research communications
Hirshfeld surface analysis and interaction energy and DFT studies of 5,5-diphenyl-1,3-bis(prop-2-yn-1-yl)imidazolidine-2,4-dione
aLaboratoire de Chimie de la Matière Condensée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, and dUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve, d'Ascq, Cedex, France
*Correspondence e-mail: amalhaoudi2017@gmail.com
The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, intermolecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π interactions are also observed. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; imidazolidine; oxazole; π-stacking; Hirshfeld surface.
CCDC reference: 1919743
1. Chemical context
Pyrazolones are an important class of ), including antibacterial, antidiabetic, immunosuppressive agents, and substances displaying hypoglycemic, antiviral and antineoplastic actions (Pathak & Bahel, 1980; Naik & Malik, 2010; Srivalli et al., 2011). Their pharmaceutical applications include use as a non-steroidal anti-inflammatory agent in the treatment of arthritis and other musculoskeletal and joint disorders (Amir & Kumar, 2005), and as analgesic, antipyretic (Badawey & El-Ashmawey, 1998) and hypoglycemic agents (Das et al., 2008). They also have fungicidal (Singh & Singh, 1991) and antimicrobial properties (Sahu et al., 2007), and some have been tested as potential cardiovascular drugs (Higashi et al., 2006). In the past few years, research has been focused on existing molecules and their modifications in order to reduce side effects and to explore other pharmacological and biological activity (Sahu et al., 2007; Naik & Malik, 2010; Srivalli et al., 2011). As a continuation of our research on the development of new N-substituted pyrazolone derivatives and the evaluation of their potential pharmacological activities, we report herein the synthesis, the molecular and crystal structures, the Hirshfeld surface analysis and intermolecular interaction energies and density functional theory (DFT) computational calculation of the title compound, (I).
that occur in many drugs and their derivatives have long been of interest to medicinal chemists for their wide range of biological activities (Pawar & Patil, 19942. Structural commentary
The title molecule consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties (Fig. 1). The planar five-membered imidazolidine ring, A (N1/N2/C1–C3), is oriented at dihedral angles of 79.10 (5) and 82.61 (5)°, respectively, to phenyl rings B (C4–C9) and C (C10–C15), while the dihedral angle between the two phenyl rings is 62.06 (5)°. Atoms O1, O2, C16 and C19 are at distances of 0.0271 (12), −0.1040 (12), 0.1657 (19) and −0.0336 (19) Å from the mean plane of the imidazolidine ring, A. The orientation of the prop-2-yn-1-yl moieties with respect to the imidazolidine unit can be described by the C3—N1—C16—C17 and C3—N2—C19—C20 torsion angles of −115.3 (2) and 76.6 (2)°, respectively.
3. Supramolecular features
In the crystal, C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds (Table 1 and Fig. 2) link the molecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π interactions (Table 1) may also contribute to the stabilization of the crystal structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O2 and hydrogen atom H16B indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–·π interactions. Fig. 5 clearly suggest that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O ⋯ H, C⋯C and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–f, together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2. The most important interaction is H⋯H contributing 43.3% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de + di ∼2.44 Å. In the presence of two weak C—H⋯π interactions, the pair of the scattered points of wings resulting from H⋯C/C⋯H contacts, with a 37.8% contribution to the HS, have a symmetrical distribution of points, Fig. 6c, with the thin edges at de + di = 2.67 Å. The fingerprint plot for H⋯O/O⋯H contacts (18.0% contribution), Fig. 6d, has a pair of spikes with the tips at de + di = 2.24 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 7a–c.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H ⋯ O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies (Table 3) were calculated using the CE–B3LYP/6–311G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The hydrogen-bonding interaction energy (in kJ mol−1) was calculated to be −15.3 (Eele), −3.2 (Epol), −52.2 (Edis), 37.6 (Erep) and −40.7 (Etot) for the C—HProp⋯NImdzln interaction.
|
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) calculations using the standard B3LYP functional and 6–311G(d,p) basis set (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 4). The highest occupied molecular orbital (HOMO), acting as an and the lowest unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material; the (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is to evaluate both the reactivity and stability of a compound. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole 5,5-diphenyl-1,3-di(prop-2-yn-1-yl)imidazolidine-2,4-dione ring. The energy band gap [ΔE = ELUMO - EHOMO] of the molecule is about 5.8874 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −6.6964 and −0.8090 eV, respectively.
|
7. Database survey
A non-alkylated analogue, namely 5,5-diphenylimidazolidine-2,4-dione, has been reported (Camerman & Camerman, 1971), as well as three similar structures, 3-n-pentyl-5,5-diphenylimidazolidine-2,4-dione (Guerrab et al., 2017), 3-benzyl-5,5 diphenylimidazolidine-2,4-dione (Guerrab et al., 2018) and 3-[2-(4-fluorophenyl)-2-oxoethyl]-5,5 diphenylimidazolidine-2,4-dione (Mague et al., 2014).
8. Synthesis and crystallization
The appropriate bromide propargil (2.4 ml, 20.0 mmol) was added to a solution of 5,5 diphenylhydantoin (3.52 g, 10.0 mmol) in DMF (50 ml), potassium carbonate (2.76 g, 20.0 mmol) and tetra-n-butylammonium bromide (0.32 g, 1.0 mmol) at room temperature. The reaction was monitored using TLC. After removal of the inorganic salt by filtration, the solution was evaporated under reduced pressure. The residue was separated by on a column of silica gel with ethyl acetate–hexane (v:v 3:7) as The isolated solid was crystallized from ethanol solution to afford colourless crystals (yield: 82%).
9. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map, and refined freely. The Flack parameter (Parsons et al., 2013) was refined; expected values are 0 for the correct and +1 for the inverted The refined value is −0.3 (4) (Sheldrick, 2015b). Since the large e.s.d. means that the assignment is not unambiguous, the was not determined reliably.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1919743
https://doi.org/10.1107/S2056989019007801/lh5908sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007801/lh5908Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007801/lh5908Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007801/lh5908Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C21H16N2O2 | F(000) = 344 |
Mr = 328.36 | Dx = 1.247 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.144 (3) Å | Cell parameters from 9652 reflections |
b = 7.952 (2) Å | θ = 3.2–27.2° |
c = 10.928 (3) Å | µ = 0.08 mm−1 |
β = 97.104 (12)° | T = 296 K |
V = 874.8 (4) Å3 | Prism, colourless |
Z = 2 | 0.34 × 0.17 × 0.12 mm |
Bruker APEXII CCD diffractometer | 3529 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.037 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 27.5°, θmin = 1.9° |
Tmin = 0.694, Tmax = 0.746 | h = −13→13 |
21744 measured reflections | k = −10→10 |
3988 independent reflections | l = −13→14 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0829P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.14 e Å−3 |
3988 reflections | Δρmin = −0.16 e Å−3 |
290 parameters | Absolute structure: Flack x determined using 1436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.3 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27390 (15) | 0.2664 (2) | 0.19321 (15) | 0.0502 (4) | |
O2 | −0.01151 (15) | 0.7093 (2) | 0.18041 (16) | 0.0521 (4) | |
N1 | 0.10965 (17) | 0.4650 (2) | 0.16652 (16) | 0.0421 (4) | |
N2 | 0.20794 (16) | 0.6856 (2) | 0.26052 (16) | 0.0408 (4) | |
C1 | 0.30827 (18) | 0.5513 (3) | 0.27974 (18) | 0.0380 (4) | |
C2 | 0.2324 (2) | 0.4054 (3) | 0.20923 (18) | 0.0387 (4) | |
C3 | 0.09114 (19) | 0.6317 (3) | 0.20165 (18) | 0.0390 (4) | |
C4 | 0.33794 (18) | 0.5114 (2) | 0.41722 (19) | 0.0385 (4) | |
C5 | 0.2604 (2) | 0.3960 (3) | 0.4718 (2) | 0.0458 (5) | |
C6 | 0.2784 (3) | 0.3712 (4) | 0.5987 (2) | 0.0565 (6) | |
C7 | 0.3738 (3) | 0.4604 (4) | 0.6713 (2) | 0.0572 (6) | |
C8 | 0.4520 (2) | 0.5750 (3) | 0.6180 (2) | 0.0526 (6) | |
C9 | 0.4342 (2) | 0.6008 (3) | 0.4921 (2) | 0.0454 (5) | |
C10 | 0.42895 (19) | 0.5861 (3) | 0.21163 (19) | 0.0395 (4) | |
C11 | 0.5495 (2) | 0.5070 (3) | 0.2474 (2) | 0.0441 (5) | |
C12 | 0.6546 (2) | 0.5272 (3) | 0.1782 (2) | 0.0543 (6) | |
C13 | 0.6410 (3) | 0.6249 (4) | 0.0733 (2) | 0.0606 (6) | |
C14 | 0.5225 (3) | 0.7025 (4) | 0.0372 (2) | 0.0622 (7) | |
C15 | 0.4163 (2) | 0.6834 (3) | 0.1052 (2) | 0.0538 (6) | |
C16 | 0.0113 (3) | 0.3724 (4) | 0.0851 (2) | 0.0541 (6) | |
C17 | −0.0433 (2) | 0.2305 (3) | 0.1448 (3) | 0.0613 (7) | |
C18 | −0.0849 (4) | 0.1125 (5) | 0.1895 (5) | 0.1046 (14) | |
C19 | 0.2236 (3) | 0.8536 (3) | 0.3129 (2) | 0.0504 (5) | |
C20 | 0.1674 (3) | 0.8738 (4) | 0.4290 (3) | 0.0701 (8) | |
C21 | 0.1218 (5) | 0.8918 (10) | 0.5191 (5) | 0.136 (2) | |
H5 | 0.189 (2) | 0.328 (3) | 0.420 (2) | 0.051 (7)* | |
H6 | 0.228 (3) | 0.296 (4) | 0.632 (3) | 0.068 (8)* | |
H7 | 0.389 (3) | 0.445 (4) | 0.763 (3) | 0.080 (10)* | |
H8 | 0.522 (3) | 0.636 (4) | 0.669 (2) | 0.059 (7)* | |
H9 | 0.486 (3) | 0.677 (4) | 0.455 (3) | 0.075 (9)* | |
H11 | 0.562 (2) | 0.435 (4) | 0.323 (2) | 0.054 (7)* | |
H12 | 0.736 (3) | 0.474 (4) | 0.203 (3) | 0.069 (8)* | |
H13 | 0.720 (3) | 0.641 (4) | 0.027 (3) | 0.068 (8)* | |
H14 | 0.511 (3) | 0.777 (4) | −0.037 (3) | 0.072 (8)* | |
H15 | 0.330 (3) | 0.737 (4) | 0.076 (3) | 0.060 (7)* | |
H16A | −0.051 (3) | 0.446 (4) | 0.056 (3) | 0.060 (8)* | |
H16B | 0.053 (3) | 0.332 (4) | 0.014 (3) | 0.070 (9)* | |
H18 | −0.113 (6) | 0.010 (8) | 0.228 (6) | 0.18 (2)* | |
H19A | 0.315 (3) | 0.879 (4) | 0.328 (2) | 0.061 (7)* | |
H19B | 0.182 (3) | 0.926 (4) | 0.250 (3) | 0.067 (8)* | |
H21 | 0.087 (5) | 0.905 (8) | 0.590 (5) | 0.16 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0528 (9) | 0.0399 (8) | 0.0585 (10) | 0.0036 (7) | 0.0088 (7) | −0.0076 (7) |
O2 | 0.0430 (8) | 0.0499 (9) | 0.0606 (10) | 0.0084 (7) | −0.0045 (7) | 0.0041 (7) |
N1 | 0.0425 (9) | 0.0389 (9) | 0.0426 (9) | −0.0019 (7) | −0.0033 (7) | −0.0008 (8) |
N2 | 0.0373 (8) | 0.0349 (9) | 0.0492 (10) | 0.0009 (7) | 0.0014 (7) | −0.0011 (7) |
C1 | 0.0361 (9) | 0.0342 (9) | 0.0432 (11) | 0.0012 (8) | 0.0035 (8) | 0.0012 (8) |
C2 | 0.0414 (10) | 0.0385 (10) | 0.0368 (10) | −0.0003 (8) | 0.0070 (8) | 0.0009 (8) |
C3 | 0.0396 (10) | 0.0403 (11) | 0.0365 (10) | 0.0013 (8) | 0.0024 (8) | 0.0058 (8) |
C4 | 0.0349 (9) | 0.0385 (11) | 0.0423 (11) | 0.0052 (8) | 0.0055 (8) | 0.0012 (8) |
C5 | 0.0414 (11) | 0.0468 (12) | 0.0501 (12) | 0.0006 (9) | 0.0094 (9) | 0.0032 (10) |
C6 | 0.0574 (13) | 0.0592 (15) | 0.0556 (14) | 0.0074 (12) | 0.0183 (11) | 0.0142 (12) |
C7 | 0.0644 (15) | 0.0677 (16) | 0.0400 (12) | 0.0230 (13) | 0.0082 (10) | 0.0047 (11) |
C8 | 0.0531 (12) | 0.0545 (14) | 0.0476 (13) | 0.0104 (11) | −0.0037 (10) | −0.0093 (11) |
C9 | 0.0438 (11) | 0.0440 (11) | 0.0478 (12) | 0.0016 (9) | 0.0035 (9) | −0.0013 (9) |
C10 | 0.0386 (9) | 0.0391 (11) | 0.0412 (10) | −0.0022 (8) | 0.0060 (7) | 0.0009 (8) |
C11 | 0.0405 (10) | 0.0450 (12) | 0.0468 (12) | 0.0014 (9) | 0.0054 (9) | 0.0040 (10) |
C12 | 0.0419 (11) | 0.0616 (15) | 0.0605 (15) | 0.0032 (11) | 0.0105 (10) | 0.0011 (12) |
C13 | 0.0519 (13) | 0.0735 (17) | 0.0601 (14) | −0.0040 (12) | 0.0219 (11) | 0.0055 (13) |
C14 | 0.0692 (16) | 0.0698 (17) | 0.0498 (14) | −0.0003 (13) | 0.0166 (12) | 0.0179 (13) |
C15 | 0.0482 (12) | 0.0622 (15) | 0.0507 (13) | 0.0044 (11) | 0.0053 (10) | 0.0129 (12) |
C16 | 0.0540 (13) | 0.0525 (14) | 0.0520 (14) | −0.0059 (11) | −0.0086 (11) | −0.0047 (12) |
C17 | 0.0463 (12) | 0.0490 (14) | 0.088 (2) | −0.0035 (10) | 0.0067 (12) | −0.0068 (13) |
C18 | 0.081 (2) | 0.066 (2) | 0.174 (4) | −0.0128 (18) | 0.043 (2) | 0.017 (2) |
C19 | 0.0479 (13) | 0.0358 (11) | 0.0664 (15) | 0.0013 (9) | 0.0025 (11) | −0.0020 (11) |
C20 | 0.0587 (15) | 0.0758 (19) | 0.0742 (19) | 0.0032 (14) | 0.0024 (13) | −0.0289 (16) |
C21 | 0.103 (3) | 0.214 (6) | 0.094 (3) | 0.001 (4) | 0.026 (2) | −0.069 (4) |
O1—C2 | 1.203 (3) | C10—C11 | 1.388 (3) |
O2—C3 | 1.208 (2) | C10—C15 | 1.390 (3) |
N1—C2 | 1.360 (3) | C11—C12 | 1.391 (3) |
N1—C3 | 1.399 (3) | C11—H11 | 1.00 (3) |
N1—C16 | 1.453 (3) | C12—C13 | 1.377 (4) |
N2—C1 | 1.472 (3) | C12—H12 | 0.94 (3) |
N2—C3 | 1.346 (3) | C13—C14 | 1.366 (4) |
N2—C19 | 1.454 (3) | C13—H13 | 1.01 (3) |
C1—C10 | 1.534 (3) | C14—H14 | 1.00 (3) |
C2—C1 | 1.545 (3) | C15—C14 | 1.390 (4) |
C4—C1 | 1.529 (3) | C15—H15 | 0.99 (3) |
C4—C5 | 1.390 (3) | C16—H16A | 0.89 (3) |
C4—C9 | 1.390 (3) | C16—H16B | 0.98 (3) |
C5—C6 | 1.389 (3) | C17—C16 | 1.447 (4) |
C5—H5 | 1.02 (3) | C17—C18 | 1.162 (5) |
C6—C7 | 1.370 (4) | C18—H18 | 0.97 (6) |
C6—H6 | 0.90 (3) | C19—C20 | 1.462 (4) |
C7—H7 | 1.01 (3) | C19—H19A | 0.94 (3) |
C8—C7 | 1.384 (4) | C19—H19B | 0.95 (3) |
C8—H8 | 0.98 (3) | C20—C21 | 1.148 (5) |
C9—C8 | 1.380 (3) | C21—H21 | 0.90 (5) |
C9—H9 | 0.93 (3) | ||
O1···H16B | 2.84 (2) | C20···C4 | 3.372 (3) |
O1···H13i | 2.61 (2) | C20···C9 | 3.472 (3) |
O1···H5 | 2.767 (18) | C2···H5 | 2.476 (18) |
O1···H8ii | 2.62 (2) | C4···H11 | 2.679 (18) |
O2···H18iii | 2.68 (5) | C6···H9ii | 2.97 (2) |
O2···H19B | 2.65 (2) | C6···H18v | 2.90 (4) |
O2···H16A | 2.50 (2) | C8···H11vi | 2.94 (2) |
O2···H16Biv | 2.33 (2) | C8···H19Aii | 2.83 (2) |
N2···H15 | 2.53 (2) | C9···H11 | 2.73 (2) |
C4···C20 | 3.372 (3) | C10···H9 | 2.75 (2) |
C9···C19 | 3.378 (3) | C10···H19A | 2.96 (2) |
C9···C11 | 3.138 (3) | C11···H14i | 2.94 (2) |
C9···C20 | 3.472 (3) | C11···H9 | 2.79 (2) |
C11···C9 | 3.138 (3) | C12···H14i | 2.91 (2) |
C15···C19 | 3.450 (3) | C14···H7vi | 2.97 (2) |
C19···C15 | 3.450 (3) | H8···H11vi | 2.53 (3) |
C19···C9 | 3.378 (3) | H9···H11 | 2.58 (3) |
C2—N1—C3 | 112.60 (17) | C8—C9—H9 | 121.2 (19) |
C2—N1—C16 | 124.3 (2) | C11—C10—C1 | 120.65 (18) |
C3—N1—C16 | 122.9 (2) | C11—C10—C15 | 118.4 (2) |
C3—N2—C1 | 112.90 (16) | C15—C10—C1 | 120.64 (18) |
C3—N2—C19 | 121.81 (18) | C10—C11—C12 | 120.2 (2) |
C19—N2—C1 | 124.78 (17) | C10—C11—H11 | 120.6 (14) |
N2—C1—C2 | 100.41 (15) | C12—C11—H11 | 119.3 (14) |
N2—C1—C4 | 109.84 (16) | C11—C12—H12 | 119.8 (18) |
N2—C1—C10 | 112.27 (16) | C13—C12—C11 | 120.9 (2) |
C4—C1—C2 | 111.07 (16) | C13—C12—H12 | 119.3 (18) |
C4—C1—C10 | 116.25 (15) | C12—C13—H13 | 119.5 (17) |
C10—C1—C2 | 105.76 (16) | C14—C13—C12 | 119.3 (2) |
O1—C2—N1 | 126.3 (2) | C14—C13—H13 | 121.2 (17) |
O1—C2—C1 | 126.93 (19) | C13—C14—C15 | 120.6 (2) |
N1—C2—C1 | 106.74 (16) | C13—C14—H14 | 121.1 (17) |
O2—C3—N1 | 125.0 (2) | C15—C14—H14 | 118.2 (17) |
O2—C3—N2 | 128.0 (2) | C10—C15—C14 | 120.7 (2) |
N2—C3—N1 | 107.02 (17) | C10—C15—H15 | 119.9 (16) |
C5—C4—C1 | 120.41 (18) | C14—C15—H15 | 119.3 (16) |
C9—C4—C1 | 120.74 (18) | N1—C16—H16A | 107.0 (19) |
C9—C4—C5 | 118.6 (2) | N1—C16—H16B | 108.8 (17) |
C4—C5—H5 | 121.0 (14) | C17—C16—N1 | 113.0 (2) |
C6—C5—C4 | 120.7 (2) | C17—C16—H16A | 112.0 (18) |
C6—C5—H5 | 118.4 (14) | C17—C16—H16B | 108.8 (18) |
C5—C6—H6 | 119 (2) | H16A—C16—H16B | 107 (2) |
C7—C6—C5 | 120.0 (2) | C18—C17—C16 | 177.3 (4) |
C7—C6—H6 | 120.8 (19) | C17—C18—H18 | 176 (3) |
C6—C7—C8 | 119.8 (2) | N2—C19—C20 | 114.0 (2) |
C6—C7—H7 | 121.8 (18) | N2—C19—H19A | 108.9 (18) |
C8—C7—H7 | 118.3 (18) | N2—C19—H19B | 104.8 (18) |
C7—C8—H8 | 120.2 (16) | C20—C19—H19A | 107.8 (16) |
C9—C8—C7 | 120.4 (2) | C20—C19—H19B | 112.0 (17) |
C9—C8—H8 | 119.3 (16) | H19A—C19—H19B | 109 (2) |
C4—C9—H9 | 118.4 (19) | C21—C20—C19 | 178.8 (5) |
C8—C9—C4 | 120.4 (2) | C20—C21—H21 | 179 (4) |
C3—N2—C1—C4 | −112.10 (13) | C2—N1—C3—N2 | 4.70 (16) |
C19—N2—C1—C4 | 59.82 (18) | C16—N1—C3—N2 | −170.68 (14) |
C3—N2—C1—C10 | 116.91 (13) | C9—C4—C5—C6 | 0.3 (2) |
C19—N2—C1—C10 | −71.17 (19) | C1—C4—C5—C6 | −173.66 (14) |
C3—N2—C1—C2 | 4.97 (15) | C4—C5—C6—C7 | −0.3 (3) |
C19—N2—C1—C2 | 176.88 (13) | C5—C6—C7—C8 | 0.0 (3) |
C9—C4—C1—N2 | −87.33 (15) | C9—C8—C7—C6 | 0.3 (3) |
C5—C4—C1—N2 | 86.52 (16) | C4—C9—C8—C7 | −0.3 (3) |
C9—C4—C1—C10 | 41.52 (19) | C5—C4—C9—C8 | 0.0 (2) |
C5—C4—C1—C10 | −144.63 (14) | C1—C4—C9—C8 | 173.96 (14) |
C9—C4—C1—C2 | 162.49 (13) | N2—C1—C10—C11 | 159.40 (13) |
C5—C4—C1—C2 | −23.66 (18) | C4—C1—C10—C11 | 31.74 (19) |
O1—C2—C1—N2 | 177.04 (14) | C2—C1—C10—C11 | −92.03 (15) |
N1—C2—C1—N2 | −1.91 (14) | N2—C1—C10—C15 | −27.33 (19) |
O1—C2—C1—C4 | −66.81 (19) | C4—C1—C10—C15 | −154.99 (14) |
N1—C2—C1—C4 | 114.23 (13) | C2—C1—C10—C15 | 81.25 (17) |
O1—C2—C1—C10 | 60.15 (19) | C15—C10—C11—C12 | 0.6 (2) |
N1—C2—C1—C10 | −118.80 (12) | C1—C10—C11—C12 | 174.00 (15) |
C3—N1—C2—O1 | 179.51 (14) | C10—C11—C12—C13 | −0.2 (3) |
C16—N1—C2—O1 | −5.2 (2) | C11—C12—C13—C14 | −0.1 (3) |
C3—N1—C2—C1 | −1.52 (16) | C12—C13—C14—C15 | 0.0 (3) |
C16—N1—C2—C1 | 173.78 (14) | C10—C15—C14—C13 | 0.4 (3) |
C19—N2—C3—O2 | 2.4 (2) | C11—C10—C15—C14 | −0.7 (3) |
C1—N2—C3—O2 | 174.63 (14) | C1—C10—C15—C14 | −174.13 (17) |
C19—N2—C3—N1 | −178.28 (14) | C2—N1—C16—C17 | 69.8 (2) |
C1—N2—C3—N1 | −6.09 (16) | C3—N1—C16—C17 | −115.34 (18) |
C2—N1—C3—O2 | −175.99 (14) | C3—N2—C19—C20 | 76.6 (2) |
C16—N1—C3—O2 | 8.6 (2) | C1—N2—C19—C20 | −94.61 (19) |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) −x+1, y−1/2, −z+1; (iii) x, y+1, z; (iv) −x, y+1/2, −z; (v) −x, y+1/2, −z+1; (vi) −x+1, y+1/2, −z+1. |
Cg1 and Cg2 are the centroids of the C4–C9 and C10–C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16B···O2vii | 0.98 (3) | 2.33 (3) | 3.178 (3) | 144 (2) |
C9—H9···Cg1vi | 0.93 (3) | 2.93 (2) | 3.778 (2) | 152.7 (17) |
C14—H14···Cg2viii | 1.00 (3) | 2.87 (2) | 3.762 (3) | 149.6 (17) |
Symmetry codes: (vi) −x+1, y+1/2, −z+1; (vii) −x, y−1/2, −z; (viii) −x+1, y+1/2, −z. |
Parameter | Value in (I) |
Total energy Etot (eV) | -30168.2025 |
EHOMO (eV) | -6.6964 |
ELUMO (eV) | -0.8090 |
Energy gap, ΔE (eV) | 5.8878 |
Dipole moment, µ (Debye) | 2.5919 |
Ionization potential, I (eV) | 6.6964 |
Electron affinity, A | 0.8090 |
Electro negativity, χ | 4.0554 |
Hardness, η | 2.9437 |
Electrophilicity index, ω | 2.3920 |
Softness, σ | 0.3397 |
Fraction of electrons transferred, ΔN | 0.5516 |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C2 | 1.203 (3) | 1.237 |
O2—C3 | 1.208 (2) | 1.242 |
N2—C3 | 1.346 (3) | 1.379 |
N2—C1 | 1.472 (3) | 1.494 |
N2—C19 | 1.454 (3) | 1.470 |
N1—C3 | 1.399 (3) | 1.414 |
N1—C2 | 1.360 (3) | 1.384 |
N1—C16 | 1.453 (3) | 1.467 |
C3—N2—C1 | 112.90 (16) | 112.45 |
C3—N2—C19 | 121.81 (18) | 120.14 |
N2—C3—N1 | 107.02 (17) | 106.95 |
C3—N1—C16 | 122.9 (2) | 122.80 |
C2—N1—C3 | 112.60 (17) | 112.41 |
O2—C3—N2 | 128.0 (2) | 127.88 |
O2—C3—N1 | 125.0 (2) | 125.10 |
Funding information
TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Amir, M. & Kumar, S. (2005). Indian J. Chem. 44B, 2532–2537. CAS Google Scholar
Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205–2211. CSD CrossRef IUCr Journals Web of Science Google Scholar
Das, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. B47, 1555–1558. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017). IUCrData, 2, x171693. Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x171832. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Higashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent. Patents Cardiovasc. Drug. Discov. 1, 85–93. Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mague, J. T., Abdel-Aziz, A. A.-M. & El-Azab, A. S. (2014). Acta Cryst. E70, o226–o227. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naik, C. G. & Malik, C. M. (2010). Orient. J. Chem. 26, 113–116. CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pathak, R. B. & Bahel, S. C. (1980). J. Indian Chem. Soc. 57, 1108–1111. CAS Google Scholar
Pawar, R. A. & Patil, A. A. (1994). Indian J. Chem. 33B, 156–158. CAS Google Scholar
Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011–1015. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, D. & Singh, D. (1991). J. Indian Chem. Soc. 68, 165–167. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Srivalli, T., Satish, K. & Suthakaran, R. (2011). Int. J. Innov. Pharm. Res. 2, 172–174. Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.