research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT and MEP study of (E)-2-[(2-hy­dr­oxy-5-meth­­oxy­benzyl­­idene)amino]­benzo­nitrile

aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com,ifritsky@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 13 May 2019; accepted 5 June 2019; online 14 June 2019)

The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent mol­ecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intra­molecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, ππ stacking inter­actions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network.

1. Chemical context

Most Schiff bases have anti­bacterial, anti­cancer, anti inflammatory and anti­toxic properties (Williams, 1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]). In addition, Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activities (Lozier et al., 1975[Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). On the industrial scale, they have a wide range of applications, such as in dyes and pigments, and Schiff bases have also been employed as ligands for the complexation of metal ions (Taggi et al., 2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). Photochromism and thermochromism are also characteristics of these materials and arise via H-atom transfer from the hy­droxy O atom to the N atom (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). In NLO studies, Schiff base provide the key functions of frequency shifting, optical modulation, optical switching, optical logic, and optical memory for the emerging technologies in areas such as telecommunications, signal processing, and optical inter­connections (Geskin et al., 2003[Geskin, V. M., Lambert, C. & Bredas, J. L. (2003). J. Am. Chem. Soc. 125, 15651-15658.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.]), fluorescence sensors (Faizi et al., 2016b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.]) and coordination compounds (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]).

[Scheme 1]

We report herein on the synthesis, crystal structure and DFT computational calculation of the new title Schiff base compound, (I)[link]. The results of calculations by density functional theory (DFT) on (I)[link] carried out at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (Fig. 1[link]; r.m.s. deviation of overlay of the two molecules = 0.035 Å) in which the bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) and angles are normal and in good agreement with those reported for 5-chloro-2-(2-hy­droxy­benzyl­idene­amino)­benzo­nitrile (Cheng et al., 2006[Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]) and 2-(2-hy­droxy­benzyl­idene­amino) benzo­nitrile (Xia et al., 2008[Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047.]). The benzene rings in the two independent mol­ecules [A (C2–C7)/B (C9–C14) and C (C17–C22)/D (C24–C29)] subtend dihedral angles A/B = 13.26 (5) and C/D = 7.87 (5)°. The title compound displays a trans configuration with respect to the C8=N1 and C23=N3 double bonds. In each independent mol­ecule, an intra­molecular O—H⋯N hydrogen bond (Table 1[link]) results in the formation of a planar six-membered ring [G (N1/H2/O2/C2/C7/C8) and H (O4/H4/N3/C23/C22/C17)]; these are oriented at dihedral angles of A/G = 1.31 (5) and C/H = 0.42 (5)° with respect to the adjacent benzene rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3 0.82 1.92 2.637 (3) 146
O2—H2⋯N1 0.82 1.92 2.635 (3) 145
C23—H23⋯N2i 0.93 2.57 3.446 (4) 158
C8—H8⋯N4ii 0.93 2.60 3.444 (4) 152
C12—H12⋯O1iii 0.93 2.46 3.391 (3) 176
C27—H27⋯O3iii 0.93 2.52 3.444 (3) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bonds (Table 1[link]) are shown as dashed lines.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds link both types of independent mol­ecule into chains along [010] while weak C—H⋯N hydrogen bonds link the chains into a two-dimensional network parallel to (011) (Fig. 2[link] and Table 1[link]). In addition, three types of ππ stacking inter­actions occur between benzene rings: Cg1⋯Cg3(−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) = 3.860 (2) Å, Cg2⋯Cg2(1 − x, 1 − y, −z) = 3.693 (2) Å and Cg2⋯Cg4(−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z) = 3.931 (2) Å; where Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C9–C14, C17–C22 and C24–C29 rings, respectively (Fig. 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure with weak C—H⋯O and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure viewed along the b axis to illustrate the ππ stacking inter­actions in the crystal. label for c axis not visible

4. Frontier mol­ecular orbital analysis

The highest occupied mol­ecular orbitals (HOMOs) and the lowest lying unoccupied mol­ecular orbitals (LUMOs) are termed frontier mol­ecular orbitals (FMOs), which play an important role in the optical and electric properties of compounds, as well as in their quantum chemistry and UV–vis spectra. According to mol­ecular orbital theory, an inter­action between HOMO and LUMO orbitals of a structure gives rise to a ππ* type transition. The frontier orbital gap helps to characterize the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft mol­ecule. DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The DFT structure optimization started from the X-ray geometry and the experimental bond lengths and bond angles were found to match with theoretical values indicating that the 6-311G(d,p) basis set is well suited in its approach to the experimental data. The DFT study of (I)[link] shows that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the cyano benzene ring. The electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4[link]. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO−1 is dominated by π-orbital density. The LUMO is mainly composed of π density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is 0.12935 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.21428 and −0.08493 a.u., respectively.

[Figure 4]
Figure 4
Mol­ecular orbital surfaces and energies of HOMO−1, HOMO, LUMO and LUMO+1 for (I)[link].

5. Mol­ecular electrostatic potential surface analysis

Mol­ecular electrostatic potential (MEP) surface analysis is a technique of mapping electrostatic potential onto the iso-electron density surface, providing information about the reactive sites. The surface simultaneously displays mol­ecular size and shape and the electrostatic potential value. In the colour scheme adopted, red indicates an electron-rich region with a partially negative charge and blue an electron-deficient region with partially positive charge, light blue indicates a slightly electron-deficient region, yellow a slightly electron-rich region and green a neutral region (Politzer et al., 2002[Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134-142.]). In addition to these, in the majority of the MEPs, the maximum positive region, which is the preferred site for nucleophilic attack, is shown in blue and the maximum negative region, which is preferred site for electrophilic attack, is red. A three-dimensional plot of the MEP surface of one of the two independent molecules of the title compound is shown in Fig. 5[link]. According to this, the negative regions of the mol­ecule are located on the donor oxygen atom, the acceptor nitro­gen atom and the benzo­nitrile group of N2 atom (red region). The positive regions over the meth­oxy hydrogen atoms and all other hydrogen atoms indicate that these sites are most probably involved in nucleophilic processes.

[Figure 5]
Figure 5
Total electron density mapped over the mol­ecular electrostatic potential surface.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave eight hits for the (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile moiety: (Z)-2-[(2-hy­droxy-1-naphth­yl)methyl­ene­amino]­benzo­nitrile (FOVRUE; Zhou et al., 2009c[Zhou, J.-C., Zhang, C.-M., Li, N.-X. & Zhang, Z.-Y. (2009c). Acta Cryst. E65, o1700.]), (E)-2-[(5-bromo-2-hy­droxy­benzyl­idene)amino]­benzo­nitrile (FOWXOF; Zhou et al., 2009b[Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949.]), 5-chloro-2-(2-hy­droxy­benzyl­idene­amino)­benzo­nitrile (GEJGAE; Cheng et al., 2006[Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]), trans-2-(2-hy­droxy­benzyl­id­ene­amino)­benzo­nitrile­(LOCBOV; Xia et al., 2008[Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047.]), 2-[(2-hy­droxy-6-meth­oxy­benzyl­idene)amino]­benzo­nitrile (LOVDUX; Demircioğlu et al., 2015[Demircioğlu, Z., Kaştaş, Ç. A. & Büyükgüngör, O. (2015). Spectrochim. Acta A, 139, 539-548.]), (E)-2-(2,4-di­hydroxy­benzyl­idene­amino)­benzo­nitrile (MOZPAT; Liu 2009[Liu, T. (2009). Acta Cryst. E65, o1502.]), (E)-2-(4-di­ethyl­amino-2-hy­droxy­benzyl­idene­amino)­benzo­nitrile (PUJDOO; Wang et al., 2010[Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.]) and (E)-2-[(3,5-di-tert-butyl-2-hy­droxy­benzyl­idene)amino]­benzo­nitrile (YOVBUH; Zhou et al., 2009a[Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416.]). In all of these compounds, an intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif, similar to title compound.

7. Synthesis and crystallization

The title compound was prepared by refluxing mixed solutions of 2-hy­droxy-5-meth­oxy­benzaldehyde (38.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-amino­benzo­nitrile (29.5 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 60%, m.p. 414–416 K).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]). H atoms were positioned geometrically (O—H = 0.82, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O,C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C15H12N2O2
Mr 252.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.3173 (11), 13.0633 (9), 14.5450 (11)
β (°) 110.264 (6)
V3) 2552.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.77 × 0.51 × 0.28
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.944, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 16144, 4514, 1853
Rint 0.065
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 0.80
No. of reflections 4514
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.10, −0.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2-[(2-Hydroxy-5-methoxybenzylidene)amino]benzonitrile top
Crystal data top
C15H12N2O2F(000) = 1056
Mr = 252.27Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3173 (11) ÅCell parameters from 12734 reflections
b = 13.0633 (9) Åθ = 1.7–30.0°
c = 14.5450 (11) ŵ = 0.09 mm1
β = 110.264 (6)°T = 293 K
V = 2552.0 (3) Å3Stick, yellow
Z = 80.77 × 0.51 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
4514 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1853 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.065
Detector resolution: 6.67 pixels mm-1θmax = 25.1°, θmin = 2.2°
rotation method scansh = 1717
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.944, Tmax = 0.981l = 1717
16144 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max < 0.001
4514 reflectionsΔρmax = 0.10 e Å3
347 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.58870 (18)0.47768 (14)0.30079 (13)0.0819 (6)
H40.5938390.4196940.3236030.123*
O30.63712 (16)0.77448 (13)0.58275 (15)0.0824 (6)
O10.35678 (17)1.13841 (14)0.08120 (17)0.0898 (7)
N30.61295 (16)0.33843 (16)0.43837 (15)0.0558 (6)
N10.37945 (17)0.70036 (16)0.05960 (15)0.0570 (6)
O20.4072 (2)0.83829 (15)0.19874 (14)0.0917 (7)
H20.4093160.7807450.1770520.138*
C220.61829 (19)0.51807 (19)0.47001 (19)0.0527 (7)
C240.61766 (19)0.2355 (2)0.47037 (19)0.0540 (7)
C230.62435 (19)0.4118 (2)0.49956 (19)0.0569 (7)
H230.6369360.3962970.5651710.068*
C90.37421 (19)0.59730 (19)0.02685 (19)0.0549 (7)
C80.3682 (2)0.7747 (2)0.0008 (2)0.0589 (7)
H80.3548970.7599910.0666880.071*
C140.3677 (2)0.5226 (2)0.09280 (19)0.0587 (7)
C70.37551 (19)0.8803 (2)0.02964 (19)0.0553 (7)
C290.6146 (2)0.1611 (2)0.39996 (19)0.0581 (7)
C170.6007 (2)0.5471 (2)0.3733 (2)0.0617 (7)
C60.36283 (19)0.95656 (19)0.0412 (2)0.0612 (7)
H60.3503500.9377180.1059850.073*
N20.3453 (2)0.57423 (19)0.25515 (18)0.0911 (9)
C200.6261 (2)0.6952 (2)0.5172 (2)0.0632 (8)
C100.3776 (2)0.56611 (19)0.06333 (19)0.0635 (8)
H100.3812280.6147570.1086350.076*
C210.63063 (19)0.59328 (19)0.54172 (19)0.0598 (7)
H210.6419350.5742210.6062880.072*
C50.3684 (2)1.0581 (2)0.0173 (2)0.0662 (8)
C250.6209 (2)0.20343 (19)0.5621 (2)0.0643 (8)
H250.6221140.2512350.6099050.077*
C150.3572 (2)0.5527 (2)0.1837 (2)0.0652 (8)
C20.3940 (2)0.9085 (2)0.1262 (2)0.0651 (8)
C110.3755 (2)0.4634 (2)0.0860 (2)0.0708 (8)
H110.3769340.4436400.1468780.085*
C130.3682 (2)0.4193 (2)0.0698 (2)0.0693 (8)
H130.3664320.3699010.1152680.083*
C190.6079 (2)0.7230 (2)0.4211 (2)0.0749 (9)
H190.6037490.7919330.4042940.090*
C280.6149 (2)0.0575 (2)0.4218 (2)0.0725 (9)
H280.6120460.0086880.3743150.087*
C260.6224 (2)0.0999 (2)0.5823 (2)0.0720 (8)
H260.6253650.0787380.6443070.086*
C120.3712 (2)0.3899 (2)0.0199 (2)0.0730 (9)
H120.3704350.3208120.0358010.088*
C300.6120 (3)0.1939 (2)0.3053 (2)0.0780 (10)
C180.5957 (2)0.6504 (2)0.3502 (2)0.0773 (9)
H180.5840030.6705470.2857930.093*
C270.6195 (2)0.0277 (2)0.5129 (2)0.0738 (9)
H270.6206960.0415240.5281190.089*
N40.6109 (3)0.2189 (2)0.2296 (2)0.1178 (12)
C30.4003 (2)1.0116 (2)0.1505 (2)0.0839 (10)
H30.4133661.0311760.2152180.101*
C40.3873 (2)1.0848 (2)0.0794 (2)0.0790 (9)
H4A0.3913291.1536370.0967220.095*
C160.6543 (2)0.7483 (2)0.6815 (2)0.0889 (10)
H16A0.5995990.7081540.6853340.133*
H16B0.6602930.8095490.7195360.133*
H16C0.7146930.7092970.7066790.133*
C10.3355 (3)1.1138 (2)0.1815 (2)0.0939 (10)
H1A0.3285521.1756730.2188000.141*
H1B0.2746101.0753850.2052120.141*
H1C0.3888751.0735490.1881790.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.1348 (19)0.0579 (12)0.0586 (12)0.0127 (13)0.0407 (13)0.0018 (10)
O30.1213 (18)0.0449 (12)0.0829 (15)0.0003 (12)0.0377 (13)0.0080 (12)
O10.1321 (19)0.0433 (12)0.0982 (17)0.0020 (12)0.0454 (15)0.0078 (12)
N30.0731 (16)0.0453 (14)0.0549 (14)0.0019 (12)0.0296 (12)0.0004 (12)
N10.0792 (17)0.0386 (14)0.0591 (14)0.0006 (12)0.0315 (12)0.0003 (12)
O20.156 (2)0.0615 (14)0.0606 (13)0.0064 (15)0.0410 (14)0.0006 (11)
C220.0614 (18)0.0438 (16)0.0571 (17)0.0037 (14)0.0259 (14)0.0014 (14)
C240.063 (2)0.0453 (18)0.0580 (18)0.0012 (14)0.0272 (15)0.0011 (15)
C230.074 (2)0.0490 (18)0.0517 (16)0.0013 (15)0.0267 (14)0.0016 (14)
C90.0687 (19)0.0421 (16)0.0589 (18)0.0007 (14)0.0286 (15)0.0004 (15)
C80.082 (2)0.0456 (17)0.0568 (17)0.0022 (15)0.0343 (16)0.0030 (15)
C140.0743 (19)0.0505 (17)0.0574 (17)0.0002 (14)0.0304 (14)0.0022 (14)
C70.067 (2)0.0416 (17)0.0649 (19)0.0010 (15)0.0320 (16)0.0052 (15)
C290.074 (2)0.0483 (18)0.0567 (17)0.0024 (14)0.0286 (15)0.0040 (14)
C170.078 (2)0.0522 (18)0.0600 (18)0.0069 (15)0.0306 (15)0.0017 (15)
C60.076 (2)0.0463 (17)0.0664 (18)0.0008 (15)0.0318 (15)0.0000 (14)
N20.135 (2)0.0836 (19)0.0666 (16)0.0089 (17)0.0510 (17)0.0067 (15)
C200.073 (2)0.0480 (19)0.072 (2)0.0020 (15)0.0300 (16)0.0031 (16)
C100.090 (2)0.0508 (18)0.0568 (17)0.0030 (16)0.0339 (16)0.0013 (14)
C210.078 (2)0.0442 (17)0.0616 (18)0.0010 (15)0.0300 (16)0.0015 (14)
C50.081 (2)0.0401 (18)0.082 (2)0.0014 (15)0.0343 (18)0.0036 (16)
C250.091 (2)0.0470 (18)0.0618 (19)0.0014 (16)0.0349 (16)0.0023 (14)
C150.090 (2)0.0519 (17)0.0593 (18)0.0033 (15)0.0325 (16)0.0088 (14)
C20.087 (2)0.0524 (18)0.0605 (18)0.0021 (16)0.0314 (16)0.0030 (16)
C110.099 (2)0.0550 (19)0.0659 (19)0.0016 (17)0.0384 (17)0.0044 (16)
C130.093 (2)0.0448 (18)0.077 (2)0.0010 (16)0.0384 (17)0.0082 (15)
C190.103 (3)0.0473 (18)0.082 (2)0.0093 (16)0.041 (2)0.0135 (17)
C280.094 (2)0.055 (2)0.075 (2)0.0056 (17)0.0380 (18)0.0113 (17)
C260.097 (2)0.058 (2)0.0692 (19)0.0004 (18)0.0383 (18)0.0091 (16)
C120.097 (2)0.0472 (19)0.082 (2)0.0035 (17)0.0399 (19)0.0055 (17)
C300.120 (3)0.055 (2)0.069 (2)0.0126 (18)0.045 (2)0.0138 (17)
C180.114 (3)0.059 (2)0.0673 (19)0.0143 (18)0.0419 (19)0.0152 (17)
C270.093 (2)0.0448 (19)0.085 (2)0.0026 (16)0.0335 (19)0.0019 (17)
N40.211 (4)0.083 (2)0.075 (2)0.029 (2)0.069 (2)0.0150 (16)
C30.117 (3)0.060 (2)0.071 (2)0.0035 (19)0.0285 (19)0.0132 (18)
C40.107 (3)0.0425 (18)0.086 (2)0.0008 (17)0.032 (2)0.0097 (18)
C160.117 (3)0.070 (2)0.081 (2)0.002 (2)0.037 (2)0.0194 (18)
C10.129 (3)0.070 (2)0.093 (2)0.007 (2)0.052 (2)0.021 (2)
Geometric parameters (Å, º) top
O4—C171.356 (3)C20—C211.374 (3)
O4—H40.8200C20—C191.379 (4)
O3—C201.380 (3)C10—C111.379 (3)
O3—C161.413 (3)C10—H100.9300
O1—C51.373 (3)C21—H210.9300
O1—C11.420 (3)C5—C41.382 (4)
N3—C231.279 (3)C25—C261.383 (3)
N3—C241.417 (3)C25—H250.9300
N1—C81.282 (3)C2—C31.387 (4)
N1—C91.421 (3)C11—C121.375 (4)
O2—C21.361 (3)C11—H110.9300
O2—H20.8200C13—C121.376 (4)
C22—C171.393 (3)C13—H130.9300
C22—C211.399 (3)C19—C181.367 (4)
C22—C231.447 (3)C19—H190.9300
C24—C251.384 (3)C28—C271.361 (4)
C24—C291.401 (3)C28—H280.9300
C23—H230.9300C26—C271.371 (4)
C9—C101.390 (3)C26—H260.9300
C9—C141.394 (3)C12—H120.9300
C8—C71.442 (3)C30—N41.143 (3)
C8—H80.9300C18—H180.9300
C14—C131.392 (3)C27—H270.9300
C14—C151.436 (4)C3—C41.373 (4)
C7—C21.386 (3)C3—H30.9300
C7—C61.398 (3)C4—H4A0.9300
C29—C281.390 (3)C16—H16A0.9600
C29—C301.430 (4)C16—H16B0.9600
C17—C181.388 (3)C16—H16C0.9600
C6—C51.367 (3)C1—H1A0.9600
C6—H60.9300C1—H1B0.9600
N2—C151.145 (3)C1—H1C0.9600
C17—O4—H4109.5C26—C25—H25120.2
C20—O3—C16117.3 (2)C24—C25—H25120.2
C5—O1—C1117.1 (2)N2—C15—C14177.2 (3)
C23—N3—C24120.2 (2)O2—C2—C7122.2 (2)
C8—N1—C9120.6 (2)O2—C2—C3118.5 (3)
C2—O2—H2109.5C7—C2—C3119.3 (3)
C17—C22—C21119.6 (2)C12—C11—C10121.0 (3)
C17—C22—C23122.1 (2)C12—C11—H11119.5
C21—C22—C23118.3 (2)C10—C11—H11119.5
C25—C24—C29118.5 (2)C12—C13—C14120.2 (3)
C25—C24—N3125.8 (2)C12—C13—H13119.9
C29—C24—N3115.6 (2)C14—C13—H13119.9
N3—C23—C22122.1 (2)C18—C19—C20120.8 (3)
N3—C23—H23118.9C18—C19—H19119.6
C22—C23—H23118.9C20—C19—H19119.6
C10—C9—C14118.5 (2)C27—C28—C29119.7 (3)
C10—C9—N1125.4 (2)C27—C28—H28120.1
C14—C9—N1116.1 (2)C29—C28—H28120.1
N1—C8—C7122.4 (2)C27—C26—C25121.5 (3)
N1—C8—H8118.8C27—C26—H26119.3
C7—C8—H8118.8C25—C26—H26119.3
C13—C14—C9120.4 (2)C11—C12—C13119.4 (3)
C13—C14—C15119.8 (2)C11—C12—H12120.3
C9—C14—C15119.7 (2)C13—C12—H12120.3
C2—C7—C6119.2 (2)N4—C30—C29179.0 (4)
C2—C7—C8122.3 (3)C19—C18—C17120.6 (3)
C6—C7—C8118.6 (2)C19—C18—H18119.7
C28—C29—C24120.8 (3)C17—C18—H18119.7
C28—C29—C30120.6 (3)C28—C27—C26120.0 (3)
C24—C29—C30118.7 (2)C28—C27—H27120.0
O4—C17—C18118.7 (2)C26—C27—H27120.0
O4—C17—C22122.3 (2)C4—C3—C2120.3 (3)
C18—C17—C22119.1 (3)C4—C3—H3119.8
C5—C6—C7121.5 (3)C2—C3—H3119.8
C5—C6—H6119.2C3—C4—C5121.2 (3)
C7—C6—H6119.2C3—C4—H4A119.4
C21—C20—C19119.6 (3)C5—C4—H4A119.4
C21—C20—O3124.4 (3)O3—C16—H16A109.5
C19—C20—O3116.0 (3)O3—C16—H16B109.5
C11—C10—C9120.4 (3)H16A—C16—H16B109.5
C11—C10—H10119.8O3—C16—H16C109.5
C9—C10—H10119.8H16A—C16—H16C109.5
C20—C21—C22120.3 (2)H16B—C16—H16C109.5
C20—C21—H21119.8O1—C1—H1A109.5
C22—C21—H21119.8O1—C1—H1B109.5
C6—C5—O1125.9 (3)H1A—C1—H1B109.5
C6—C5—C4118.5 (3)O1—C1—H1C109.5
O1—C5—C4115.6 (3)H1A—C1—H1C109.5
C26—C25—C24119.6 (3)H1B—C1—H1C109.5
C23—N3—C24—C259.1 (4)C23—C22—C21—C20179.6 (3)
C23—N3—C24—C29173.6 (2)C7—C6—C5—O1179.8 (3)
C24—N3—C23—C22178.8 (2)C7—C6—C5—C40.2 (4)
C17—C22—C23—N30.7 (4)C1—O1—C5—C61.1 (4)
C21—C22—C23—N3179.3 (3)C1—O1—C5—C4178.9 (3)
C8—N1—C9—C1013.8 (4)C29—C24—C25—C260.8 (4)
C8—N1—C9—C14167.8 (3)N3—C24—C25—C26178.1 (3)
C9—N1—C8—C7178.4 (2)C6—C7—C2—O2180.0 (3)
C10—C9—C14—C132.3 (4)C8—C7—C2—O20.4 (4)
N1—C9—C14—C13176.2 (3)C6—C7—C2—C30.5 (4)
C10—C9—C14—C15175.7 (3)C8—C7—C2—C3179.9 (3)
N1—C9—C14—C155.8 (4)C9—C10—C11—C120.8 (5)
N1—C8—C7—C20.8 (4)C9—C14—C13—C122.5 (5)
N1—C8—C7—C6179.6 (3)C15—C14—C13—C12175.5 (3)
C25—C24—C29—C280.0 (4)C21—C20—C19—C181.0 (5)
N3—C24—C29—C28177.6 (3)O3—C20—C19—C18180.0 (3)
C25—C24—C29—C30179.5 (3)C24—C29—C28—C270.8 (4)
N3—C24—C29—C302.9 (4)C30—C29—C28—C27178.7 (3)
C21—C22—C17—O4179.6 (3)C24—C25—C26—C270.8 (5)
C23—C22—C17—O40.4 (4)C10—C11—C12—C130.6 (5)
C21—C22—C17—C180.0 (4)C14—C13—C12—C111.1 (5)
C23—C22—C17—C18179.9 (3)C20—C19—C18—C170.6 (5)
C2—C7—C6—C50.1 (4)O4—C17—C18—C19179.7 (3)
C8—C7—C6—C5179.7 (3)C22—C17—C18—C190.0 (5)
C16—O3—C20—C210.1 (4)C29—C28—C27—C260.9 (5)
C16—O3—C20—C19179.0 (3)C25—C26—C27—C280.1 (5)
C14—C9—C10—C110.7 (4)O2—C2—C3—C4179.9 (3)
N1—C9—C10—C11177.6 (3)C7—C2—C3—C40.7 (5)
C19—C20—C21—C221.0 (4)C2—C3—C4—C50.4 (5)
O3—C20—C21—C22179.8 (3)C6—C5—C4—C30.1 (5)
C17—C22—C21—C200.4 (4)O1—C5—C4—C3180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.922.637 (3)146
O2—H2···N10.821.922.635 (3)145
C23—H23···N2i0.932.573.446 (4)158
C8—H8···N4ii0.932.603.444 (4)152
C12—H12···O1iii0.932.463.391 (3)176
C27—H27···O3iii0.932.523.444 (3)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemircioğlu, Z., Kaştaş, Ç. A. & Büyükgüngör, O. (2015). Spectrochim. Acta A, 139, 539–548.  Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGeskin, V. M., Lambert, C. & Bredas, J. L. (2003). J. Am. Chem. Soc. 125, 15651–15658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationLiu, T. (2009). Acta Cryst. E65, o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar
First citationXia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009a). Acta Cryst. E65, o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009b). Acta Cryst. E65, o1949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, J.-C., Zhang, C.-M., Li, N.-X. & Zhang, Z.-Y. (2009c). Acta Cryst. E65, o1700.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds