research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two bis-carbamoyl­methyl­phosphine oxide (CMPO) compounds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 21 May 2019; accepted 6 June 2019; online 14 June 2019)

Two bis-carbamoyl­methyl­phosphine oxide compounds, namely {[(3-{[2-(di­phen­yl­phosphino­yl)ethanamido]­meth­yl}benz­yl)carbamo­yl]meth­yl}di­phenyl­phos­phine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(di­eth­oxy­phosphino­yl)ethanamido]­eth­yl}carbamo­yl)meth­yl]phospho­nate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding inter­actions are present in both crystals, but these inter­actions are intra­molecular in the case of compound (I) and inter­molecular in compound (II). Intra­molecular ππ stacking inter­actions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Inter­molecular C—H⋯π inter­actions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supra­molecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phospho­rus atom and the amide nitro­gen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are inter­molecular, with a DA distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent inter­actions create ribbons that run along the b-axis direction.

1. Chemical context

The carbamoyl­methyl­phosphine oxide (CMPO) moiety has found use as the chelating portion of a ligand in the TRUEX process for the remediation of nuclear waste (Horwitz et al., 1985[Horwitz, E. P., Kalina, D. C., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75-109.]). It has been shown that the CMPO group binds lanthanide (Ln) and actinide (An) metals in a 1:2 or 1:3 metal-ligand ratio in solution, depending on the size of the metal ion. Many researchers have attempted to mimic this solution stoichiometry by tethering two, three or four CMPO groups together via an organic scaffold (Dam et al., 2007[Dam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev. 36, 367-377.]; Leoncini et al., 2017[Leoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev. 46, 7229-7273.]; Miyazaki et al., 2015[Miyazaki, Y., Suzuki, S., Kobayashi, T., Yaita, T., Inaba, Y., Takeshita, K. & Mori, A. (2015). Chem. Lett. 44, 1626-1636.]; Sharova et al., 2014[Sharova, E. V., Artyushin, O. I. & Odinets, I. L. (2014). Russ. Chem. Rev. 83, 95-119.]; Werner & Biros, 2019[Werner, E. J. & Biros, S. M. (2019). Org. Chem. Front. 6, 2067-2094.]). In some cases, these multidentate ligands have demonstrated an increased binding affinity for certain Ln and An ions, as well as an increased ability to extract these metals out of aqueous solutions. To this end, we report here the synthesis of compounds (I)[link] and (II)[link] and their characterization by 1H, 13C, and 31P NMR spectroscopy, and by X-ray crystallography.

[Scheme 1]

2. Structural commentary

The structure of compound (I)[link] was solved in the monoclinic space group C2/c. Since the entire mol­ecule straddles a twofold symmetry axis, the asymmetric unit is composed of one half of the compound. The complete mol­ecular structure of compound (I)[link] is shown in Fig. 1[link] along with the atom-labeling scheme. The P=O bond length is 1.4915 (13) Å, with P—C bond lengths that range from 1.7988 (18) to 1.8169 (19) Å. The τ4 descriptor for fourfold coordination around the phospho­rus atom P1 is 0.95, indicating a nearly perfect tetra­hedral geometry of the phosphine oxide group (where 0.00 = square-planar, 0.85 = trigonal–pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The geometry between the amide nitro­gen atom N1 and the β-phosphine oxide phospho­rus atom P1 is defined by a P1—C2—C1—N1 torsion angle of −108.39 (15)°. The amide group adopts a nearly perfect trans geometry with a C3—N1—C1—C2 torsion angle of 169.12 (17)°, and is staggered with respect to the plane of the C4–C7 aromatic ring with a H1—N1—C3—C4 torsion angle of 59.1 (17)°.

[Figure 1]
Figure 1
The complete mol­ecular structure of compound (I)[link], with the atom-labeling scheme. Unlabeled atoms are related to labeled atoms by the crystallographic twofold axis. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen atoms bonded to carbon atoms have been omitted for clarity.

Intra­molecular non-covalent inter­actions are also present in the crystal of compound (I)[link]. Hydrogen bonds between the amide hydrogen H1 and the phosphine oxide oxygen atom O2(−x + 1, y, −z + [{3\over 2}]) have a DA distance of 2.940 (2) Å and a D—H⋯A angle of 168 (2)° (Fig. 3[link] and Table 1[link]). The C14–C19 aromatic ring of this compound is engaged in an intra­molecular ππ stacking inter­action with its symmetry-derived counterpart with an inter­centroid distance of 3.9479 (12) Å, slippage of 1.521 (1) Å and a dihedral angle of 9.56 (12)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (2) 2.10 (2) 2.940 (2) 168 (2)
C3—H3ACgii 0.99 2.76 3.622 (2) 146
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Depiction of non-covalent inter­actions present in the crystal of compound (I)[link] using a ball-and-stick model with standard CPK colors. Intra­molecular hydrogen bonds are shown as blue dashed lines; intra­molecular ππ and inter­molecular C—H⋯π inter­actions are shown with green dashed lines. Symmetry codes: (i) 1 − x, y, [{3\over 2}] − z; (ii) −[{1\over 2}] + x, [{1\over 2}] + y, z; (iii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z.

Compound (II)[link] crystallizes in the ortho­rhom­bic space group Pbca. Since the mol­ecule lies on an inversion center (at 2 − x, 1 − y, 1 − z), the asymmetric unit comprises one half of the mol­ecule. The electron density corresponding to the atoms of the phosphoryl group was disordered and was modeled over two positions with a 0.7387 (19):0.2613 (19) occupancy ratio (see the Refinement section for more details). The complete mol­ecular structure of the major component of compound (II)[link] is shown in Fig. 2[link] along with the labeling scheme. For the major component, the P=O bond length is 1.474 (2) Å, with P—O bond lengths of 1.5791 (16) and 1.5619 (15) Å, and a P—C bond length of 1.801 (2) Å. The τ4 descriptor for fourfold coordination around the phospho­rus atom of the major component, P1, is 0.93, indicating that the geometry of the phosphoryl group is slightly distorted from an ideal tetra­hedron. The geometry between the amide nitro­gen atom N1 and the β-phosphoryl group phospho­rus atom P1 is defined by a N1—C1—C2—P1 torsion angle of −111.8 (2)°. The amide group of this compound also adopts a nearly perfect trans geometry with a C3—N1—C1—C2 torsion angle of −176.50 (16)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom-labeling scheme. Unlabeled atoms are related to labeled atoms by a crystallographic inversion center. Displacement ellipsoids are drawn at the 50% probability level, only the major component and hydrogen atoms bonded to nitro­gen atoms have been included for clarity.

3. Supra­molecular features

The C14–C19 aromatic ring of compound (I)[link] hosts a C—H⋯π inter­action with H3A (symmetry code: −[{1\over 2}] + x, [{1\over 2}] + y, z) with a C⋯centroid distance of 3.622 (2) Å and a C—H⋯centroid angle of 146°. These non-covalent inter­actions create supra­molecular sheets of compound (I)[link] that lie in the ab plane (Fig. 4[link]).

[Figure 4]
Figure 4
A view down the c-axis of compound (I)[link] showing the supra­molecular sheets that are held together with intra­molecular C—H⋯π inter­actions using a ball-and-stick model with standard CPK colors. Hydrogen bonds are depicted with blue dashed lines, while ππ and C—H⋯π inter­actions are shown with green dashed lines. Only (N)H1 and (C)H3A are shown for clarity.

The crystal structure of compound (II)[link] displays inter­molecular hydrogen bonds between the amide hydrogen H1 and the oxygen atom O2 of the phosphoryl group of a neighboring mol­ecule (symmetry code: x + [{1\over 2}], −y + [{1\over 2}], −z + 1; Fig. 5[link] and Table 2[link]). This hydrogen bond is present for both parts of the disordered phosphoryl group. For the major component, this hydrogen bond has a DA distance of 2.883 (2) Å with a D—H⋯A angle of 175.0 (18)°. This hydrogen bond forms ribbons of compound (I)[link] that run along the b-axis direction (Fig. 6[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.832 (19) 2.05 (2) 2.883 (2) 175.0 (18)
N1—H1⋯O2Ai 0.832 (19) 1.92 (2) 2.741 (8) 170.2 (18)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 5]
Figure 5
Depiction of the hydrogen-bonding network present in the crystal of compound (II)[link] using a ball-and-stick model with standard CPK colors. The minor component of the disordered phosphoryl group is omitted for clarity. Inter­molecular hydrogen bonds are shown with blue dashed lines. Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + 2, −y, −z + 1; (iii) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (iv) −x + [{3\over 2}], y − [{1\over 2}], z; (v) −x + [{5\over 2}], y − [{1\over 2}], z.
[Figure 6]
Figure 6
A view down the a-axis of the crystal of compound (II)[link] showing the supra­molecular ribbons that are formed via inter­molecular hydrogen-bonding inter­actions. For clarity, only the major component of the disorder is shown.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 19 structures which have a CMPO group as part of an organic compound. (This count excludes metal complexes.) Of these, seven structures have two or more CMPO groups tethered to one another via an organic scaffold. The most similar structures to compound (I)[link] are CIWFAR (Ouizem et al., 2014[Ouizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). Dalton Trans. 43, 8368-8386.]) and SISLIQ (Artyushin et al., 2006[Artyushin, O. I., Sharova, E. V., Odinets, I. L., Lyssenko, K. A., Golovanov, D. G., Mastryukova, T. A., Pribylova, G. A., Tananaev, I. G. & Myasoedova, G. V. (2006). Russ. Chem. Bull. 55, 1440-1447.]). Both structures use an aromatic ring as the scaffold to present two phenyl-substituted CMPO groups. In SISLIQ, a 1,2-disubstituted benzene ring is utilized to present the CMPO groups. In CIWFAR, the scaffold is a pyridine ring where the 2- and 6-positions bear CMPO groups, which makes it directly analogous to compound (I)[link]. The amide hydrogens of CIWFAR are engaged in inter­molecular hydrogen bonds with the oxygen atoms of the phosphine oxide groups [rather than the intra­molecular inter­action observed for compound (I)], and the pyridine nitro­gen is hydrogen bonded to the –OH group of a solvent methanol mol­ecule. The hydrogen atoms of the pyridine scaffold inter­act with the phenyl rings of the phosphine oxide via inter­molecular C—H⋯π inter­actions. A structure closely related to compound (II)[link] was reported by the Rebek group as OGIVIJ (Amrhein, et al., 2002[Amrhein, P., Shivanyuk, A., Johnson, D. W. & Rebek, J. Jr (2002). J. Am. Chem. Soc. 124, 10349-10358.]). Here, a resorcin[4]arene scaffold presents two eth­oxy-substituted CMPO units. We also note that the structure of compound (II)[link] complexed with Sm(NO3)3 has been reported in this journal (Stoscup et al., 2014[Stoscup, J. A., Staples, R. J. & Biros, S. M. (2014). Acta Cryst. E70, 188-191.]).

5. Synthesis and crystallization

Compound (I)[link]: 1,3-Bis(amino­meth­yl)benzene (128 mg, 0.124 mL, 0.785 mmol) and the p-nitro­phenyl ester of di­phenyl­phosphono­acetate (Arnaud-Neu et al., 1996[Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175-1182.]) (1.0 g, 3.14 mmol) were dissolved in anhydrous, ethanol-free chloro­form (30 mL). The solution was heated to 313 K and stirred for three days. The reaction mixture was then allowed to cool to room temperature, a small amount of 40% KOH was added (ca. 3 mL) and the solution was stirred for 3.5 h. The organic layer was separated, washed with brine (3 × 10 mL), dried over solid magnesium sulfate and concentrated under reduced pressure. The crude product was triturated multiple times with ethyl acetate to give a white solid in 91% yield. X-ray quality crystals of compound (I)[link] were grown by slow evaporation of a chloro­form solution. 1H NMR (400 MHz, CDCl3): δ 7.91 (t, J = 5.3 Hz, 2H, –NH), 7.7–7.3 (m, 20H), 7.1–6.8 (m, 4H), 4.24 (d, J = 7.2 Hz, 4H), 3.36 (d, JP–H = 13.2 Hz, 4H); 13C NMR (100 MHz, CDCl3): δ 164.7 (d, JP–C = 4.5 Hz), 138.3, 132.5, 131.9, 131.2–130.5 (broad), 129.5–128.3 (broad), 126.9–126.1 (broad), 43.5, 38.6; 31P NMR (161 MHz, CDCl3): δ 30.6.

Compound (II)[link]: Ethyl­ene di­amine (1.0 mL, 14.9 mmol) was dissolved in 8.3 mL of methanol. The solution was cooled to 195 K, and triethyl phosphono­acetate (8.8 mL, 44.8 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred overnight. The product precipitated from the solution, was isolated by vacuum filtration and rinsed with ethyl acetate. Some of this solid was crystalline and suitable for analysis by X-ray diffraction. The remainder of the isolated product was purified by silica gel chromatography (10:1 di­chloro­methane–methanol) to give compound (II)[link] as a white solid (37% yield). 1H NMR (300 MHz, CDCl3): δ 7.75 (broad, 2H, –NH), 4.15 (q, J = 7.0 Hz, 8H), 3.34 (d, J = 5.9 Hz, 8H), 2.85 (q, JP–H = 15.8 Hz, 8H), 1.33 (t, J = 7.0 Hz, 12H); 13C NMR (75 MHz, CDCl3): δ 165.4, 62.9, 35.8 (d, JP–C = 128 Hz), 16.5; 31P NMR (121 MHz, CDCl3): δ 24.5.

6. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3[link]. For compounds (I)[link] and (II)[link], all hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups. For both compounds (I)[link] and (II)[link], the hydrogen atoms bonded to nitro­gen atoms were located using electron-density difference maps. The disordered electron density corresponding to the phosphoryl group of compound (II)[link] was modeled over two positions with a relative occupancy ratio of 0.7387 (19):0.2613 (19). The C5—C4 and C6—C7 bond lengths were restrained using DFIX instructions in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) at 1.5 Å to agree with known values. Atoms of each part (P1, P1A, O2–O4, O2A–O4A, C2, C2A, C5–C7, C5A–C7A) were treated with SAME and EADP commands to produce bond lengths and angles that agree with known values, and to ensure physically reasonable displacement parameters.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C36H34N2O4P2 C14H30N2O8P2
Mr 620.59 416.34
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbca
Temperature (K) 173 173
a, b, c (Å) 13.0352 (2), 14.1348 (4), 17.0471 (4) 8.9401 (1), 15.0535 (2), 15.7314 (3)
α, β, γ (°) 90, 90.217 (2), 90 90, 90, 90
V3) 3140.90 (13) 2117.13 (5)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.60 2.23
Crystal size (mm) 0.38 × 0.11 × 0.08 0.34 × 0.23 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.617, 0.754 0.612, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 16825, 3022, 2543 10282, 2057, 1839
Rint 0.050 0.028
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.03 0.035, 0.093, 1.05
No. of reflections 3022 2057
No. of parameters 204 154
No. of restraints 0 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.27 0.21, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (I); olex2.solve (Bourhis et al., 2015) for (II). For both structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015). Molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) for (I); OLEX2 (Dolomanov et al., 2009) for (II). Software used to prepare material for publication: CrystalMaker (Palmer, 2007) for (I); OLEX2 (Dolomanov et al., 2009) for (II).

{[(3-{[2-(Diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide (I) top
Crystal data top
C36H34N2O4P2F(000) = 1304
Mr = 620.59Dx = 1.312 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 13.0352 (2) ÅCell parameters from 7639 reflections
b = 14.1348 (4) Åθ = 4.6–71.9°
c = 17.0471 (4) ŵ = 1.60 mm1
β = 90.217 (2)°T = 173 K
V = 3140.90 (13) Å3Needle, colourless
Z = 40.38 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2543 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 72.1°, θmin = 4.6°
Tmin = 0.617, Tmax = 0.754h = 1616
16825 measured reflectionsk = 1716
3022 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.071P)2 + 1.6884P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3022 reflectionsΔρmax = 0.33 e Å3
204 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.61558 (3)0.01942 (3)0.65310 (2)0.02456 (15)
O10.51178 (11)0.16409 (10)0.52941 (8)0.0387 (4)
O20.63820 (10)0.08953 (9)0.71622 (8)0.0319 (3)
N10.40562 (13)0.18290 (11)0.63349 (10)0.0304 (4)
H10.3839 (17)0.1569 (16)0.6753 (14)0.031 (6)*
C10.46922 (13)0.13271 (13)0.58793 (10)0.0279 (4)
C20.48641 (14)0.03112 (13)0.61386 (10)0.0279 (4)
H2A0.4772360.0120870.5686710.033*
H2B0.4357500.0138090.6545320.033*
C30.39481 (17)0.28492 (14)0.62513 (12)0.0367 (5)
H3A0.3210150.3014520.6256740.044*
H3B0.4229710.3044410.5737640.044*
C40.44947 (14)0.33936 (13)0.68985 (12)0.0323 (4)
C50.44880 (15)0.43806 (14)0.69115 (14)0.0388 (5)
H50.4131500.4723020.6515940.047*
C60.5000000.4858 (2)0.7500000.0418 (7)
H60.5000010.5530100.7500000.050*
C70.5000000.29186 (19)0.7500000.0337 (6)
H70.5000000.2246500.7500000.040*
C80.70406 (14)0.03028 (13)0.57209 (10)0.0282 (4)
C90.75675 (18)0.11496 (16)0.56285 (13)0.0430 (5)
H90.7452610.1653380.5986500.052*
C100.8259 (2)0.12686 (19)0.50205 (16)0.0560 (7)
H100.8621930.1847400.4965120.067*
C110.84148 (19)0.0541 (2)0.44976 (15)0.0575 (7)
H110.8881830.0620540.4076330.069*
C120.78956 (18)0.03057 (19)0.45821 (14)0.0495 (6)
H120.8007170.0804340.4218620.059*
C130.72129 (15)0.04301 (15)0.51949 (12)0.0355 (4)
H130.6863650.1015400.5254990.043*
C140.62569 (14)0.10082 (13)0.68680 (11)0.0278 (4)
C150.57441 (16)0.17625 (14)0.65110 (12)0.0342 (4)
H150.5273540.1649340.6094530.041*
C160.59268 (17)0.26772 (15)0.67688 (13)0.0407 (5)
H160.5577300.3191910.6528920.049*
C170.66130 (17)0.28459 (16)0.73716 (16)0.0472 (6)
H170.6745210.3475660.7538410.057*
C180.71074 (17)0.20969 (18)0.77322 (15)0.0481 (6)
H180.7571810.2214480.8151810.058*
C190.69321 (15)0.11785 (15)0.74878 (12)0.0359 (4)
H190.7269840.0666400.7740900.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0270 (2)0.0245 (2)0.0222 (2)0.00211 (17)0.00302 (17)0.00095 (16)
O10.0434 (8)0.0417 (8)0.0310 (7)0.0046 (6)0.0073 (6)0.0093 (6)
O20.0351 (7)0.0325 (7)0.0281 (6)0.0011 (6)0.0016 (5)0.0055 (5)
N10.0345 (8)0.0285 (8)0.0283 (8)0.0040 (7)0.0030 (7)0.0035 (6)
C10.0282 (9)0.0317 (10)0.0238 (9)0.0006 (7)0.0023 (7)0.0012 (7)
C20.0294 (9)0.0291 (9)0.0251 (8)0.0009 (7)0.0022 (7)0.0011 (7)
C30.0426 (11)0.0291 (10)0.0385 (11)0.0092 (8)0.0008 (9)0.0063 (8)
C40.0296 (9)0.0283 (9)0.0392 (10)0.0032 (7)0.0094 (8)0.0039 (8)
C50.0317 (10)0.0297 (10)0.0549 (13)0.0048 (8)0.0128 (9)0.0078 (9)
C60.0384 (15)0.0224 (13)0.065 (2)0.0000.0157 (14)0.000
C70.0376 (14)0.0230 (12)0.0406 (15)0.0000.0051 (12)0.000
C80.0262 (8)0.0327 (9)0.0256 (8)0.0033 (7)0.0025 (7)0.0008 (7)
C90.0521 (13)0.0356 (11)0.0415 (12)0.0065 (10)0.0124 (10)0.0018 (9)
C100.0556 (14)0.0547 (15)0.0577 (15)0.0170 (12)0.0174 (12)0.0078 (12)
C110.0456 (13)0.0782 (18)0.0488 (14)0.0083 (13)0.0236 (11)0.0011 (13)
C120.0458 (13)0.0615 (15)0.0414 (12)0.0029 (11)0.0146 (10)0.0137 (11)
C130.0328 (10)0.0391 (11)0.0346 (10)0.0002 (8)0.0049 (8)0.0050 (8)
C140.0293 (9)0.0271 (9)0.0269 (8)0.0046 (7)0.0069 (7)0.0024 (7)
C150.0392 (10)0.0327 (10)0.0308 (9)0.0015 (8)0.0041 (8)0.0007 (8)
C160.0451 (11)0.0284 (10)0.0487 (12)0.0008 (9)0.0110 (10)0.0017 (9)
C170.0375 (11)0.0345 (11)0.0698 (16)0.0057 (9)0.0081 (11)0.0192 (11)
C180.0340 (11)0.0506 (13)0.0595 (14)0.0032 (10)0.0052 (10)0.0233 (12)
C190.0299 (9)0.0381 (11)0.0398 (11)0.0002 (8)0.0003 (8)0.0062 (9)
Geometric parameters (Å, º) top
P1—O21.4915 (13)C8—C131.389 (3)
P1—C21.8169 (19)C9—H90.9500
P1—C81.8091 (18)C9—C101.386 (3)
P1—C141.7988 (18)C10—H100.9500
O1—C11.226 (2)C10—C111.377 (4)
N1—H10.85 (2)C11—H110.9500
N1—C11.341 (2)C11—C121.382 (4)
N1—C31.456 (2)C12—H120.9500
C1—C21.519 (3)C12—C131.386 (3)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.397 (3)
C3—H3A0.9900C14—C191.393 (3)
C3—H3B0.9900C15—H150.9500
C3—C41.520 (3)C15—C161.386 (3)
C4—C51.395 (3)C16—H160.9500
C4—C71.390 (2)C16—C171.381 (3)
C5—H50.9500C17—H170.9500
C5—C61.379 (3)C17—C181.382 (4)
C6—H60.9500C18—H180.9500
C7—H70.9500C18—C191.382 (3)
C8—C91.389 (3)C19—H190.9500
O2—P1—C2112.68 (8)C9—C8—P1118.45 (15)
O2—P1—C8111.68 (8)C13—C8—P1122.32 (15)
O2—P1—C14112.54 (8)C13—C8—C9119.22 (18)
C8—P1—C2107.69 (8)C8—C9—H9119.6
C14—P1—C2105.68 (9)C10—C9—C8120.8 (2)
C14—P1—C8106.13 (8)C10—C9—H9119.6
C1—N1—H1117.7 (15)C9—C10—H10120.3
C1—N1—C3121.81 (17)C11—C10—C9119.4 (2)
C3—N1—H1118.5 (15)C11—C10—H10120.3
O1—C1—N1124.21 (18)C10—C11—H11119.8
O1—C1—C2120.80 (17)C10—C11—C12120.4 (2)
N1—C1—C2114.98 (15)C12—C11—H11119.8
P1—C2—H2A109.8C11—C12—H12119.9
P1—C2—H2B109.8C11—C12—C13120.3 (2)
C1—C2—P1109.19 (12)C13—C12—H12119.9
C1—C2—H2A109.8C8—C13—H13120.1
C1—C2—H2B109.8C12—C13—C8119.9 (2)
H2A—C2—H2B108.3C12—C13—H13120.1
N1—C3—H3A109.1C15—C14—P1123.20 (15)
N1—C3—H3B109.1C19—C14—P1116.79 (15)
N1—C3—C4112.67 (16)C19—C14—C15119.90 (18)
H3A—C3—H3B107.8C14—C15—H15120.2
C4—C3—H3A109.1C16—C15—C14119.5 (2)
C4—C3—H3B109.1C16—C15—H15120.2
C5—C4—C3120.98 (19)C15—C16—H16119.8
C7—C4—C3120.69 (18)C17—C16—C15120.5 (2)
C7—C4—C5118.3 (2)C17—C16—H16119.8
C4—C5—H5120.1C16—C17—H17120.1
C6—C5—C4119.8 (2)C16—C17—C18119.9 (2)
C6—C5—H5120.1C18—C17—H17120.1
C5—C6—C5i121.4 (3)C17—C18—H18119.7
C5i—C6—H6119.3C19—C18—C17120.6 (2)
C5—C6—H6119.3C19—C18—H18119.7
C4—C7—C4i122.2 (3)C14—C19—H19120.2
C4—C7—H7118.9C18—C19—C14119.6 (2)
C4i—C7—H7118.9C18—C19—H19120.2
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (2)2.10 (2)2.940 (2)168 (2)
C3—H3A···Cgii0.992.763.622 (2)146
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y+1/2, z.
Diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate (II) top
Crystal data top
C14H30N2O8P2Dx = 1.306 Mg m3
Mr = 416.34Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 6034 reflections
a = 8.9401 (1) Åθ = 4.1–72.0°
b = 15.0535 (2) ŵ = 2.23 mm1
c = 15.7314 (3) ÅT = 173 K
V = 2117.13 (5) Å3Plate, colourless
Z = 40.34 × 0.23 × 0.06 mm
F(000) = 888
Data collection top
Bruker APEXII CCD
diffractometer
1839 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 72.2°, θmin = 5.6°
Tmin = 0.612, Tmax = 0.754h = 1110
10282 measured reflectionsk = 1812
2057 independent reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.045P)2 + 0.8277P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2057 reflectionsΔρmax = 0.21 e Å3
154 parametersΔρmin = 0.27 e Å3
20 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.49865 (8)0.16848 (6)0.58724 (5)0.0291 (2)0.7387 (19)
O20.3858 (2)0.23508 (12)0.56270 (16)0.0402 (5)0.7387 (19)
O30.6214 (2)0.20596 (15)0.64985 (15)0.0364 (4)0.7387 (19)
O40.43649 (17)0.08482 (10)0.63416 (10)0.0361 (4)0.7387 (19)
C20.5970 (5)0.1213 (3)0.49806 (18)0.0255 (6)0.7387 (19)
H2A0.5260440.0872980.4623530.031*0.7387 (19)
H2B0.6395680.1696660.4629070.031*0.7387 (19)
C40.6892 (3)0.2924 (2)0.6313 (3)0.0433 (7)0.7387 (19)
H4A0.6206500.3407280.6486720.052*0.7387 (19)
H4B0.7084000.2979430.5695810.052*0.7387 (19)
C50.8336 (4)0.2991 (3)0.6797 (3)0.0521 (8)0.7387 (19)
H5A0.9012440.2515200.6616360.078*0.7387 (19)
H5B0.8136030.2934900.7407260.078*0.7387 (19)
H5C0.8802390.3568620.6683570.078*0.7387 (19)
C60.3339 (3)0.09235 (16)0.70583 (18)0.0470 (6)0.7387 (19)
H6A0.2503210.1326320.6910260.056*0.7387 (19)
H6B0.3868860.1173800.7556280.056*0.7387 (19)
C70.2754 (9)0.0033 (4)0.7266 (5)0.0514 (10)0.7387 (19)
H7A0.2094680.0169330.6806940.077*0.7387 (19)
H7B0.2188300.0061080.7798630.077*0.7387 (19)
H7C0.3588600.0383210.7328670.077*0.7387 (19)
O10.69589 (11)0.01159 (7)0.56001 (7)0.0369 (3)
N10.85841 (14)0.09068 (9)0.51170 (9)0.0333 (3)
C10.72039 (15)0.06112 (9)0.52745 (9)0.0287 (3)
C30.98811 (16)0.03699 (10)0.53232 (10)0.0348 (3)
H3A0.9747660.0106250.5894730.042*
H3B1.0780350.0753260.5339450.042*
P1A0.5246 (3)0.19107 (16)0.60724 (17)0.0291 (2)0.2613 (19)
O2A0.4150 (8)0.2586 (4)0.5806 (5)0.0402 (5)0.2613 (19)
O3A0.6639 (8)0.2236 (5)0.6594 (5)0.0364 (4)0.2613 (19)
O4A0.4656 (5)0.1195 (3)0.6726 (3)0.0361 (4)0.2613 (19)
C2A0.5883 (17)0.1303 (10)0.5188 (7)0.0255 (6)0.2613 (19)
H2AA0.5011560.0977160.4956190.031*0.2613 (19)
H2AB0.6186060.1739790.4749730.031*0.2613 (19)
C4A0.7429 (11)0.3020 (7)0.6334 (9)0.0433 (7)0.2613 (19)
H4AA0.6782950.3548180.6408730.052*0.2613 (19)
H4AB0.7700590.2974210.5725370.052*0.2613 (19)
C5A0.8806 (14)0.3114 (11)0.6859 (11)0.0521 (8)0.2613 (19)
H5AA0.9532060.2657980.6693110.078*0.2613 (19)
H5AB0.8551870.3042510.7460690.078*0.2613 (19)
H5AC0.9241220.3704070.6767410.078*0.2613 (19)
C6A0.3201 (9)0.0845 (5)0.6622 (5)0.0470 (6)0.2613 (19)
H6AA0.3034800.0700510.6015070.056*0.2613 (19)
H6AB0.2455230.1297470.6791180.056*0.2613 (19)
C7A0.299 (3)0.0026 (12)0.7147 (16)0.0514 (10)0.2613 (19)
H7AA0.2726330.0472880.6775740.077*0.2613 (19)
H7AB0.2181380.0125060.7557780.077*0.2613 (19)
H7AC0.3917250.0109250.7450830.077*0.2613 (19)
H10.871 (2)0.1397 (13)0.4883 (11)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0313 (3)0.0177 (4)0.0384 (4)0.0034 (3)0.0024 (3)0.0043 (3)
O20.0366 (11)0.0231 (11)0.0610 (14)0.0061 (8)0.0015 (8)0.0068 (9)
O30.0456 (14)0.0265 (12)0.0372 (9)0.0008 (8)0.0094 (9)0.0011 (7)
O40.0430 (8)0.0243 (8)0.0409 (9)0.0049 (6)0.0152 (7)0.0033 (6)
C20.0263 (9)0.0256 (12)0.0248 (18)0.0006 (8)0.0027 (13)0.0054 (13)
C40.052 (2)0.0284 (12)0.0494 (10)0.0007 (15)0.0097 (18)0.0029 (9)
C50.053 (3)0.0453 (18)0.0576 (14)0.0050 (17)0.012 (2)0.0038 (12)
C60.0605 (13)0.0392 (11)0.0413 (14)0.0010 (10)0.0244 (14)0.0052 (12)
C70.054 (3)0.0554 (12)0.045 (2)0.0040 (14)0.0188 (16)0.0094 (12)
O10.0330 (5)0.0251 (5)0.0526 (6)0.0028 (4)0.0023 (5)0.0110 (5)
N10.0263 (6)0.0241 (6)0.0496 (8)0.0009 (5)0.0012 (5)0.0071 (6)
C10.0285 (7)0.0231 (7)0.0343 (7)0.0023 (5)0.0019 (5)0.0030 (5)
C30.0257 (7)0.0333 (8)0.0453 (8)0.0002 (6)0.0029 (6)0.0010 (7)
P1A0.0313 (3)0.0177 (4)0.0384 (4)0.0034 (3)0.0024 (3)0.0043 (3)
O2A0.0366 (11)0.0231 (11)0.0610 (14)0.0061 (8)0.0015 (8)0.0068 (9)
O3A0.0456 (14)0.0265 (12)0.0372 (9)0.0008 (8)0.0094 (9)0.0011 (7)
O4A0.0430 (8)0.0243 (8)0.0409 (9)0.0049 (6)0.0152 (7)0.0033 (6)
C2A0.0263 (9)0.0256 (12)0.0248 (18)0.0006 (8)0.0027 (13)0.0054 (13)
C4A0.052 (2)0.0284 (12)0.0494 (10)0.0007 (15)0.0097 (18)0.0029 (9)
C5A0.053 (3)0.0453 (18)0.0576 (14)0.0050 (17)0.012 (2)0.0038 (12)
C6A0.0605 (13)0.0392 (11)0.0413 (14)0.0010 (10)0.0244 (14)0.0052 (12)
C7A0.054 (3)0.0554 (12)0.045 (2)0.0040 (14)0.0188 (16)0.0094 (12)
Geometric parameters (Å, º) top
P1—O21.474 (2)C1—C2A1.580 (15)
P1—O31.5791 (16)C3—C3i1.523 (3)
P1—O41.5619 (15)C3—H3A0.9900
P1—C21.801 (2)C3—H3B0.9900
O3—C41.464 (3)P1A—O2A1.473 (7)
O4—C61.458 (3)P1A—O3A1.570 (6)
C2—H2A0.9900P1A—O4A1.581 (5)
C2—H2B0.9900P1A—C2A1.760 (9)
C2—C11.501 (5)O3A—C4A1.435 (10)
C4—H4A0.9900O4A—C6A1.413 (9)
C4—H4B0.9900C2A—H2AA0.9900
C4—C51.502 (4)C2A—H2AB0.9900
C5—H5A0.9800C4A—H4AA0.9900
C5—H5B0.9800C4A—H4AB0.9900
C5—H5C0.9800C4A—C5A1.489 (10)
C6—H6A0.9900C5A—H5AA0.9800
C6—H6B0.9900C5A—H5AB0.9800
C6—C71.475 (6)C5A—H5AC0.9800
C7—H7A0.9800C6A—H6AA0.9900
C7—H7B0.9800C6A—H6AB0.9900
C7—H7C0.9800C6A—C7A1.495 (12)
O1—C11.2282 (17)C7A—H7AA0.9800
N1—C11.3348 (18)C7A—H7AB0.9800
N1—C31.4502 (19)C7A—H7AC0.9800
N1—H10.832 (19)
O2—P1—O3113.34 (11)N1—C1—C2A117.1 (6)
O2—P1—O4115.38 (11)N1—C3—C3i111.71 (16)
O2—P1—C2113.46 (18)N1—C3—H3A109.3
O3—P1—C2106.70 (17)N1—C3—H3B109.3
O4—P1—O3103.93 (11)C3i—C3—H3A109.3
O4—P1—C2102.95 (16)C3i—C3—H3B109.3
C4—O3—P1118.74 (19)H3A—C3—H3B107.9
C6—O4—P1121.77 (14)O2A—P1A—O3A117.5 (4)
P1—C2—H2A109.5O2A—P1A—O4A115.7 (4)
P1—C2—H2B109.5O2A—P1A—C2A110.4 (6)
H2A—C2—H2B108.0O3A—P1A—O4A97.9 (4)
C1—C2—P1110.9 (2)O3A—P1A—C2A108.6 (6)
C1—C2—H2A109.5O4A—P1A—C2A105.6 (5)
C1—C2—H2B109.5C4A—O3A—P1A119.8 (7)
O3—C4—H4A110.0C6A—O4A—P1A119.0 (5)
O3—C4—H4B110.0C1—C2A—P1A121.1 (8)
O3—C4—C5108.4 (3)C1—C2A—H2AA107.1
H4A—C4—H4B108.4C1—C2A—H2AB107.1
C5—C4—H4A110.0P1A—C2A—H2AA107.1
C5—C4—H4B110.0P1A—C2A—H2AB107.1
C4—C5—H5A109.5H2AA—C2A—H2AB106.8
C4—C5—H5B109.5O3A—C4A—H4AA109.9
C4—C5—H5C109.5O3A—C4A—H4AB109.9
H5A—C5—H5B109.5O3A—C4A—C5A109.1 (9)
H5A—C5—H5C109.5H4AA—C4A—H4AB108.3
H5B—C5—H5C109.5C5A—C4A—H4AA109.9
O4—C6—H6A109.9C5A—C4A—H4AB109.9
O4—C6—H6B109.9C4A—C5A—H5AA109.5
O4—C6—C7108.9 (3)C4A—C5A—H5AB109.5
H6A—C6—H6B108.3C4A—C5A—H5AC109.5
C7—C6—H6A109.9H5AA—C5A—H5AB109.5
C7—C6—H6B109.9H5AA—C5A—H5AC109.5
C6—C7—H7A109.5H5AB—C5A—H5AC109.5
C6—C7—H7B109.5O4A—C6A—H6AA109.4
C6—C7—H7C109.5O4A—C6A—H6AB109.4
H7A—C7—H7B109.5O4A—C6A—C7A111.1 (13)
H7A—C7—H7C109.5H6AA—C6A—H6AB108.0
H7B—C7—H7C109.5C7A—C6A—H6AA109.4
C1—N1—C3120.79 (12)C7A—C6A—H6AB109.4
C1—N1—H1119.9 (13)C6A—C7A—H7AA109.5
C3—N1—H1119.3 (13)C6A—C7A—H7AB109.5
O1—C1—C2122.4 (2)C6A—C7A—H7AC109.5
O1—C1—N1122.64 (13)H7AA—C7A—H7AB109.5
O1—C1—C2A119.3 (6)H7AA—C7A—H7AC109.5
N1—C1—C2114.9 (2)H7AB—C7A—H7AC109.5
P1—O3—C4—C5160.9 (3)C1—N1—C3—C3i77.0 (2)
P1—O4—C6—C7170.3 (4)C3—N1—C1—C2176.50 (16)
P1—C2—C1—O171.4 (3)C3—N1—C1—O10.4 (2)
P1—C2—C1—N1111.8 (2)C3—N1—C1—C2A169.1 (4)
O2—P1—O3—C445.5 (3)P1A—O3A—C4A—C5A172.5 (10)
O2—P1—O4—C648.7 (2)P1A—O4A—C6A—C7A165.3 (11)
O2—P1—C2—C1174.3 (2)O2A—P1A—O3A—C4A44.3 (11)
O3—P1—O4—C676.0 (2)O2A—P1A—O4A—C6A40.5 (6)
O3—P1—C2—C148.8 (3)O2A—P1A—C2A—C1172.8 (8)
O4—P1—O3—C4171.6 (2)O3A—P1A—O4A—C6A166.2 (6)
O4—P1—C2—C160.3 (3)O3A—P1A—C2A—C142.7 (11)
C2—P1—O3—C480.1 (3)O4A—P1A—O3A—C4A168.7 (8)
C2—P1—O4—C6172.9 (2)O4A—P1A—C2A—C161.4 (11)
O1—C1—C2A—P1A76.3 (10)C2A—P1A—O3A—C4A81.9 (10)
N1—C1—C2A—P1A92.8 (9)C2A—P1A—O4A—C6A81.9 (7)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.832 (19)2.05 (2)2.883 (2)175.0 (18)
N1—H1···O2Aii0.832 (19)1.92 (2)2.741 (8)170.2 (18)
Symmetry code: (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 F T NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699; grant No. REU CHE-1092944 to A. VanderWeide); Grand Valley State University (OURS, CSCE, Chemistry Department's Weldon Fund).

References

First citationAmrhein, P., Shivanyuk, A., Johnson, D. W. & Rebek, J. Jr (2002). J. Am. Chem. Soc. 124, 10349–10358.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175–1182.  Google Scholar
First citationArtyushin, O. I., Sharova, E. V., Odinets, I. L., Lyssenko, K. A., Golovanov, D. G., Mastryukova, T. A., Pribylova, G. A., Tananaev, I. G. & Myasoedova, G. V. (2006). Russ. Chem. Bull. 55, 1440–1447.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev. 36, 367–377.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorwitz, E. P., Kalina, D. C., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75–109.  CAS Google Scholar
First citationLeoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev. 46, 7229–7273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMiyazaki, Y., Suzuki, S., Kobayashi, T., Yaita, T., Inaba, Y., Takeshita, K. & Mori, A. (2015). Chem. Lett. 44, 1626–1636.  Web of Science CrossRef CAS Google Scholar
First citationOuizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). Dalton Trans. 43, 8368–8386.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSharova, E. V., Artyushin, O. I. & Odinets, I. L. (2014). Russ. Chem. Rev. 83, 95–119.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoscup, J. A., Staples, R. J. & Biros, S. M. (2014). Acta Cryst. E70, 188–191.  CSD CrossRef IUCr Journals Google Scholar
First citationWerner, E. J. & Biros, S. M. (2019). Org. Chem. Front. 6, 2067–2094.  CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds