research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 5,5-di­phenyl-1,3-bis­­(prop-2-yn-1-yl)imidazolidine-2,4-dione

aLaboratoire de Chimie de la Matière Condensée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, and dUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve, d'Ascq, Cedex, France
*Correspondence e-mail: amalhaoudi2017@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 15 May 2019; accepted 30 May 2019; online 4 June 2019)

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter­molecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhenπ inter­actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Pyrazolo­nes are an important class of heterocyclic compounds that occur in many drugs and their derivatives have long been of inter­est to medicinal chemists for their wide range of biological activities (Pawar & Patil, 1994[Pawar, R. A. & Patil, A. A. (1994). Indian J. Chem. 33B, 156-158.]), including anti­bacterial, anti­diabetic, immunosuppressive agents, and substances displaying hypoglycemic, anti­viral and anti­neoplastic actions (Pathak & Bahel, 1980[Pathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108-1111.]; Naik & Malik, 2010[Naik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113-116.]; Srivalli et al., 2011[Srivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172-174.]). Their pharmaceutical applications include use as a non-steroidal anti-inflammatory agent in the treatment of arthritis and other musculoskeletal and joint disorders (Amir & Kumar, 2005[Amir, M. & Kumar, S. (2005). Indian J. Chem. 44B, 2532-2537.]), and as analgesic, anti­pyretic (Badawey & El-Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]) and hypoglycemic agents (Das et al., 2008[Das, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. B47, 1555-1558.]). They also have fungicidal (Singh & Singh, 1991[Singh, D. & Singh, D. (1991). J. Indian Chem. Soc. 68, 165-167.]) and anti­microbial properties (Sahu et al., 2007[Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011-1015.]), and some have been tested as potential cardiovascular drugs (Higashi et al., 2006[Higashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent. Patents Cardiovasc. Drug. Discov. 1, 85-93.]). In the past few years, research has been focused on existing mol­ecules and their modifications in order to reduce side effects and to explore other pharmacological and biological activity (Sahu et al., 2007[Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011-1015.]; Naik & Malik, 2010[Naik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113-116.]; Srivalli et al., 2011[Srivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172-174.]). As a continuation of our research on the development of new N-substituted pyrazolone derivatives and the evaluation of their potential pharmacological activities, we report herein the synthesis, the mol­ecular and crystal structures, the Hirshfeld surface analysis and inter­molecular inter­action energies and density functional theory (DFT) computational calculation of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The title mol­ecule consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties (Fig. 1[link]). The planar five-membered imidazolidine ring, A (N1/N2/C1–C3), is oriented at dihedral angles of 79.10 (5) and 82.61 (5)°, respectively, to phenyl rings B (C4–C9) and C (C10–C15), while the dihedral angle between the two phenyl rings is 62.06 (5)°. Atoms O1, O2, C16 and C19 are at distances of 0.0271 (12), −0.1040 (12), 0.1657 (19) and −0.0336 (19) Å from the mean plane of the imidazolidine ring, A. The orientation of the prop-2-yn-1-yl moieties with respect to the imidazolidine unit can be described by the C3—N1—C16—C17 and C3—N2—C19—C20 torsion angles of −115.3 (2) and 76.6 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds (Table 1[link] and Fig. 2[link]) link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhenπ inter­actions (Table 1[link]) may also contribute to the stabilization of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O2vii 0.98 (3) 2.33 (3) 3.178 (3) 144 (2)
C9—H9⋯Cg1vi 0.93 (3) 2.93 (2) 3.778 (2) 152.7 (17)
C14—H14⋯Cg2viii 1.00 (3) 2.87 (2) 3.762 (3) 149.6 (17)
Symmetry codes: (vi) [-x+1, y+{\script{1\over 2}}, -z+1]; (vii) [-x, y-{\script{1\over 2}}, -z]; (viii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A partial packing diagram viewed down the a-axis direction. C—HProp⋯NImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds (Table 1[link]) are shown as dashed lines. Symmetry code: (vii) [-x, y-{\script{1\over 2}}, -z].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O2 and hydrogen atom H16B indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–·π inter­actions. Fig. 5[link] clearly suggest that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2703 to 1.2169 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O ⋯ H, C⋯C and H⋯N/N⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bf, together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2[link]. The most important inter­action is H⋯H contributing 43.3% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de + di ∼2.44 Å. In the presence of two weak C—H⋯π inter­actions, the pair of the scattered points of wings resulting from H⋯C/C⋯H contacts, with a 37.8% contribution to the HS, have a symmetrical distribution of points, Fig. 6[link]c, with the thin edges at de + di = 2.67 Å. The fingerprint plot for H⋯O/O⋯H contacts (18.0% contribution), Fig. 6[link]d, has a pair of spikes with the tips at de + di = 2.24 Å.

Table 2
Selected interatomic distances (Å)

O1⋯H16B 2.84 (2) C4⋯H11 2.679 (18)
O1⋯H13i 2.61 (2) C6⋯H9ii 2.97 (2)
O1⋯H5 2.767 (18) C6⋯H18v 2.90 (4)
O1⋯H8ii 2.62 (2) C8⋯H11vi 2.94 (2)
O2⋯H18iii 2.68 (5) C8⋯H19Aii 2.83 (2)
O2⋯H19B 2.65 (2) C9⋯H11 2.73 (2)
O2⋯H16A 2.50 (2) C10⋯H9 2.75 (2)
O2⋯H16Biv 2.33 (2) C10⋯H19A 2.96 (2)
N2⋯H15 2.53 (2) C11⋯H14i 2.94 (2)
C4⋯C20 3.372 (3) C11⋯H9 2.79 (2)
C9⋯C19 3.378 (3) C12⋯H14i 2.91 (2)
C9⋯C11 3.138 (3) C14⋯H7vi 2.97 (2)
C9⋯C20 3.472 (3) H8⋯H11vi 2.53 (3)
C15⋯C19 3.450 (3) H9⋯H11 2.58 (3)
C2⋯H5 2.476 (18)    
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) [-x, y+{\script{1\over 2}}, -z]; (v) [-x, y+{\script{1\over 2}}, -z+1]; (vi) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C and (f) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7[link]ac.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and H⋯O/O ⋯ H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H ⋯ O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies (Table 3[link]) were calculated using the CE–B3LYP/6–311G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The hydrogen-bonding inter­action energy (in kJ mol−1) was calculated to be −15.3 (Eele), −3.2 (Epol), −52.2 (Edis), 37.6 (Erep) and −40.7 (Etot) for the C—HProp⋯NImdzln inter­action.

Table 3
Calculated energies and other parameters for (I)

Parameter Value in (I)
Total energy Etot (eV) −30168.2025
EHOMO (eV) −6.6964
ELUMO (eV) −0.8090
Energy gap, ΔE (eV) 5.8878
Dipole moment, μ (Debye) 2.5919
Ionization potential, I (eV) 6.6964
Electron affinity, A 0.8090
Electro negativity, χ 4.0554
Hardness, η 2.9437
Electrophilicity index, ω 2.3920
Softness, σ 0.3397
Fraction of electrons transferred, ΔN 0.5516

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) calculations using the standard B3LYP functional and 6–311G(d,p) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 4[link]). The highest occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material; the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3[link]. The significance of η and σ is to evaluate both the reactivity and stability of a compound. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole 5,5-diphenyl-1,3-di(prop-2-yn-1-yl)imidazolidine-2,4-dione ring. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule is about 5.8874 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −6.6964 and −0.8090 eV, respectively.

Table 4
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C2 1.203 (3) 1.237
O2—C3 1.208 (2) 1.242
N2—C3 1.346 (3) 1.379
N2—C1 1.472 (3) 1.494
N2—C19 1.454 (3) 1.470
N1—C3 1.399 (3) 1.414
N1—C2 1.360 (3) 1.384
N1—C16 1.453 (3) 1.467
C3—N2—C1 112.90 (16) 112.45
C3—N2—C19 121.81 (18) 120.14
N2—C3—N1 107.02 (17) 106.95
C3—N1—C16 122.9 (2) 122.80
C2—N1—C3 112.60 (17) 112.41
O2—C3—N2 128.0 (2) 127.88
O2—C3—N1 125.0 (2) 125.10
[Figure 8]
Figure 8
The energy band gap of the title compound.

7. Database survey

A non-alkyl­ated analogue, namely 5,5-di­phenyl­imidazolidine-2,4-dione, has been reported (Camerman & Camerman, 1971[Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205-2211.]), as well as three similar structures, 3-n-pentyl-5,5-di­phenyl­imidazolidine-2,4-dione (Guerrab et al., 2017[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017). IUCrData, 2, x171693.]), 3-benzyl-5,5 di­phenyl­imidazolidine-2,4-dione (Guerrab et al., 2018[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832.]) and 3-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-5,5 di­phenyl­imidazolidine-2,4-dione (Mague et al., 2014[Mague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226-o227.]).

8. Synthesis and crystallization

The appropriate bromide propargil (2.4 ml, 20.0 mmol) was added to a solution of 5,5 di­phenyl­hydantoin (3.52 g, 10.0 mmol) in DMF (50 ml), potassium carbonate (2.76 g, 20.0 mmol) and tetra-n-butyl­ammonium bromide (0.32 g, 1.0 mmol) at room temperature. The reaction was monitored using TLC. After removal of the inorganic salt by filtration, the solution was evaporated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate–hexane (v:v 3:7) as eluent. The isolated solid was crystallized from ethanol solution to afford colourless crystals (yield: 82%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were located in a difference-Fourier map, and refined freely. The Flack absolute structure parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) was refined; expected values are 0 for the correct and +1 for the inverted absolute structure. The refined value is −0.3 (4) (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Since the large e.s.d. means that the assignment is not unambiguous, the absolute structure was not determined reliably.

Table 5
Experimental details

Crystal data
Chemical formula C21H16N2O2
Mr 328.36
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 10.144 (3), 7.952 (2), 10.928 (3)
β (°) 97.104 (12)
V3) 874.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.694, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21744, 3988, 3529
Rint 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.03
No. of reflections 3988
No. of parameters 290
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Absolute structure Flack x determined using 1436 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.3 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5,5-Diphenyl-1,3-bis(prop-2-yn-1-yl)imidazolidine-2,4-dione top
Crystal data top
C21H16N2O2F(000) = 344
Mr = 328.36Dx = 1.247 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.144 (3) ÅCell parameters from 9652 reflections
b = 7.952 (2) Åθ = 3.2–27.2°
c = 10.928 (3) ŵ = 0.08 mm1
β = 97.104 (12)°T = 296 K
V = 874.8 (4) Å3Prism, colourless
Z = 20.34 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3529 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.5°, θmin = 1.9°
Tmin = 0.694, Tmax = 0.746h = 1313
21744 measured reflectionsk = 1010
3988 independent reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0829P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.14 e Å3
3988 reflectionsΔρmin = 0.16 e Å3
290 parametersAbsolute structure: Flack x determined using 1436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.3 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27390 (15)0.2664 (2)0.19321 (15)0.0502 (4)
O20.01151 (15)0.7093 (2)0.18041 (16)0.0521 (4)
N10.10965 (17)0.4650 (2)0.16652 (16)0.0421 (4)
N20.20794 (16)0.6856 (2)0.26052 (16)0.0408 (4)
C10.30827 (18)0.5513 (3)0.27974 (18)0.0380 (4)
C20.2324 (2)0.4054 (3)0.20923 (18)0.0387 (4)
C30.09114 (19)0.6317 (3)0.20165 (18)0.0390 (4)
C40.33794 (18)0.5114 (2)0.41722 (19)0.0385 (4)
C50.2604 (2)0.3960 (3)0.4718 (2)0.0458 (5)
C60.2784 (3)0.3712 (4)0.5987 (2)0.0565 (6)
C70.3738 (3)0.4604 (4)0.6713 (2)0.0572 (6)
C80.4520 (2)0.5750 (3)0.6180 (2)0.0526 (6)
C90.4342 (2)0.6008 (3)0.4921 (2)0.0454 (5)
C100.42895 (19)0.5861 (3)0.21163 (19)0.0395 (4)
C110.5495 (2)0.5070 (3)0.2474 (2)0.0441 (5)
C120.6546 (2)0.5272 (3)0.1782 (2)0.0543 (6)
C130.6410 (3)0.6249 (4)0.0733 (2)0.0606 (6)
C140.5225 (3)0.7025 (4)0.0372 (2)0.0622 (7)
C150.4163 (2)0.6834 (3)0.1052 (2)0.0538 (6)
C160.0113 (3)0.3724 (4)0.0851 (2)0.0541 (6)
C170.0433 (2)0.2305 (3)0.1448 (3)0.0613 (7)
C180.0849 (4)0.1125 (5)0.1895 (5)0.1046 (14)
C190.2236 (3)0.8536 (3)0.3129 (2)0.0504 (5)
C200.1674 (3)0.8738 (4)0.4290 (3)0.0701 (8)
C210.1218 (5)0.8918 (10)0.5191 (5)0.136 (2)
H50.189 (2)0.328 (3)0.420 (2)0.051 (7)*
H60.228 (3)0.296 (4)0.632 (3)0.068 (8)*
H70.389 (3)0.445 (4)0.763 (3)0.080 (10)*
H80.522 (3)0.636 (4)0.669 (2)0.059 (7)*
H90.486 (3)0.677 (4)0.455 (3)0.075 (9)*
H110.562 (2)0.435 (4)0.323 (2)0.054 (7)*
H120.736 (3)0.474 (4)0.203 (3)0.069 (8)*
H130.720 (3)0.641 (4)0.027 (3)0.068 (8)*
H140.511 (3)0.777 (4)0.037 (3)0.072 (8)*
H150.330 (3)0.737 (4)0.076 (3)0.060 (7)*
H16A0.051 (3)0.446 (4)0.056 (3)0.060 (8)*
H16B0.053 (3)0.332 (4)0.014 (3)0.070 (9)*
H180.113 (6)0.010 (8)0.228 (6)0.18 (2)*
H19A0.315 (3)0.879 (4)0.328 (2)0.061 (7)*
H19B0.182 (3)0.926 (4)0.250 (3)0.067 (8)*
H210.087 (5)0.905 (8)0.590 (5)0.16 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0528 (9)0.0399 (8)0.0585 (10)0.0036 (7)0.0088 (7)0.0076 (7)
O20.0430 (8)0.0499 (9)0.0606 (10)0.0084 (7)0.0045 (7)0.0041 (7)
N10.0425 (9)0.0389 (9)0.0426 (9)0.0019 (7)0.0033 (7)0.0008 (8)
N20.0373 (8)0.0349 (9)0.0492 (10)0.0009 (7)0.0014 (7)0.0011 (7)
C10.0361 (9)0.0342 (9)0.0432 (11)0.0012 (8)0.0035 (8)0.0012 (8)
C20.0414 (10)0.0385 (10)0.0368 (10)0.0003 (8)0.0070 (8)0.0009 (8)
C30.0396 (10)0.0403 (11)0.0365 (10)0.0013 (8)0.0024 (8)0.0058 (8)
C40.0349 (9)0.0385 (11)0.0423 (11)0.0052 (8)0.0055 (8)0.0012 (8)
C50.0414 (11)0.0468 (12)0.0501 (12)0.0006 (9)0.0094 (9)0.0032 (10)
C60.0574 (13)0.0592 (15)0.0556 (14)0.0074 (12)0.0183 (11)0.0142 (12)
C70.0644 (15)0.0677 (16)0.0400 (12)0.0230 (13)0.0082 (10)0.0047 (11)
C80.0531 (12)0.0545 (14)0.0476 (13)0.0104 (11)0.0037 (10)0.0093 (11)
C90.0438 (11)0.0440 (11)0.0478 (12)0.0016 (9)0.0035 (9)0.0013 (9)
C100.0386 (9)0.0391 (11)0.0412 (10)0.0022 (8)0.0060 (7)0.0009 (8)
C110.0405 (10)0.0450 (12)0.0468 (12)0.0014 (9)0.0054 (9)0.0040 (10)
C120.0419 (11)0.0616 (15)0.0605 (15)0.0032 (11)0.0105 (10)0.0011 (12)
C130.0519 (13)0.0735 (17)0.0601 (14)0.0040 (12)0.0219 (11)0.0055 (13)
C140.0692 (16)0.0698 (17)0.0498 (14)0.0003 (13)0.0166 (12)0.0179 (13)
C150.0482 (12)0.0622 (15)0.0507 (13)0.0044 (11)0.0053 (10)0.0129 (12)
C160.0540 (13)0.0525 (14)0.0520 (14)0.0059 (11)0.0086 (11)0.0047 (12)
C170.0463 (12)0.0490 (14)0.088 (2)0.0035 (10)0.0067 (12)0.0068 (13)
C180.081 (2)0.066 (2)0.174 (4)0.0128 (18)0.043 (2)0.017 (2)
C190.0479 (13)0.0358 (11)0.0664 (15)0.0013 (9)0.0025 (11)0.0020 (11)
C200.0587 (15)0.0758 (19)0.0742 (19)0.0032 (14)0.0024 (13)0.0289 (16)
C210.103 (3)0.214 (6)0.094 (3)0.001 (4)0.026 (2)0.069 (4)
Geometric parameters (Å, º) top
O1—C21.203 (3)C10—C111.388 (3)
O2—C31.208 (2)C10—C151.390 (3)
N1—C21.360 (3)C11—C121.391 (3)
N1—C31.399 (3)C11—H111.00 (3)
N1—C161.453 (3)C12—C131.377 (4)
N2—C11.472 (3)C12—H120.94 (3)
N2—C31.346 (3)C13—C141.366 (4)
N2—C191.454 (3)C13—H131.01 (3)
C1—C101.534 (3)C14—H141.00 (3)
C2—C11.545 (3)C15—C141.390 (4)
C4—C11.529 (3)C15—H150.99 (3)
C4—C51.390 (3)C16—H16A0.89 (3)
C4—C91.390 (3)C16—H16B0.98 (3)
C5—C61.389 (3)C17—C161.447 (4)
C5—H51.02 (3)C17—C181.162 (5)
C6—C71.370 (4)C18—H180.97 (6)
C6—H60.90 (3)C19—C201.462 (4)
C7—H71.01 (3)C19—H19A0.94 (3)
C8—C71.384 (4)C19—H19B0.95 (3)
C8—H80.98 (3)C20—C211.148 (5)
C9—C81.380 (3)C21—H210.90 (5)
C9—H90.93 (3)
O1···H16B2.84 (2)C20···C43.372 (3)
O1···H13i2.61 (2)C20···C93.472 (3)
O1···H52.767 (18)C2···H52.476 (18)
O1···H8ii2.62 (2)C4···H112.679 (18)
O2···H18iii2.68 (5)C6···H9ii2.97 (2)
O2···H19B2.65 (2)C6···H18v2.90 (4)
O2···H16A2.50 (2)C8···H11vi2.94 (2)
O2···H16Biv2.33 (2)C8···H19Aii2.83 (2)
N2···H152.53 (2)C9···H112.73 (2)
C4···C203.372 (3)C10···H92.75 (2)
C9···C193.378 (3)C10···H19A2.96 (2)
C9···C113.138 (3)C11···H14i2.94 (2)
C9···C203.472 (3)C11···H92.79 (2)
C11···C93.138 (3)C12···H14i2.91 (2)
C15···C193.450 (3)C14···H7vi2.97 (2)
C19···C153.450 (3)H8···H11vi2.53 (3)
C19···C93.378 (3)H9···H112.58 (3)
C2—N1—C3112.60 (17)C8—C9—H9121.2 (19)
C2—N1—C16124.3 (2)C11—C10—C1120.65 (18)
C3—N1—C16122.9 (2)C11—C10—C15118.4 (2)
C3—N2—C1112.90 (16)C15—C10—C1120.64 (18)
C3—N2—C19121.81 (18)C10—C11—C12120.2 (2)
C19—N2—C1124.78 (17)C10—C11—H11120.6 (14)
N2—C1—C2100.41 (15)C12—C11—H11119.3 (14)
N2—C1—C4109.84 (16)C11—C12—H12119.8 (18)
N2—C1—C10112.27 (16)C13—C12—C11120.9 (2)
C4—C1—C2111.07 (16)C13—C12—H12119.3 (18)
C4—C1—C10116.25 (15)C12—C13—H13119.5 (17)
C10—C1—C2105.76 (16)C14—C13—C12119.3 (2)
O1—C2—N1126.3 (2)C14—C13—H13121.2 (17)
O1—C2—C1126.93 (19)C13—C14—C15120.6 (2)
N1—C2—C1106.74 (16)C13—C14—H14121.1 (17)
O2—C3—N1125.0 (2)C15—C14—H14118.2 (17)
O2—C3—N2128.0 (2)C10—C15—C14120.7 (2)
N2—C3—N1107.02 (17)C10—C15—H15119.9 (16)
C5—C4—C1120.41 (18)C14—C15—H15119.3 (16)
C9—C4—C1120.74 (18)N1—C16—H16A107.0 (19)
C9—C4—C5118.6 (2)N1—C16—H16B108.8 (17)
C4—C5—H5121.0 (14)C17—C16—N1113.0 (2)
C6—C5—C4120.7 (2)C17—C16—H16A112.0 (18)
C6—C5—H5118.4 (14)C17—C16—H16B108.8 (18)
C5—C6—H6119 (2)H16A—C16—H16B107 (2)
C7—C6—C5120.0 (2)C18—C17—C16177.3 (4)
C7—C6—H6120.8 (19)C17—C18—H18176 (3)
C6—C7—C8119.8 (2)N2—C19—C20114.0 (2)
C6—C7—H7121.8 (18)N2—C19—H19A108.9 (18)
C8—C7—H7118.3 (18)N2—C19—H19B104.8 (18)
C7—C8—H8120.2 (16)C20—C19—H19A107.8 (16)
C9—C8—C7120.4 (2)C20—C19—H19B112.0 (17)
C9—C8—H8119.3 (16)H19A—C19—H19B109 (2)
C4—C9—H9118.4 (19)C21—C20—C19178.8 (5)
C8—C9—C4120.4 (2)C20—C21—H21179 (4)
C3—N2—C1—C4112.10 (13)C2—N1—C3—N24.70 (16)
C19—N2—C1—C459.82 (18)C16—N1—C3—N2170.68 (14)
C3—N2—C1—C10116.91 (13)C9—C4—C5—C60.3 (2)
C19—N2—C1—C1071.17 (19)C1—C4—C5—C6173.66 (14)
C3—N2—C1—C24.97 (15)C4—C5—C6—C70.3 (3)
C19—N2—C1—C2176.88 (13)C5—C6—C7—C80.0 (3)
C9—C4—C1—N287.33 (15)C9—C8—C7—C60.3 (3)
C5—C4—C1—N286.52 (16)C4—C9—C8—C70.3 (3)
C9—C4—C1—C1041.52 (19)C5—C4—C9—C80.0 (2)
C5—C4—C1—C10144.63 (14)C1—C4—C9—C8173.96 (14)
C9—C4—C1—C2162.49 (13)N2—C1—C10—C11159.40 (13)
C5—C4—C1—C223.66 (18)C4—C1—C10—C1131.74 (19)
O1—C2—C1—N2177.04 (14)C2—C1—C10—C1192.03 (15)
N1—C2—C1—N21.91 (14)N2—C1—C10—C1527.33 (19)
O1—C2—C1—C466.81 (19)C4—C1—C10—C15154.99 (14)
N1—C2—C1—C4114.23 (13)C2—C1—C10—C1581.25 (17)
O1—C2—C1—C1060.15 (19)C15—C10—C11—C120.6 (2)
N1—C2—C1—C10118.80 (12)C1—C10—C11—C12174.00 (15)
C3—N1—C2—O1179.51 (14)C10—C11—C12—C130.2 (3)
C16—N1—C2—O15.2 (2)C11—C12—C13—C140.1 (3)
C3—N1—C2—C11.52 (16)C12—C13—C14—C150.0 (3)
C16—N1—C2—C1173.78 (14)C10—C15—C14—C130.4 (3)
C19—N2—C3—O22.4 (2)C11—C10—C15—C140.7 (3)
C1—N2—C3—O2174.63 (14)C1—C10—C15—C14174.13 (17)
C19—N2—C3—N1178.28 (14)C2—N1—C16—C1769.8 (2)
C1—N2—C3—N16.09 (16)C3—N1—C16—C17115.34 (18)
C2—N1—C3—O2175.99 (14)C3—N2—C19—C2076.6 (2)
C16—N1—C3—O28.6 (2)C1—N2—C19—C2094.61 (19)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z; (v) x, y+1/2, z+1; (vi) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2vii0.98 (3)2.33 (3)3.178 (3)144 (2)
C9—H9···Cg1vi0.93 (3)2.93 (2)3.778 (2)152.7 (17)
C14—H14···Cg2viii1.00 (3)2.87 (2)3.762 (3)149.6 (17)
Symmetry codes: (vi) x+1, y+1/2, z+1; (vii) x, y1/2, z; (viii) x+1, y+1/2, z.
Calculated energies and other parameters for (I) top
ParameterValue in (I)
Total energy Etot (eV)-30168.2025
EHOMO (eV)-6.6964
ELUMO (eV)-0.8090
Energy gap, ΔE (eV)5.8878
Dipole moment, µ (Debye)2.5919
Ionization potential, I (eV)6.6964
Electron affinity, A0.8090
Electro negativity, χ4.0554
Hardness, η2.9437
Electrophilicity index, ω2.3920
Softness, σ0.3397
Fraction of electrons transferred, ΔN0.5516
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C21.203 (3)1.237
O2—C31.208 (2)1.242
N2—C31.346 (3)1.379
N2—C11.472 (3)1.494
N2—C191.454 (3)1.470
N1—C31.399 (3)1.414
N1—C21.360 (3)1.384
N1—C161.453 (3)1.467
C3—N2—C1112.90 (16)112.45
C3—N2—C19121.81 (18)120.14
N2—C3—N1107.02 (17)106.95
C3—N1—C16122.9 (2)122.80
C2—N1—C3112.60 (17)112.41
O2—C3—N2128.0 (2)127.88
O2—C3—N1125.0 (2)125.10
 

Funding information

TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAmir, M. & Kumar, S. (2005). Indian J. Chem. 44B, 2532–2537.  CAS Google Scholar
First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205–2211.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationDas, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. B47, 1555–1558.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017). IUCrData, 2, x171693.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHigashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent. Patents Cardiovasc. Drug. Discov. 1, 85–93.  Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226–o227.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113–116.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108–1111.  CAS Google Scholar
First citationPawar, R. A. & Patil, A. A. (1994). Indian J. Chem. 33B, 156–158.  CAS Google Scholar
First citationSahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011–1015.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. & Singh, D. (1991). J. Indian Chem. Soc. 68, 165–167.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSrivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172–174.  Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds