow a slightly electron-rich region and green a neutral region (Politzer et al., 2002). In addition to these, in the majority of the MEPs, the maximum positive region, which is the preferred site for nucleophilic attack, is shown in blue and the maximum negative region, which is preferred site for electrophilic attack, is red. A three-dimensional plot of the MEP surface of one of the two independent molecules of the title compound is shown in Fig. 5. According to this, the negative regions of the molecule are located on the donor oxygen atom, the acceptor nitrogen atom and the benzonitrile group of N2 atom (red region). The positive regions over the methoxy hydrogen atoms and all other hydrogen atoms indicate that these sites are most probably involved in nucleophilic processes.
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave eight hits for the (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile moiety: (Z)-2-[(2-hydroxy-1-naphthyl)methyleneamino]benzonitrile (FOVRUE; Zhou et al., 2009c), (E)-2-[(5-bromo-2-hydroxybenzylidene)amino]benzonitrile (FOWXOF; Zhou et al., 2009b), 5-chloro-2-(2-hydroxybenzylideneamino)benzonitrile (GEJGAE; Cheng et al., 2006), trans-2-(2-hydroxybenzylideneamino)benzonitrile(LOCBOV; Xia et al., 2008), 2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile (LOVDUX; Demircioğlu et al., 2015), (E)-2-(2,4-dihydroxybenzylideneamino)benzonitrile (MOZPAT; Liu 2009), (E)-2-(4-diethylamino-2-hydroxybenzylideneamino)benzonitrile (PUJDOO; Wang et al., 2010) and (E)-2-[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]benzonitrile (YOVBUH; Zhou et al., 2009a). In all of these compounds, an intramolecular O—H⋯N hydrogen bond forms an S(6) ring motif, similar to title compound.
7. Synthesis and crystallization
The title compound was prepared by refluxing mixed solutions of 2-hydroxy-5-methoxybenzaldehyde (38.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-aminobenzonitrile (29.5 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 60%, m.p. 414–416 K).
8. Refinement
Crystal data, data collection and structure ). H atoms were positioned geometrically (O—H = 0.82, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O,C-methyl).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1912294
https://doi.org/10.1107/S2056989019008077/lh5907sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008077/lh5907Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008077/lh5907Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C15H12N2O2 | F(000) = 1056 |
Mr = 252.27 | Dx = 1.313 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.3173 (11) Å | Cell parameters from 12734 reflections |
b = 13.0633 (9) Å | θ = 1.7–30.0° |
c = 14.5450 (11) Å | µ = 0.09 mm−1 |
β = 110.264 (6)° | T = 293 K |
V = 2552.0 (3) Å3 | Stick, yellow |
Z = 8 | 0.77 × 0.51 × 0.28 mm |
Stoe IPDS 2 diffractometer | 4514 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1853 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.065 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.1°, θmin = 2.2° |
rotation method scans | h = −17→17 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −15→15 |
Tmin = 0.944, Tmax = 0.981 | l = −17→17 |
16144 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0435P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.80 | (Δ/σ)max < 0.001 |
4514 reflections | Δρmax = 0.10 e Å−3 |
347 parameters | Δρmin = −0.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.58870 (18) | 0.47768 (14) | 0.30079 (13) | 0.0819 (6) | |
H4 | 0.593839 | 0.419694 | 0.323603 | 0.123* | |
O3 | 0.63712 (16) | 0.77448 (13) | 0.58275 (15) | 0.0824 (6) | |
O1 | 0.35678 (17) | 1.13841 (14) | −0.08120 (17) | 0.0898 (7) | |
N3 | 0.61295 (16) | 0.33843 (16) | 0.43837 (15) | 0.0558 (6) | |
N1 | 0.37945 (17) | 0.70036 (16) | 0.05960 (15) | 0.0570 (6) | |
O2 | 0.4072 (2) | 0.83829 (15) | 0.19874 (14) | 0.0917 (7) | |
H2 | 0.409316 | 0.780745 | 0.177052 | 0.138* | |
C22 | 0.61829 (19) | 0.51807 (19) | 0.47001 (19) | 0.0527 (7) | |
C24 | 0.61766 (19) | 0.2355 (2) | 0.47037 (19) | 0.0540 (7) | |
C23 | 0.62435 (19) | 0.4118 (2) | 0.49956 (19) | 0.0569 (7) | |
H23 | 0.636936 | 0.396297 | 0.565171 | 0.068* | |
C9 | 0.37421 (19) | 0.59730 (19) | 0.02685 (19) | 0.0549 (7) | |
C8 | 0.3682 (2) | 0.7747 (2) | −0.0008 (2) | 0.0589 (7) | |
H8 | 0.354897 | 0.759991 | −0.066688 | 0.071* | |
C14 | 0.3677 (2) | 0.5226 (2) | 0.09280 (19) | 0.0587 (7) | |
C7 | 0.37551 (19) | 0.8803 (2) | 0.02964 (19) | 0.0553 (7) | |
C29 | 0.6146 (2) | 0.1611 (2) | 0.39996 (19) | 0.0581 (7) | |
C17 | 0.6007 (2) | 0.5471 (2) | 0.3733 (2) | 0.0617 (7) | |
C6 | 0.36283 (19) | 0.95656 (19) | −0.0412 (2) | 0.0612 (7) | |
H6 | 0.350350 | 0.937718 | −0.105985 | 0.073* | |
N2 | 0.3453 (2) | 0.57423 (19) | 0.25515 (18) | 0.0911 (9) | |
C20 | 0.6261 (2) | 0.6952 (2) | 0.5172 (2) | 0.0632 (8) | |
C10 | 0.3776 (2) | 0.56611 (19) | −0.06333 (19) | 0.0635 (8) | |
H10 | 0.381228 | 0.614757 | −0.108635 | 0.076* | |
C21 | 0.63063 (19) | 0.59328 (19) | 0.54172 (19) | 0.0598 (7) | |
H21 | 0.641935 | 0.574221 | 0.606288 | 0.072* | |
C5 | 0.3684 (2) | 1.0581 (2) | −0.0173 (2) | 0.0662 (8) | |
C25 | 0.6209 (2) | 0.20343 (19) | 0.5621 (2) | 0.0643 (8) | |
H25 | 0.622114 | 0.251235 | 0.609905 | 0.077* | |
C15 | 0.3572 (2) | 0.5527 (2) | 0.1837 (2) | 0.0652 (8) | |
C2 | 0.3940 (2) | 0.9085 (2) | 0.1262 (2) | 0.0651 (8) | |
C11 | 0.3755 (2) | 0.4634 (2) | −0.0860 (2) | 0.0708 (8) | |
H11 | 0.376934 | 0.443640 | −0.146878 | 0.085* | |
C13 | 0.3682 (2) | 0.4193 (2) | 0.0698 (2) | 0.0693 (8) | |
H13 | 0.366432 | 0.369901 | 0.115268 | 0.083* | |
C19 | 0.6079 (2) | 0.7230 (2) | 0.4211 (2) | 0.0749 (9) | |
H19 | 0.603749 | 0.791933 | 0.404294 | 0.090* | |
C28 | 0.6149 (2) | 0.0575 (2) | 0.4218 (2) | 0.0725 (9) | |
H28 | 0.612046 | 0.008688 | 0.374315 | 0.087* | |
C26 | 0.6224 (2) | 0.0999 (2) | 0.5823 (2) | 0.0720 (8) | |
H26 | 0.625365 | 0.078738 | 0.644307 | 0.086* | |
C12 | 0.3712 (2) | 0.3899 (2) | −0.0199 (2) | 0.0730 (9) | |
H12 | 0.370435 | 0.320812 | −0.035801 | 0.088* | |
C30 | 0.6120 (3) | 0.1939 (2) | 0.3053 (2) | 0.0780 (10) | |
C18 | 0.5957 (2) | 0.6504 (2) | 0.3502 (2) | 0.0773 (9) | |
H18 | 0.584003 | 0.670547 | 0.285793 | 0.093* | |
C27 | 0.6195 (2) | 0.0277 (2) | 0.5129 (2) | 0.0738 (9) | |
H27 | 0.620696 | −0.041524 | 0.528119 | 0.089* | |
N4 | 0.6109 (3) | 0.2189 (2) | 0.2296 (2) | 0.1178 (12) | |
C3 | 0.4003 (2) | 1.0116 (2) | 0.1505 (2) | 0.0839 (10) | |
H3 | 0.413366 | 1.031176 | 0.215218 | 0.101* | |
C4 | 0.3873 (2) | 1.0848 (2) | 0.0794 (2) | 0.0790 (9) | |
H4A | 0.391329 | 1.153637 | 0.096722 | 0.095* | |
C16 | 0.6543 (2) | 0.7483 (2) | 0.6815 (2) | 0.0889 (10) | |
H16A | 0.599599 | 0.708154 | 0.685334 | 0.133* | |
H16B | 0.660293 | 0.809549 | 0.719536 | 0.133* | |
H16C | 0.714693 | 0.709297 | 0.706679 | 0.133* | |
C1 | 0.3355 (3) | 1.1138 (2) | −0.1815 (2) | 0.0939 (10) | |
H1A | 0.328552 | 1.175673 | −0.218800 | 0.141* | |
H1B | 0.274610 | 1.075385 | −0.205212 | 0.141* | |
H1C | 0.388875 | 1.073549 | −0.188179 | 0.141* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.1348 (19) | 0.0579 (12) | 0.0586 (12) | 0.0127 (13) | 0.0407 (13) | 0.0018 (10) |
O3 | 0.1213 (18) | 0.0449 (12) | 0.0829 (15) | −0.0003 (12) | 0.0377 (13) | −0.0080 (12) |
O1 | 0.1321 (19) | 0.0433 (12) | 0.0982 (17) | −0.0020 (12) | 0.0454 (15) | 0.0078 (12) |
N3 | 0.0731 (16) | 0.0453 (14) | 0.0549 (14) | 0.0019 (12) | 0.0296 (12) | −0.0004 (12) |
N1 | 0.0792 (17) | 0.0386 (14) | 0.0591 (14) | 0.0006 (12) | 0.0315 (12) | 0.0003 (12) |
O2 | 0.156 (2) | 0.0615 (14) | 0.0606 (13) | 0.0064 (15) | 0.0410 (14) | 0.0006 (11) |
C22 | 0.0614 (18) | 0.0438 (16) | 0.0571 (17) | 0.0037 (14) | 0.0259 (14) | 0.0014 (14) |
C24 | 0.063 (2) | 0.0453 (18) | 0.0580 (18) | 0.0012 (14) | 0.0272 (15) | −0.0011 (15) |
C23 | 0.074 (2) | 0.0490 (18) | 0.0517 (16) | −0.0013 (15) | 0.0267 (14) | 0.0016 (14) |
C9 | 0.0687 (19) | 0.0421 (16) | 0.0589 (18) | 0.0007 (14) | 0.0286 (15) | −0.0004 (15) |
C8 | 0.082 (2) | 0.0456 (17) | 0.0568 (17) | 0.0022 (15) | 0.0343 (16) | −0.0030 (15) |
C14 | 0.0743 (19) | 0.0505 (17) | 0.0574 (17) | 0.0002 (14) | 0.0304 (14) | 0.0022 (14) |
C7 | 0.067 (2) | 0.0416 (17) | 0.0649 (19) | −0.0010 (15) | 0.0320 (16) | −0.0052 (15) |
C29 | 0.074 (2) | 0.0483 (18) | 0.0567 (17) | −0.0024 (14) | 0.0286 (15) | −0.0040 (14) |
C17 | 0.078 (2) | 0.0522 (18) | 0.0600 (18) | 0.0069 (15) | 0.0306 (15) | 0.0017 (15) |
C6 | 0.076 (2) | 0.0463 (17) | 0.0664 (18) | 0.0008 (15) | 0.0318 (15) | 0.0000 (14) |
N2 | 0.135 (2) | 0.0836 (19) | 0.0666 (16) | 0.0089 (17) | 0.0510 (17) | 0.0067 (15) |
C20 | 0.073 (2) | 0.0480 (19) | 0.072 (2) | 0.0020 (15) | 0.0300 (16) | −0.0031 (16) |
C10 | 0.090 (2) | 0.0508 (18) | 0.0568 (17) | 0.0030 (16) | 0.0339 (16) | 0.0013 (14) |
C21 | 0.078 (2) | 0.0442 (17) | 0.0616 (18) | 0.0010 (15) | 0.0300 (16) | 0.0015 (14) |
C5 | 0.081 (2) | 0.0401 (18) | 0.082 (2) | −0.0014 (15) | 0.0343 (18) | 0.0036 (16) |
C25 | 0.091 (2) | 0.0470 (18) | 0.0618 (19) | 0.0014 (16) | 0.0349 (16) | −0.0023 (14) |
C15 | 0.090 (2) | 0.0519 (17) | 0.0593 (18) | 0.0033 (15) | 0.0325 (16) | 0.0088 (14) |
C2 | 0.087 (2) | 0.0524 (18) | 0.0605 (18) | −0.0021 (16) | 0.0314 (16) | −0.0030 (16) |
C11 | 0.099 (2) | 0.0550 (19) | 0.0659 (19) | 0.0016 (17) | 0.0384 (17) | −0.0044 (16) |
C13 | 0.093 (2) | 0.0448 (18) | 0.077 (2) | 0.0010 (16) | 0.0384 (17) | 0.0082 (15) |
C19 | 0.103 (3) | 0.0473 (18) | 0.082 (2) | 0.0093 (16) | 0.041 (2) | 0.0135 (17) |
C28 | 0.094 (2) | 0.055 (2) | 0.075 (2) | −0.0056 (17) | 0.0380 (18) | −0.0113 (17) |
C26 | 0.097 (2) | 0.058 (2) | 0.0692 (19) | 0.0004 (18) | 0.0383 (18) | 0.0091 (16) |
C12 | 0.097 (2) | 0.0472 (19) | 0.082 (2) | −0.0035 (17) | 0.0399 (19) | −0.0055 (17) |
C30 | 0.120 (3) | 0.055 (2) | 0.069 (2) | −0.0126 (18) | 0.045 (2) | −0.0138 (17) |
C18 | 0.114 (3) | 0.059 (2) | 0.0673 (19) | 0.0143 (18) | 0.0419 (19) | 0.0152 (17) |
C27 | 0.093 (2) | 0.0448 (19) | 0.085 (2) | −0.0026 (16) | 0.0335 (19) | 0.0019 (17) |
N4 | 0.211 (4) | 0.083 (2) | 0.075 (2) | −0.029 (2) | 0.069 (2) | −0.0150 (16) |
C3 | 0.117 (3) | 0.060 (2) | 0.071 (2) | 0.0035 (19) | 0.0285 (19) | −0.0132 (18) |
C4 | 0.107 (3) | 0.0425 (18) | 0.086 (2) | −0.0008 (17) | 0.032 (2) | −0.0097 (18) |
C16 | 0.117 (3) | 0.070 (2) | 0.081 (2) | −0.002 (2) | 0.037 (2) | −0.0194 (18) |
C1 | 0.129 (3) | 0.070 (2) | 0.093 (2) | 0.007 (2) | 0.052 (2) | 0.021 (2) |
O4—C17 | 1.356 (3) | C20—C21 | 1.374 (3) |
O4—H4 | 0.8200 | C20—C19 | 1.379 (4) |
O3—C20 | 1.380 (3) | C10—C11 | 1.379 (3) |
O3—C16 | 1.413 (3) | C10—H10 | 0.9300 |
O1—C5 | 1.373 (3) | C21—H21 | 0.9300 |
O1—C1 | 1.420 (3) | C5—C4 | 1.382 (4) |
N3—C23 | 1.279 (3) | C25—C26 | 1.383 (3) |
N3—C24 | 1.417 (3) | C25—H25 | 0.9300 |
N1—C8 | 1.282 (3) | C2—C3 | 1.387 (4) |
N1—C9 | 1.421 (3) | C11—C12 | 1.375 (4) |
O2—C2 | 1.361 (3) | C11—H11 | 0.9300 |
O2—H2 | 0.8200 | C13—C12 | 1.376 (4) |
C22—C17 | 1.393 (3) | C13—H13 | 0.9300 |
C22—C21 | 1.399 (3) | C19—C18 | 1.367 (4) |
C22—C23 | 1.447 (3) | C19—H19 | 0.9300 |
C24—C25 | 1.384 (3) | C28—C27 | 1.361 (4) |
C24—C29 | 1.401 (3) | C28—H28 | 0.9300 |
C23—H23 | 0.9300 | C26—C27 | 1.371 (4) |
C9—C10 | 1.390 (3) | C26—H26 | 0.9300 |
C9—C14 | 1.394 (3) | C12—H12 | 0.9300 |
C8—C7 | 1.442 (3) | C30—N4 | 1.143 (3) |
C8—H8 | 0.9300 | C18—H18 | 0.9300 |
C14—C13 | 1.392 (3) | C27—H27 | 0.9300 |
C14—C15 | 1.436 (4) | C3—C4 | 1.373 (4) |
C7—C2 | 1.386 (3) | C3—H3 | 0.9300 |
C7—C6 | 1.398 (3) | C4—H4A | 0.9300 |
C29—C28 | 1.390 (3) | C16—H16A | 0.9600 |
C29—C30 | 1.430 (4) | C16—H16B | 0.9600 |
C17—C18 | 1.388 (3) | C16—H16C | 0.9600 |
C6—C5 | 1.367 (3) | C1—H1A | 0.9600 |
C6—H6 | 0.9300 | C1—H1B | 0.9600 |
N2—C15 | 1.145 (3) | C1—H1C | 0.9600 |
C17—O4—H4 | 109.5 | C26—C25—H25 | 120.2 |
C20—O3—C16 | 117.3 (2) | C24—C25—H25 | 120.2 |
C5—O1—C1 | 117.1 (2) | N2—C15—C14 | 177.2 (3) |
C23—N3—C24 | 120.2 (2) | O2—C2—C7 | 122.2 (2) |
C8—N1—C9 | 120.6 (2) | O2—C2—C3 | 118.5 (3) |
C2—O2—H2 | 109.5 | C7—C2—C3 | 119.3 (3) |
C17—C22—C21 | 119.6 (2) | C12—C11—C10 | 121.0 (3) |
C17—C22—C23 | 122.1 (2) | C12—C11—H11 | 119.5 |
C21—C22—C23 | 118.3 (2) | C10—C11—H11 | 119.5 |
C25—C24—C29 | 118.5 (2) | C12—C13—C14 | 120.2 (3) |
C25—C24—N3 | 125.8 (2) | C12—C13—H13 | 119.9 |
C29—C24—N3 | 115.6 (2) | C14—C13—H13 | 119.9 |
N3—C23—C22 | 122.1 (2) | C18—C19—C20 | 120.8 (3) |
N3—C23—H23 | 118.9 | C18—C19—H19 | 119.6 |
C22—C23—H23 | 118.9 | C20—C19—H19 | 119.6 |
C10—C9—C14 | 118.5 (2) | C27—C28—C29 | 119.7 (3) |
C10—C9—N1 | 125.4 (2) | C27—C28—H28 | 120.1 |
C14—C9—N1 | 116.1 (2) | C29—C28—H28 | 120.1 |
N1—C8—C7 | 122.4 (2) | C27—C26—C25 | 121.5 (3) |
N1—C8—H8 | 118.8 | C27—C26—H26 | 119.3 |
C7—C8—H8 | 118.8 | C25—C26—H26 | 119.3 |
C13—C14—C9 | 120.4 (2) | C11—C12—C13 | 119.4 (3) |
C13—C14—C15 | 119.8 (2) | C11—C12—H12 | 120.3 |
C9—C14—C15 | 119.7 (2) | C13—C12—H12 | 120.3 |
C2—C7—C6 | 119.2 (2) | N4—C30—C29 | 179.0 (4) |
C2—C7—C8 | 122.3 (3) | C19—C18—C17 | 120.6 (3) |
C6—C7—C8 | 118.6 (2) | C19—C18—H18 | 119.7 |
C28—C29—C24 | 120.8 (3) | C17—C18—H18 | 119.7 |
C28—C29—C30 | 120.6 (3) | C28—C27—C26 | 120.0 (3) |
C24—C29—C30 | 118.7 (2) | C28—C27—H27 | 120.0 |
O4—C17—C18 | 118.7 (2) | C26—C27—H27 | 120.0 |
O4—C17—C22 | 122.3 (2) | C4—C3—C2 | 120.3 (3) |
C18—C17—C22 | 119.1 (3) | C4—C3—H3 | 119.8 |
C5—C6—C7 | 121.5 (3) | C2—C3—H3 | 119.8 |
C5—C6—H6 | 119.2 | C3—C4—C5 | 121.2 (3) |
C7—C6—H6 | 119.2 | C3—C4—H4A | 119.4 |
C21—C20—C19 | 119.6 (3) | C5—C4—H4A | 119.4 |
C21—C20—O3 | 124.4 (3) | O3—C16—H16A | 109.5 |
C19—C20—O3 | 116.0 (3) | O3—C16—H16B | 109.5 |
C11—C10—C9 | 120.4 (3) | H16A—C16—H16B | 109.5 |
C11—C10—H10 | 119.8 | O3—C16—H16C | 109.5 |
C9—C10—H10 | 119.8 | H16A—C16—H16C | 109.5 |
C20—C21—C22 | 120.3 (2) | H16B—C16—H16C | 109.5 |
C20—C21—H21 | 119.8 | O1—C1—H1A | 109.5 |
C22—C21—H21 | 119.8 | O1—C1—H1B | 109.5 |
C6—C5—O1 | 125.9 (3) | H1A—C1—H1B | 109.5 |
C6—C5—C4 | 118.5 (3) | O1—C1—H1C | 109.5 |
O1—C5—C4 | 115.6 (3) | H1A—C1—H1C | 109.5 |
C26—C25—C24 | 119.6 (3) | H1B—C1—H1C | 109.5 |
C23—N3—C24—C25 | 9.1 (4) | C23—C22—C21—C20 | 179.6 (3) |
C23—N3—C24—C29 | −173.6 (2) | C7—C6—C5—O1 | −179.8 (3) |
C24—N3—C23—C22 | −178.8 (2) | C7—C6—C5—C4 | 0.2 (4) |
C17—C22—C23—N3 | −0.7 (4) | C1—O1—C5—C6 | 1.1 (4) |
C21—C22—C23—N3 | 179.3 (3) | C1—O1—C5—C4 | −178.9 (3) |
C8—N1—C9—C10 | 13.8 (4) | C29—C24—C25—C26 | 0.8 (4) |
C8—N1—C9—C14 | −167.8 (3) | N3—C24—C25—C26 | 178.1 (3) |
C9—N1—C8—C7 | −178.4 (2) | C6—C7—C2—O2 | −180.0 (3) |
C10—C9—C14—C13 | 2.3 (4) | C8—C7—C2—O2 | 0.4 (4) |
N1—C9—C14—C13 | −176.2 (3) | C6—C7—C2—C3 | −0.5 (4) |
C10—C9—C14—C15 | −175.7 (3) | C8—C7—C2—C3 | 179.9 (3) |
N1—C9—C14—C15 | 5.8 (4) | C9—C10—C11—C12 | −0.8 (5) |
N1—C8—C7—C2 | −0.8 (4) | C9—C14—C13—C12 | −2.5 (5) |
N1—C8—C7—C6 | 179.6 (3) | C15—C14—C13—C12 | 175.5 (3) |
C25—C24—C29—C28 | 0.0 (4) | C21—C20—C19—C18 | −1.0 (5) |
N3—C24—C29—C28 | −177.6 (3) | O3—C20—C19—C18 | −180.0 (3) |
C25—C24—C29—C30 | −179.5 (3) | C24—C29—C28—C27 | −0.8 (4) |
N3—C24—C29—C30 | 2.9 (4) | C30—C29—C28—C27 | 178.7 (3) |
C21—C22—C17—O4 | 179.6 (3) | C24—C25—C26—C27 | −0.8 (5) |
C23—C22—C17—O4 | −0.4 (4) | C10—C11—C12—C13 | 0.6 (5) |
C21—C22—C17—C18 | 0.0 (4) | C14—C13—C12—C11 | 1.1 (5) |
C23—C22—C17—C18 | 179.9 (3) | C20—C19—C18—C17 | 0.6 (5) |
C2—C7—C6—C5 | 0.1 (4) | O4—C17—C18—C19 | −179.7 (3) |
C8—C7—C6—C5 | 179.7 (3) | C22—C17—C18—C19 | 0.0 (5) |
C16—O3—C20—C21 | 0.1 (4) | C29—C28—C27—C26 | 0.9 (5) |
C16—O3—C20—C19 | 179.0 (3) | C25—C26—C27—C28 | −0.1 (5) |
C14—C9—C10—C11 | −0.7 (4) | O2—C2—C3—C4 | −179.9 (3) |
N1—C9—C10—C11 | 177.6 (3) | C7—C2—C3—C4 | 0.7 (5) |
C19—C20—C21—C22 | 1.0 (4) | C2—C3—C4—C5 | −0.4 (5) |
O3—C20—C21—C22 | 179.8 (3) | C6—C5—C4—C3 | −0.1 (5) |
C17—C22—C21—C20 | −0.4 (4) | O1—C5—C4—C3 | 180.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···N3 | 0.82 | 1.92 | 2.637 (3) | 146 |
O2—H2···N1 | 0.82 | 1.92 | 2.635 (3) | 145 |
C23—H23···N2i | 0.93 | 2.57 | 3.446 (4) | 158 |
C8—H8···N4ii | 0.93 | 2.60 | 3.444 (4) | 152 |
C12—H12···O1iii | 0.93 | 2.46 | 3.391 (3) | 176 |
C27—H27···O3iii | 0.93 | 2.52 | 3.444 (3) | 175 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, y−1, z. |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418. Web of Science CSD CrossRef IUCr Journals Google Scholar
Demircioğlu, Z., Kaştaş, Ç. A. & Büyükgüngör, O. (2015). Spectrochim. Acta A, 139, 539–548. Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Geskin, V. M., Lambert, C. & Bredas, J. L. (2003). J. Am. Chem. Soc. 125, 15651–15658. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Liu, T. (2009). Acta Cryst. E65, o1502. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528. Web of Science CSD CrossRef IUCr Journals Google Scholar
Williams, D. R. (1972). Chem. Rev. 72, 203–213. CrossRef CAS PubMed Web of Science Google Scholar
Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, J.-C., Zhang, C.-M., Li, N.-X. & Zhang, Z.-Y. (2009c). Acta Cryst. E65, o1700. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.