research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Inter­molecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 6 June 2019; accepted 14 June 2019; online 21 June 2019)

In the crystal structure of the isostructural title compounds, namely {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­palladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­platinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an inter­action of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.

1. Chemical context

Since their discovery by Shaw and van Koten in the 1970s (Moulton & Shaw, 1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.]; van Koten et al., 1978[Koten, G. van, Timmer, K., Noltes, J. G. & Spek, A. L. (1978). J. Chem. Soc. Chem. Commun. pp. 250-252.]), pincer complexes have received considerable attention in organometallic chemistry and homogeneous catalysis because of their wide applicability for a broad range of stoichiometric and catalytic bond-activation reactions (e.g. Szabo & Wendt, 2014[Szabo, K. J. & Wendt, O. F. (2014). Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. Weinheim: Wiley-VCH.]; Valdés et al., 2018[Valdés, H., García-Eleno, M. A., Canseco-Gonzalez, D. & Morales-Morales, D. (2018). ChemCatChem, 10, 3136-3172.]). Modification of the pincer scaffold allows for fine-tuning of the steric and electronic properties that directly influence the reactivity (Peris & Crabtree, 2018[Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959-1968.]). As a consequence, a plethora of transition metal complexes that possess neutral and anionic tridentate pincer ligands with many different combinations of donor atoms have been described. Substitution of the pincer backbone with suitable polar groups provides an excellent opportunity for the introduction of anchoring sites that can be attached covalently to a heterogeneous support (Rimoldi et al., 2016[Rimoldi, M., Nakamura, A., Vermeulen, N. A., Henkelis, J. J., Blackburn, A. K., Hupp, J. T., Stoddart, J. F. & Farha, O. K. (2016). Chem. Sci. 7, 4980-4984.]). In this context, hy­droxy­lation of the aromatic ring of a POCOP ligand is a straightforward approach and the ligand precursor phloro­glucinol is a readily available compound that can be converted into the corresponding ligand using standard methodologies (Göttker-Schnetmann et al., 2004[Göttker-Schnetmann, I., White, P. & Brookhart, M. (2004). J. Am. Chem. Soc. 126, 1804-1811.]; Garcia-Eleno et al., 2015[García-Eleno, M. A., Padilla-Mata, E., Estudiante-Negrete, F., Pichal-Cerda, F., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2015). New J. Chem. 39, 3361-3365.]). This polar functionality can engage in non-covalent inter­actions with ubiquitous metal-halide fragments. An example for this phenomenon that includes halide–halide inter­actions was reported recently by Whitwood, Brammer and Perutz, who studied inter­molecular halogen bonding of a series of nickel(II) fluoride complexes (Thangavadivale et al., 2018[Thangavadivale, V., Aguiar, P. M., Jasim, N. A., Pike, S. J., Smith, D. A., Whitwood, A. C., Brammer, L. & Perutz, R. N. (2018). Chem. Sci. 9, 3767-3781.]). For a recent review article on the application of pincer complexes, see Valdés et al. (2018[Valdés, H., García-Eleno, M. A., Canseco-Gonzalez, D. & Morales-Morales, D. (2018). ChemCatChem, 10, 3136-3172.]).

[Scheme 1]

2. Structural commentary

Complexes 1 and 2 are isomorphous and both crystallize in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The mol­ecular structures (Fig. 1[link]) show the metal(II) centres in a distorted square-planar coordination environment. The distortion is evidenced by the P—M—P angles that strongly deviate from 180° [1: 159.768 (12), 2: 160.676 (17)°]. The M—Cl [1: 2.3871 (4), 2: 2.3907 (5) Å] and M—P bonds [1: 2.2880 (3), 2.2918 (3); 2: 2.2781 (5), 2.2796 (5) Å] are in the expected ranges and are in line with values found in previous examples for Pd and Pt PCP pincer complexes (e.g. Bolliger et al., 2007[Bolliger, J. L., Blacque, O. & Frech, C. M. (2007). Angew. Chem. Int. Ed. 46, 6514-6517.]; Joksch et al., 2017[Joksch, M., Haak, J., Spannenberg, A. & Beweries, T. (2017). Eur. J. Inorg. Chem. pp. 3815-3822.], 2018[Joksch, M., Agarwala, H., Haak, J., Spannenberg, A. & Beweries, T. (2018). Polyhedron, 143, 118-125.]). As can be seen from the structural data, variation of the metal centre does not affect the structural features of the pincer complex. Complexes 1 and 2 are isostructural to the di­chloro­ethane solvate of a similar nickel complex (Garcia-Eleno et al., 2015[García-Eleno, M. A., Padilla-Mata, E., Estudiante-Negrete, F., Pichal-Cerda, F., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2015). New J. Chem. 39, 3361-3365.]).

[Figure 1]
Figure 1
Mol­ecular structure of complexes 1 (left) and 2 (right), with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms (except of the OH group) are omitted for clarity.

3. Supra­molecular features

In both complexes, the OH group in the 4-position of the POCOP ligand shows pronounced inter­molecular hydrogen bonding to the chloride ligand (Tables 1[link] and 2[link]), thus resulting in the formation of infinite chain structures along [101] (Figs. 2[link] and 3[link]). A dihedral angle of 31.38 (6)° in 1 and 31.74 (9)° in 2 between the planes of the aryl rings of neighbouring pincer complexes involved in hydrogen bonding was observed.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1i 0.79 (2) 2.37 (2) 3.1545 (11) 174.2 (19)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1i 0.82 (3) 2.38 (3) 3.1874 (16) 170 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular hydrogen bonds (depicted as dashed lines) in complex 1. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Perspective packing diagram of complex 1 viewed down the b axis showing the hydrogen bonds as dashed lines. Hydrogen atoms (except of OH groups) are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Pd and Pt POCOP halide complexes with aromatic ligand backbones resulted in 58 hits. Similar Pd and Pt pincer complexes without the OH group in the 4-position have been reported by our group (Joksch et al., 2017[Joksch, M., Haak, J., Spannenberg, A. & Beweries, T. (2017). Eur. J. Inorg. Chem. pp. 3815-3822.], 2018[Joksch, M., Agarwala, H., Haak, J., Spannenberg, A. & Beweries, T. (2018). Polyhedron, 143, 118-125.]). Related complexes have been described, e.g. by Frech and co-workers (Bolliger et al., 2007[Bolliger, J. L., Blacque, O. & Frech, C. M. (2007). Angew. Chem. Int. Ed. 46, 6514-6517.]), Jensen and co-workers (Morales-Morales et al., 2000[Morales-Morales, D., Grause, C., Kasaoka, K., Redón, R., Cramer, R. E. & Jensen, C. M. (2000). Inorg. Chim. Acta, 300-302, 958-963.]; Wang et al., 2006[Wang, Z., Sugiarti, S., Morales, C. M., Jensen, C. M. & Morales-Morales, D. (2006). Inorg. Chim. Acta, 359, 1923-1928.]), Wendt and co-workers (Johnson et al., 2013[Johnson, M. T., Džolić, Z., Cetina, M., Lahtinen, M., Ahlquist, M. S. G., Rissanen, K., Öhrström, L. & Wendt, O. F. (2013). Dalton Trans. 42, 8484-8491.]) or Milstein and co-workers (Vuzman et al., 2007[Vuzman, D., Poverenov, E., Diskin-Posner, Y., Leitus, G., Shimon, L. J. W. & Milstein, D. (2007). Dalton Trans. pp. 5692-5700.]).

5. Synthesis and crystallization

Complex 1: Pd(MeCN)Cl2 (261 mg, 1.01 mmol) and the ligand precursor 3,5-bis­[(di-tert-butyl­phosphan­yl)­oxy]phenol (501 mg, 1.21 mmol) were dissolved in 20 mL of toluene and the mixture was heated at 388 K for two days, resulting in a yellow solution. Upon slow cooling, complex 1 precipitated as a pale-yellow solid, which was isolated by filtration and washed with cold toluene. Colourless crystals suitable for X-ray analysis were obtained from a saturated toluene solution at 195 K, yield: 216 mg (39%). 1H NMR (300.13 MHz, 295 K, toluene-d8): 5.98 (s, 2H, m-CH), 3.92 (br s, 1H, OH), 1.34 ppm (vt, 36H, t-Bu). 13C NMR (75.48 MHz, 295 K, toluene-d8, assigned by 1H-13C-HMBC): 167.4 [C-OP(t-Bu)2], 157.2 (C—OH), 121.4 (Pd—C), 94.4 (mCH), 39.5 [C(CH3)3], 27.6 [C(CH3)3]. 31P NMR (121.50 MHz, 295 K, toluene-d8): 193.5 ppm. Analysis calculated for C22H39ClO3P2Pd: C, 47.58; H, 7.08. Found: C, 47.43; H, 7.13. MS (CI positive, iso-butane): m/z 554 [M]+.

Complex 2: Pt(cod)Cl2 (147 mg, 0.39 mmol) and the ligand precursor 3,5-bis­[(di-tert-butyl­phosphan­yl)­oxy]phenol (195 mg, 1.47 mmol) were dissolved in 15 mL of toluene and the mixture was heated at 388 K for 16 h, resulting in a colourless solution. After cooling to room temperature, the solvent was removed in vacuum and the residue was washed with n-hexane to yield complex 2 as a colourless solid. Crystals suitable for X-ray analysis were obtained by slow cooling of a hot saturated toluene solution to room temperature. Yield: 214 mg (85%). 1H NMR (400.13 MHz, 297 K, toluene-d8): 6.03 (t, J = 7.53 Hz, 2H, m-CH), 4.10 (br s, 1H, OH), 1.33 (vt, 36H, t-Bu). 13C NMR (100.63 MHz, 297 K, toluene-d8): 165.8 [C—OP(t-Bu)2], 156.5 (C—OH), 112.5 (Pt—C), 94.2 (mCH), 40.6 [C(CH3)3], 27.6 [C(CH3)3]. 31P NMR (161.98 MHz, 297 K, toluene-d8): 178.1. Analysis calculated for C22H39ClO3P2Pt: C, 41.03; H, 6.10. Found: C, 41.17; H, 5.99. MS (CI positive, iso-butane): m/z 644 [M]+, 608 [M - Cl]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms attached to oxygen could be found in a difference-Fourier map and were refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C) for CH and 1.5Ueq(C) for CH3. A rotating model was used for the methyl groups.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Pd(C22H39O3P2)Cl] [Pt(C22H39O3P2)Cl]
Mr 555.32 644.01
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 9.7678 (5), 20.1652 (10), 13.9656 (7) 9.7722 (8), 20.1562 (16), 13.9699 (11)
β (°) 105.1743 (8) 105.1634 (13)
V3) 2654.9 (2) 2655.9 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.94 5.52
Crystal size (mm) 0.37 × 0.36 × 0.36 0.34 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.68, 0.73 0.34, 0.50
No. of measured, independent and observed [I > 2σ(I)] reflections 57317, 6411, 6166 25029, 6413, 5959
Rint 0.018 0.023
(sin θ/λ)max−1) 0.661 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.08 0.016, 0.037, 1.02
No. of reflections 6411 6413
No. of parameters 278 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.46 0.87, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

{2,6-Bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II) (1) top
Crystal data top
[Pd(C22H39O3P2)Cl]F(000) = 1152
Mr = 555.32Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7678 (5) ÅCell parameters from 9082 reflections
b = 20.1652 (10) Åθ = 2.4–30.5°
c = 13.9656 (7) ŵ = 0.94 mm1
β = 105.1743 (8)°T = 150 K
V = 2654.9 (2) Å3Prism, colourless
Z = 40.37 × 0.36 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
6411 independent reflections
Radiation source: fine-focus sealed tube6166 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.018
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.68, Tmax = 0.73k = 2626
57317 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.5724P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
6411 reflectionsΔρmax = 0.49 e Å3
278 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21967 (12)0.29775 (6)0.06646 (9)0.0158 (2)
C20.32101 (13)0.27370 (6)0.11161 (9)0.0157 (2)
C30.38045 (13)0.31168 (6)0.17336 (9)0.0168 (2)
H30.44730.29320.20440.020*
C40.33893 (13)0.37773 (6)0.18831 (9)0.0174 (2)
C50.23941 (13)0.40494 (6)0.14407 (9)0.0187 (2)
H50.21250.45020.15370.022*
C60.18083 (12)0.36393 (6)0.08548 (9)0.0165 (2)
C70.20805 (14)0.09712 (7)0.10482 (10)0.0232 (3)
C80.11293 (18)0.13104 (9)0.19722 (12)0.0396 (4)
H8A0.17150.15840.22890.059*
H8B0.04310.15910.17750.059*
H8C0.06360.09720.24400.059*
C90.11526 (19)0.05436 (9)0.05637 (14)0.0406 (4)
H9A0.06360.02180.10440.061*
H9B0.04740.08270.03480.061*
H9C0.17540.03130.00120.061*
C100.31748 (17)0.05426 (7)0.13615 (13)0.0325 (3)
H10A0.37340.02970.07860.049*
H10B0.38050.08260.16250.049*
H10C0.26890.02290.18750.049*
C110.44379 (14)0.14362 (7)0.08081 (10)0.0227 (3)
C120.40374 (18)0.08715 (8)0.14186 (12)0.0351 (3)
H12A0.47940.08110.20300.053*
H12B0.39110.04610.10300.053*
H12C0.31510.09820.15860.053*
C130.57549 (15)0.12576 (8)0.04517 (12)0.0315 (3)
H13A0.65570.11710.10270.047*
H13B0.59890.16280.00680.047*
H13C0.55570.08610.00330.047*
C140.47797 (16)0.20604 (8)0.14625 (11)0.0300 (3)
H14A0.39770.21630.17360.045*
H14B0.49510.24350.10610.045*
H14C0.56290.19800.20060.045*
C150.16995 (14)0.34028 (7)0.02248 (11)0.0246 (3)
C160.22961 (16)0.40832 (8)0.06139 (13)0.0354 (3)
H16A0.33130.40430.09340.053*
H16B0.18060.42450.10970.053*
H16C0.21500.43960.00600.053*
C170.24584 (17)0.31354 (9)0.05250 (14)0.0405 (4)
H17A0.34670.30730.01970.061*
H17B0.23560.34530.10710.061*
H17C0.20380.27100.07870.061*
C180.19456 (18)0.29240 (10)0.11087 (14)0.0428 (4)
H18A0.16650.24750.08670.064*
H18B0.13760.30650.15550.064*
H18C0.29520.29260.14680.064*
C190.08541 (15)0.38393 (7)0.15092 (10)0.0228 (3)
C200.24411 (17)0.39741 (9)0.16379 (13)0.0383 (4)
H20A0.28460.41800.22860.057*
H20B0.25580.42730.11120.057*
H20C0.29310.35550.15980.057*
C210.00919 (17)0.44979 (7)0.15343 (11)0.0291 (3)
H21A0.08980.44130.15290.044*
H21B0.01220.47620.09520.044*
H21C0.05620.47410.21380.044*
C220.0681 (2)0.33840 (8)0.23496 (11)0.0363 (4)
H22A0.11140.35930.29910.054*
H22B0.11480.29590.23090.054*
H22C0.03300.33090.22860.054*
Cl10.03724 (5)0.17138 (2)0.12263 (3)0.03930 (10)
O10.36634 (9)0.20853 (4)0.09447 (7)0.01852 (17)
O20.39346 (11)0.41889 (5)0.24683 (8)0.0243 (2)
O30.07741 (9)0.39017 (4)0.04466 (7)0.01986 (18)
P10.28824 (3)0.16660 (2)0.02188 (2)0.01575 (6)
P20.02457 (3)0.33937 (2)0.03141 (2)0.01631 (6)
Pd10.13707 (2)0.24105 (2)0.02025 (2)0.01624 (3)
H20.435 (2)0.3971 (10)0.2769 (15)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (5)0.0163 (5)0.0162 (5)0.0017 (4)0.0072 (4)0.0020 (4)
C20.0173 (5)0.0139 (5)0.0161 (5)0.0029 (4)0.0049 (4)0.0016 (4)
C30.0168 (5)0.0179 (5)0.0179 (5)0.0027 (4)0.0082 (4)0.0014 (4)
C40.0193 (5)0.0170 (5)0.0179 (5)0.0004 (4)0.0082 (4)0.0031 (4)
C50.0218 (6)0.0143 (5)0.0220 (6)0.0030 (4)0.0094 (5)0.0028 (4)
C60.0160 (5)0.0177 (5)0.0175 (5)0.0028 (4)0.0072 (4)0.0006 (4)
C70.0253 (6)0.0210 (6)0.0261 (6)0.0039 (5)0.0113 (5)0.0061 (5)
C80.0368 (8)0.0459 (9)0.0296 (8)0.0011 (7)0.0031 (6)0.0098 (7)
C90.0457 (9)0.0371 (9)0.0478 (10)0.0214 (7)0.0282 (8)0.0155 (7)
C100.0361 (8)0.0236 (7)0.0432 (9)0.0029 (6)0.0199 (7)0.0129 (6)
C110.0245 (6)0.0212 (6)0.0213 (6)0.0024 (5)0.0041 (5)0.0058 (5)
C120.0422 (9)0.0301 (8)0.0312 (8)0.0009 (6)0.0065 (7)0.0154 (6)
C130.0246 (7)0.0330 (8)0.0351 (8)0.0087 (6)0.0047 (6)0.0049 (6)
C140.0317 (7)0.0327 (7)0.0228 (7)0.0025 (6)0.0022 (6)0.0009 (6)
C150.0180 (6)0.0280 (7)0.0287 (7)0.0009 (5)0.0078 (5)0.0009 (5)
C160.0223 (7)0.0364 (8)0.0455 (9)0.0061 (6)0.0051 (6)0.0065 (7)
C170.0279 (8)0.0462 (9)0.0537 (10)0.0051 (7)0.0218 (7)0.0081 (8)
C180.0291 (8)0.0500 (10)0.0424 (9)0.0002 (7)0.0030 (7)0.0173 (8)
C190.0275 (6)0.0208 (6)0.0204 (6)0.0026 (5)0.0069 (5)0.0027 (5)
C200.0272 (7)0.0430 (9)0.0407 (9)0.0008 (7)0.0015 (6)0.0151 (7)
C210.0411 (8)0.0198 (6)0.0289 (7)0.0050 (6)0.0133 (6)0.0036 (5)
C220.0612 (11)0.0277 (7)0.0209 (7)0.0105 (7)0.0125 (7)0.0021 (6)
Cl10.0649 (3)0.02367 (16)0.0452 (2)0.00300 (16)0.0427 (2)0.00352 (15)
O10.0233 (4)0.0142 (4)0.0219 (4)0.0054 (3)0.0127 (4)0.0047 (3)
O20.0318 (5)0.0179 (4)0.0308 (5)0.0036 (4)0.0215 (4)0.0065 (4)
O30.0224 (4)0.0166 (4)0.0256 (4)0.0048 (3)0.0152 (4)0.0032 (3)
P10.01950 (14)0.01287 (13)0.01668 (14)0.00141 (11)0.00791 (11)0.00152 (10)
P20.01767 (14)0.01587 (14)0.01803 (14)0.00131 (11)0.00938 (11)0.00007 (11)
Pd10.02072 (5)0.01407 (5)0.01727 (5)0.00096 (3)0.01092 (4)0.00110 (3)
Geometric parameters (Å, º) top
C1—C21.3926 (16)C14—H14A0.9800
C1—C61.3937 (16)C14—H14B0.9800
C1—Pd11.9841 (12)C14—H14C0.9800
C2—O11.3873 (14)C15—C171.531 (2)
C2—C31.3891 (16)C15—C161.533 (2)
C3—C41.3920 (17)C15—C181.536 (2)
C3—H30.9500C15—P21.8516 (14)
C4—O21.3670 (14)C16—H16A0.9800
C4—C51.3936 (17)C16—H16B0.9800
C5—C61.3878 (17)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—O31.3881 (14)C17—H17B0.9800
C7—C101.5250 (19)C17—H17C0.9800
C7—C91.531 (2)C18—H18A0.9800
C7—C81.539 (2)C18—H18B0.9800
C7—P11.8557 (13)C18—H18C0.9800
C8—H8A0.9800C19—C211.5274 (18)
C8—H8B0.9800C19—C221.534 (2)
C8—H8C0.9800C19—C201.537 (2)
C9—H9A0.9800C19—P21.8512 (13)
C9—H9B0.9800C20—H20A0.9800
C9—H9C0.9800C20—H20B0.9800
C10—H10A0.9800C20—H20C0.9800
C10—H10B0.9800C21—H21A0.9800
C10—H10C0.9800C21—H21B0.9800
C11—C121.5334 (19)C21—H21C0.9800
C11—C131.539 (2)C22—H22A0.9800
C11—C141.540 (2)C22—H22B0.9800
C11—P11.8545 (13)C22—H22C0.9800
C12—H12A0.9800Cl1—Pd12.3871 (4)
C12—H12B0.9800O1—P11.6521 (9)
C12—H12C0.9800O2—H20.79 (2)
C13—H13A0.9800O3—P21.6527 (9)
C13—H13B0.9800P1—Pd12.2880 (3)
C13—H13C0.9800P2—Pd12.2918 (3)
C2—C1—C6115.95 (11)C16—C15—C18108.22 (13)
C2—C1—Pd1121.76 (9)C17—C15—P2110.34 (11)
C6—C1—Pd1122.29 (9)C16—C15—P2114.03 (10)
O1—C2—C3117.58 (10)C18—C15—P2104.39 (10)
O1—C2—C1118.97 (10)C15—C16—H16A109.5
C3—C2—C1123.44 (11)C15—C16—H16B109.5
C2—C3—C4117.90 (11)H16A—C16—H16B109.5
C2—C3—H3121.0C15—C16—H16C109.5
C4—C3—H3121.0H16A—C16—H16C109.5
O2—C4—C3121.80 (11)H16B—C16—H16C109.5
O2—C4—C5116.88 (11)C15—C17—H17A109.5
C3—C4—C5121.33 (11)C15—C17—H17B109.5
C6—C5—C4118.03 (11)H17A—C17—H17B109.5
C6—C5—H5121.0C15—C17—H17C109.5
C4—C5—H5121.0H17A—C17—H17C109.5
C5—C6—O3118.14 (11)H17B—C17—H17C109.5
C5—C6—C1123.31 (11)C15—C18—H18A109.5
O3—C6—C1118.54 (10)C15—C18—H18B109.5
C10—C7—C9110.38 (12)H18A—C18—H18B109.5
C10—C7—C8109.03 (13)C15—C18—H18C109.5
C9—C7—C8108.88 (13)H18A—C18—H18C109.5
C10—C7—P1113.20 (10)H18B—C18—H18C109.5
C9—C7—P1110.57 (10)C21—C19—C22110.54 (12)
C8—C7—P1104.56 (10)C21—C19—C20109.04 (12)
C7—C8—H8A109.5C22—C19—C20109.04 (13)
C7—C8—H8B109.5C21—C19—P2113.53 (10)
H8A—C8—H8B109.5C22—C19—P2109.00 (10)
C7—C8—H8C109.5C20—C19—P2105.49 (9)
H8A—C8—H8C109.5C19—C20—H20A109.5
H8B—C8—H8C109.5C19—C20—H20B109.5
C7—C9—H9A109.5H20A—C20—H20B109.5
C7—C9—H9B109.5C19—C20—H20C109.5
H9A—C9—H9B109.5H20A—C20—H20C109.5
C7—C9—H9C109.5H20B—C20—H20C109.5
H9A—C9—H9C109.5C19—C21—H21A109.5
H9B—C9—H9C109.5C19—C21—H21B109.5
C7—C10—H10A109.5H21A—C21—H21B109.5
C7—C10—H10B109.5C19—C21—H21C109.5
H10A—C10—H10B109.5H21A—C21—H21C109.5
C7—C10—H10C109.5H21B—C21—H21C109.5
H10A—C10—H10C109.5C19—C22—H22A109.5
H10B—C10—H10C109.5C19—C22—H22B109.5
C12—C11—C13111.26 (12)H22A—C22—H22B109.5
C12—C11—C14108.92 (12)C19—C22—H22C109.5
C13—C11—C14108.27 (12)H22A—C22—H22C109.5
C12—C11—P1109.81 (10)H22B—C22—H22C109.5
C13—C11—P1113.17 (10)C2—O1—P1114.38 (7)
C14—C11—P1105.13 (9)C4—O2—H2108.4 (15)
C11—C12—H12A109.5C6—O3—P2114.27 (8)
C11—C12—H12B109.5O1—P1—C11100.72 (5)
H12A—C12—H12B109.5O1—P1—C7100.99 (5)
C11—C12—H12C109.5C11—P1—C7114.87 (6)
H12A—C12—H12C109.5O1—P1—Pd1104.76 (3)
H12B—C12—H12C109.5C11—P1—Pd1114.73 (5)
C11—C13—H13A109.5C7—P1—Pd1117.42 (4)
C11—C13—H13B109.5O3—P2—C19101.43 (6)
H13A—C13—H13B109.5O3—P2—C15101.10 (6)
C11—C13—H13C109.5C19—P2—C15114.50 (6)
H13A—C13—H13C109.5O3—P2—Pd1104.87 (3)
H13B—C13—H13C109.5C19—P2—Pd1115.77 (4)
C11—C14—H14A109.5C15—P2—Pd1116.12 (5)
C11—C14—H14B109.5C1—Pd1—P180.11 (3)
H14A—C14—H14B109.5C1—Pd1—P279.73 (3)
C11—C14—H14C109.5P1—Pd1—P2159.768 (12)
H14A—C14—H14C109.5C1—Pd1—Cl1179.06 (4)
H14B—C14—H14C109.5P1—Pd1—Cl199.219 (13)
C17—C15—C16110.51 (13)P2—Pd1—Cl1100.957 (13)
C17—C15—C18109.05 (14)
C6—C1—C2—O1178.90 (10)C14—C11—P1—Pd131.95 (10)
Pd1—C1—C2—O10.73 (16)C10—C7—P1—O161.39 (11)
C6—C1—C2—C30.88 (18)C9—C7—P1—O1174.18 (11)
Pd1—C1—C2—C3179.49 (9)C8—C7—P1—O157.15 (10)
O1—C2—C3—C4177.93 (11)C10—C7—P1—C1146.00 (13)
C1—C2—C3—C41.85 (19)C9—C7—P1—C1178.44 (12)
C2—C3—C4—O2179.12 (11)C8—C7—P1—C11164.53 (10)
C2—C3—C4—C50.89 (19)C10—C7—P1—Pd1174.54 (9)
O2—C4—C5—C6179.06 (11)C9—C7—P1—Pd161.03 (12)
C3—C4—C5—C60.93 (19)C8—C7—P1—Pd156.00 (11)
C4—C5—C6—O3177.39 (11)C6—O3—P2—C19114.99 (9)
C4—C5—C6—C11.99 (19)C6—O3—P2—C15126.92 (9)
C2—C1—C6—C51.10 (18)C6—O3—P2—Pd15.84 (9)
Pd1—C1—C6—C5178.53 (10)C21—C19—P2—O365.88 (11)
C2—C1—C6—O3178.27 (11)C22—C19—P2—O3170.43 (10)
Pd1—C1—C6—O32.10 (16)C20—C19—P2—O353.46 (11)
C3—C2—O1—P1178.98 (9)C21—C19—P2—C1542.05 (12)
C1—C2—O1—P11.23 (14)C22—C19—P2—C1581.64 (12)
C5—C6—O3—P2175.03 (9)C20—C19—P2—C15161.39 (10)
C1—C6—O3—P25.56 (14)C21—C19—P2—Pd1178.72 (8)
C2—O1—P1—C11120.43 (9)C22—C19—P2—Pd157.59 (11)
C2—O1—P1—C7121.36 (9)C20—C19—P2—Pd159.38 (11)
C2—O1—P1—Pd11.08 (9)C17—C15—P2—O3162.98 (11)
C12—C11—P1—O1163.04 (10)C16—C15—P2—O337.91 (12)
C13—C11—P1—O138.05 (11)C18—C15—P2—O379.99 (11)
C14—C11—P1—O179.93 (10)C17—C15—P2—C1954.84 (13)
C12—C11—P1—C755.49 (12)C16—C15—P2—C1970.22 (12)
C13—C11—P1—C769.50 (11)C18—C15—P2—C19171.88 (11)
C14—C11—P1—C7172.52 (9)C17—C15—P2—Pd184.24 (11)
C12—C11—P1—Pd185.08 (10)C16—C15—P2—Pd1150.70 (10)
C13—C11—P1—Pd1149.93 (9)C18—C15—P2—Pd132.80 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.79 (2)2.37 (2)3.1545 (11)174.2 (19)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
{2,6-Bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II) (2) top
Crystal data top
[Pt(C22H39O3P2)Cl]F(000) = 1280
Mr = 644.01Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7722 (8) ÅCell parameters from 9874 reflections
b = 20.1562 (16) Åθ = 2.3–30.5°
c = 13.9699 (11) ŵ = 5.52 mm1
β = 105.1634 (13)°T = 150 K
V = 2655.9 (4) Å3Prism, colourless
Z = 40.34 × 0.21 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6413 independent reflections
Radiation source: fine-focus sealed tube5959 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.023
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 812
Tmin = 0.34, Tmax = 0.50k = 2526
25029 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0128P)2 + 2.002P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6413 reflectionsΔρmax = 0.87 e Å3
278 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2222 (2)0.29907 (9)0.06632 (13)0.0156 (4)
C20.3236 (2)0.27501 (9)0.11116 (14)0.0156 (4)
C30.3826 (2)0.31281 (9)0.17280 (14)0.0162 (4)
H30.44950.29430.20380.019*
C40.3405 (2)0.37898 (9)0.18783 (14)0.0165 (4)
C50.2411 (2)0.40605 (9)0.14397 (14)0.0186 (4)
H50.21390.45130.15390.022*
C60.1826 (2)0.36515 (9)0.08529 (14)0.0160 (4)
C70.2082 (2)0.09861 (10)0.10463 (16)0.0224 (4)
C80.1139 (3)0.13295 (13)0.19738 (17)0.0368 (6)
H8A0.17310.16040.22850.055*
H8B0.04380.16100.17800.055*
H8C0.06500.09930.24460.055*
C90.1142 (3)0.05599 (12)0.0570 (2)0.0389 (6)
H9A0.06160.02400.10570.058*
H9B0.04730.08450.03480.058*
H9C0.17360.03220.00000.058*
C100.3175 (3)0.05516 (11)0.13603 (18)0.0315 (5)
H10A0.37030.02900.07910.047*
H10B0.38350.08340.15970.047*
H10C0.26890.02520.18940.047*
C110.4449 (2)0.14387 (10)0.08141 (15)0.0219 (4)
C120.4032 (3)0.08751 (11)0.14229 (18)0.0338 (5)
H12A0.47850.08110.20350.051*
H12B0.38970.04650.10330.051*
H12C0.31470.09910.15890.051*
C130.5752 (2)0.12509 (11)0.04526 (18)0.0313 (5)
H13A0.65500.11510.10250.047*
H13B0.60050.16220.00790.047*
H13C0.55340.08600.00230.047*
C140.4811 (3)0.20604 (11)0.14718 (16)0.0282 (5)
H14A0.40080.21720.17400.042*
H14B0.50040.24320.10750.042*
H14C0.56500.19730.20190.042*
C150.1691 (2)0.34070 (11)0.02288 (16)0.0233 (4)
C160.2283 (3)0.40901 (12)0.06013 (19)0.0345 (5)
H16A0.33000.40530.09190.052*
H16B0.17950.42570.10830.052*
H16C0.21330.43980.00400.052*
C170.2449 (3)0.31316 (13)0.0515 (2)0.0392 (6)
H17A0.34540.30620.01830.059*
H17B0.23620.34480.10610.059*
H17C0.20180.27080.07780.059*
C180.1939 (3)0.29371 (14)0.1125 (2)0.0413 (6)
H18A0.16730.24840.08940.062*
H18B0.13600.30800.15630.062*
H18C0.29430.29470.14890.062*
C190.0864 (2)0.38351 (10)0.15143 (15)0.0221 (4)
C200.2450 (3)0.39706 (13)0.16472 (19)0.0371 (6)
H20A0.28500.41770.22950.056*
H20B0.25700.42700.11220.056*
H20C0.29410.35510.16090.056*
C210.0100 (3)0.44929 (10)0.15415 (16)0.0277 (5)
H21A0.08880.44070.15390.042*
H21B0.01250.47580.09580.042*
H21C0.05720.47360.21450.042*
C220.0683 (3)0.33748 (11)0.23488 (16)0.0349 (6)
H22A0.11010.35840.29920.052*
H22B0.11620.29520.23110.052*
H22C0.03280.32950.22760.052*
Cl10.03655 (8)0.17228 (3)0.12079 (5)0.03816 (15)
O10.36834 (15)0.20966 (6)0.09302 (10)0.0177 (3)
O20.39515 (17)0.42028 (7)0.24662 (11)0.0241 (3)
O30.07860 (15)0.39053 (6)0.04407 (10)0.0189 (3)
P10.28950 (5)0.16756 (2)0.02112 (4)0.01541 (10)
P20.02527 (5)0.33940 (2)0.03123 (4)0.01579 (10)
Pt10.13889 (2)0.24213 (2)0.01970 (2)0.01543 (3)
H20.441 (3)0.3988 (14)0.277 (2)0.039 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (10)0.0158 (8)0.0138 (9)0.0009 (7)0.0064 (7)0.0017 (6)
C20.0180 (10)0.0129 (8)0.0154 (9)0.0025 (7)0.0035 (7)0.0013 (7)
C30.0164 (9)0.0175 (8)0.0170 (9)0.0027 (7)0.0085 (7)0.0014 (7)
C40.0169 (10)0.0180 (8)0.0158 (9)0.0004 (7)0.0067 (7)0.0040 (7)
C50.0225 (10)0.0144 (8)0.0206 (10)0.0029 (7)0.0085 (8)0.0031 (7)
C60.0155 (9)0.0173 (8)0.0167 (9)0.0032 (7)0.0071 (7)0.0005 (7)
C70.0268 (11)0.0183 (9)0.0243 (11)0.0033 (8)0.0106 (9)0.0060 (7)
C80.0354 (14)0.0417 (13)0.0280 (13)0.0003 (11)0.0015 (10)0.0112 (10)
C90.0459 (16)0.0342 (12)0.0454 (15)0.0206 (11)0.0273 (13)0.0161 (11)
C100.0357 (14)0.0232 (10)0.0411 (14)0.0033 (9)0.0198 (11)0.0124 (9)
C110.0255 (11)0.0191 (9)0.0199 (10)0.0026 (8)0.0037 (8)0.0056 (7)
C120.0404 (14)0.0291 (11)0.0297 (13)0.0012 (10)0.0049 (11)0.0158 (9)
C130.0257 (12)0.0321 (11)0.0343 (13)0.0089 (10)0.0045 (10)0.0051 (9)
C140.0299 (12)0.0302 (11)0.0215 (11)0.0028 (9)0.0012 (9)0.0007 (8)
C150.0172 (10)0.0271 (10)0.0264 (11)0.0007 (8)0.0074 (8)0.0006 (8)
C160.0221 (12)0.0345 (12)0.0446 (15)0.0055 (10)0.0046 (10)0.0057 (10)
C170.0244 (13)0.0469 (14)0.0515 (16)0.0041 (11)0.0191 (11)0.0086 (12)
C180.0283 (13)0.0498 (15)0.0394 (15)0.0007 (12)0.0022 (11)0.0166 (12)
C190.0281 (11)0.0186 (9)0.0201 (10)0.0026 (8)0.0074 (8)0.0023 (7)
C200.0290 (13)0.0414 (13)0.0372 (14)0.0004 (11)0.0025 (10)0.0145 (11)
C210.0392 (14)0.0184 (9)0.0279 (11)0.0038 (9)0.0131 (10)0.0032 (8)
C220.0594 (17)0.0269 (11)0.0195 (11)0.0117 (11)0.0125 (11)0.0014 (8)
Cl10.0641 (4)0.0222 (2)0.0437 (3)0.0029 (3)0.0417 (3)0.0040 (2)
O10.0222 (7)0.0135 (6)0.0211 (7)0.0052 (5)0.0120 (6)0.0042 (5)
O20.0329 (9)0.0173 (6)0.0297 (8)0.0041 (6)0.0217 (7)0.0064 (6)
O30.0218 (7)0.0152 (6)0.0243 (7)0.0046 (5)0.0143 (6)0.0030 (5)
P10.0197 (3)0.0121 (2)0.0163 (2)0.00103 (18)0.00787 (19)0.00132 (16)
P20.0180 (3)0.0148 (2)0.0172 (2)0.00112 (18)0.00937 (19)0.00010 (17)
Pt10.02031 (4)0.01324 (4)0.01583 (4)0.00074 (3)0.01022 (3)0.00099 (2)
Geometric parameters (Å, º) top
C1—C21.390 (3)C14—H14A0.9800
C1—C61.393 (2)C14—H14B0.9800
C1—Pt11.9841 (18)C14—H14C0.9800
C2—C31.384 (3)C15—C171.530 (3)
C2—O11.390 (2)C15—C161.531 (3)
C3—C41.395 (2)C15—C181.538 (3)
C3—H30.9500C15—P21.852 (2)
C4—O21.372 (2)C16—H16A0.9800
C4—C51.389 (3)C16—H16B0.9800
C5—C61.387 (3)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—O31.390 (2)C17—H17B0.9800
C7—C91.531 (3)C17—H17C0.9800
C7—C101.532 (3)C18—H18A0.9800
C7—C81.543 (3)C18—H18B0.9800
C7—P11.854 (2)C18—H18C0.9800
C8—H8A0.9800C19—C211.527 (3)
C8—H8B0.9800C19—C221.536 (3)
C8—H8C0.9800C19—C201.537 (3)
C9—H9A0.9800C19—P21.855 (2)
C9—H9B0.9800C20—H20A0.9800
C9—H9C0.9800C20—H20B0.9800
C10—H10A0.9800C20—H20C0.9800
C10—H10B0.9800C21—H21A0.9800
C10—H10C0.9800C21—H21B0.9800
C11—C131.535 (3)C21—H21C0.9800
C11—C121.537 (3)C22—H22A0.9800
C11—C141.539 (3)C22—H22B0.9800
C11—P11.857 (2)C22—H22C0.9800
C12—H12A0.9800Cl1—Pt12.3907 (5)
C12—H12B0.9800O1—P11.6514 (13)
C12—H12C0.9800O2—H20.82 (3)
C13—H13A0.9800O3—P21.6514 (13)
C13—H13B0.9800P1—Pt12.2781 (5)
C13—H13C0.9800P2—Pt12.2796 (5)
C2—C1—C6116.32 (16)C16—C15—C18108.19 (19)
C2—C1—Pt1121.64 (13)C17—C15—P2110.18 (16)
C6—C1—Pt1122.03 (14)C16—C15—P2114.05 (15)
C3—C2—O1118.22 (16)C18—C15—P2104.48 (15)
C3—C2—C1123.37 (17)C15—C16—H16A109.5
O1—C2—C1118.41 (16)C15—C16—H16B109.5
C2—C3—C4117.77 (17)H16A—C16—H16B109.5
C2—C3—H3121.1C15—C16—H16C109.5
C4—C3—H3121.1H16A—C16—H16C109.5
O2—C4—C5116.91 (16)H16B—C16—H16C109.5
O2—C4—C3121.65 (17)C15—C17—H17A109.5
C5—C4—C3121.45 (17)C15—C17—H17B109.5
C6—C5—C4118.14 (17)H17A—C17—H17B109.5
C6—C5—H5120.9C15—C17—H17C109.5
C4—C5—H5120.9H17A—C17—H17C109.5
C5—C6—O3119.03 (16)H17B—C17—H17C109.5
C5—C6—C1122.91 (17)C15—C18—H18A109.5
O3—C6—C1118.06 (16)C15—C18—H18B109.5
C9—C7—C10110.27 (18)H18A—C18—H18B109.5
C9—C7—C8108.8 (2)C15—C18—H18C109.5
C10—C7—C8108.90 (19)H18A—C18—H18C109.5
C9—C7—P1110.74 (15)H18B—C18—H18C109.5
C10—C7—P1113.09 (15)C21—C19—C22110.59 (18)
C8—C7—P1104.80 (14)C21—C19—C20109.09 (18)
C7—C8—H8A109.5C22—C19—C20109.2 (2)
C7—C8—H8B109.5C21—C19—P2113.26 (15)
H8A—C8—H8B109.5C22—C19—P2108.89 (14)
C7—C8—H8C109.5C20—C19—P2105.68 (14)
H8A—C8—H8C109.5C19—C20—H20A109.5
H8B—C8—H8C109.5C19—C20—H20B109.5
C7—C9—H9A109.5H20A—C20—H20B109.5
C7—C9—H9B109.5C19—C20—H20C109.5
H9A—C9—H9B109.5H20A—C20—H20C109.5
C7—C9—H9C109.5H20B—C20—H20C109.5
H9A—C9—H9C109.5C19—C21—H21A109.5
H9B—C9—H9C109.5C19—C21—H21B109.5
C7—C10—H10A109.5H21A—C21—H21B109.5
C7—C10—H10B109.5C19—C21—H21C109.5
H10A—C10—H10B109.5H21A—C21—H21C109.5
C7—C10—H10C109.5H21B—C21—H21C109.5
H10A—C10—H10C109.5C19—C22—H22A109.5
H10B—C10—H10C109.5C19—C22—H22B109.5
C13—C11—C12111.28 (18)H22A—C22—H22B109.5
C13—C11—C14108.47 (18)C19—C22—H22C109.5
C12—C11—C14108.90 (18)H22A—C22—H22C109.5
C13—C11—P1113.03 (15)H22B—C22—H22C109.5
C12—C11—P1109.56 (15)C2—O1—P1115.03 (11)
C14—C11—P1105.35 (14)C4—O2—H2110.2 (19)
C11—C12—H12A109.5C6—O3—P2114.89 (11)
C11—C12—H12B109.5O1—P1—C7101.18 (8)
H12A—C12—H12B109.5O1—P1—C11100.58 (8)
C11—C12—H12C109.5C7—P1—C11114.96 (9)
H12A—C12—H12C109.5O1—P1—Pt1104.36 (5)
H12B—C12—H12C109.5C7—P1—Pt1116.95 (7)
C11—C13—H13A109.5C11—P1—Pt1115.35 (7)
C11—C13—H13B109.5O3—P2—C15101.07 (9)
H13A—C13—H13B109.5O3—P2—C19101.36 (8)
C11—C13—H13C109.5C15—P2—C19114.56 (10)
H13A—C13—H13C109.5O3—P2—Pt1104.54 (5)
H13B—C13—H13C109.5C15—P2—Pt1116.74 (7)
C11—C14—H14A109.5C19—P2—Pt1115.39 (7)
C11—C14—H14B109.5C1—Pt1—P180.54 (5)
H14A—C14—H14B109.5C1—Pt1—P280.20 (5)
C11—C14—H14C109.5P1—Pt1—P2160.676 (17)
H14A—C14—H14C109.5C1—Pt1—Cl1178.95 (6)
H14B—C14—H14C109.5P1—Pt1—Cl199.023 (19)
C17—C15—C16110.49 (19)P2—Pt1—Cl1100.257 (19)
C17—C15—C18109.2 (2)
C6—C1—C2—C30.9 (3)C8—C7—P1—Pt155.81 (16)
Pt1—C1—C2—C3178.98 (15)C13—C11—P1—O138.88 (16)
C6—C1—C2—O1178.89 (16)C12—C11—P1—O1163.60 (15)
Pt1—C1—C2—O11.2 (2)C14—C11—P1—O179.40 (15)
O1—C2—C3—C4177.85 (17)C13—C11—P1—C768.85 (17)
C1—C2—C3—C42.0 (3)C12—C11—P1—C755.87 (18)
C2—C3—C4—O2179.05 (18)C14—C11—P1—C7172.87 (14)
C2—C3—C4—C51.0 (3)C13—C11—P1—Pt1150.45 (13)
O2—C4—C5—C6179.09 (18)C12—C11—P1—Pt184.83 (15)
C3—C4—C5—C60.8 (3)C14—C11—P1—Pt132.18 (16)
C4—C5—C6—O3177.37 (17)C6—O3—P2—C15127.19 (14)
C4—C5—C6—C12.0 (3)C6—O3—P2—C19114.69 (14)
C2—C1—C6—C51.1 (3)C6—O3—P2—Pt15.57 (14)
Pt1—C1—C6—C5178.99 (15)C17—C15—P2—O3163.37 (16)
C2—C1—C6—O3178.22 (17)C16—C15—P2—O338.44 (17)
Pt1—C1—C6—O31.7 (2)C18—C15—P2—O379.49 (17)
C3—C2—O1—P1178.45 (14)C17—C15—P2—C1955.30 (19)
C1—C2—O1—P11.7 (2)C16—C15—P2—C1969.62 (18)
C5—C6—O3—P2175.52 (15)C18—C15—P2—C19172.45 (16)
C1—C6—O3—P25.1 (2)C17—C15—P2—Pt183.99 (16)
C2—O1—P1—C7120.46 (14)C16—C15—P2—Pt1151.09 (14)
C2—O1—P1—C11121.21 (13)C18—C15—P2—Pt133.16 (18)
C2—O1—P1—Pt11.38 (13)C21—C19—P2—O366.03 (17)
C9—C7—P1—O1173.96 (16)C22—C19—P2—O3170.48 (15)
C10—C7—P1—O161.70 (17)C20—C19—P2—O353.34 (16)
C8—C7—P1—O156.78 (16)C21—C19—P2—C1541.87 (19)
C9—C7—P1—C1178.67 (19)C22—C19—P2—C1581.62 (17)
C10—C7—P1—C1145.66 (19)C20—C19—P2—C15161.23 (15)
C8—C7—P1—C11164.15 (15)C21—C19—P2—Pt1178.29 (13)
C9—C7—P1—Pt161.38 (18)C22—C19—P2—Pt158.23 (17)
C10—C7—P1—Pt1174.29 (13)C20—C19—P2—Pt158.92 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.82 (3)2.38 (3)3.1874 (16)170 (3)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank our technical and analytical staff for assistance. General support by LIKAT is gratefully acknowledged. The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationBolliger, J. L., Blacque, O. & Frech, C. M. (2007). Angew. Chem. Int. Ed. 46, 6514–6517.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcía-Eleno, M. A., Padilla-Mata, E., Estudiante-Negrete, F., Pichal-Cerda, F., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2015). New J. Chem. 39, 3361–3365.  Google Scholar
First citationGöttker-Schnetmann, I., White, P. & Brookhart, M. (2004). J. Am. Chem. Soc. 126, 1804–1811.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnson, M. T., Džolić, Z., Cetina, M., Lahtinen, M., Ahlquist, M. S. G., Rissanen, K., Öhrström, L. & Wendt, O. F. (2013). Dalton Trans. 42, 8484–8491.  CSD CrossRef CAS PubMed Google Scholar
First citationJoksch, M., Agarwala, H., Haak, J., Spannenberg, A. & Beweries, T. (2018). Polyhedron, 143, 118–125.  CSD CrossRef CAS Google Scholar
First citationJoksch, M., Haak, J., Spannenberg, A. & Beweries, T. (2017). Eur. J. Inorg. Chem. pp. 3815–3822.  CSD CrossRef Google Scholar
First citationKoten, G. van, Timmer, K., Noltes, J. G. & Spek, A. L. (1978). J. Chem. Soc. Chem. Commun. pp. 250–252.  Google Scholar
First citationMorales-Morales, D., Grause, C., Kasaoka, K., Redón, R., Cramer, R. E. & Jensen, C. M. (2000). Inorg. Chim. Acta, 300–302, 958–963.  CAS Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.  CrossRef Web of Science Google Scholar
First citationPeris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959–1968.  CrossRef CAS PubMed Google Scholar
First citationRimoldi, M., Nakamura, A., Vermeulen, N. A., Henkelis, J. J., Blackburn, A. K., Hupp, J. T., Stoddart, J. F. & Farha, O. K. (2016). Chem. Sci. 7, 4980–4984.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzabo, K. J. & Wendt, O. F. (2014). Pincer and Pincer–Type Complexes: Applications in Organic Synthesis and Catalysis. Weinheim: Wiley–VCH.  Google Scholar
First citationThangavadivale, V., Aguiar, P. M., Jasim, N. A., Pike, S. J., Smith, D. A., Whitwood, A. C., Brammer, L. & Perutz, R. N. (2018). Chem. Sci. 9, 3767–3781.  CSD CrossRef CAS PubMed Google Scholar
First citationValdés, H., García-Eleno, M. A., Canseco-Gonzalez, D. & Morales-Morales, D. (2018). ChemCatChem, 10, 3136–3172.  Google Scholar
First citationVuzman, D., Poverenov, E., Diskin-Posner, Y., Leitus, G., Shimon, L. J. W. & Milstein, D. (2007). Dalton Trans. pp. 5692–5700.  CSD CrossRef Google Scholar
First citationWang, Z., Sugiarti, S., Morales, C. M., Jensen, C. M. & Morales-Morales, D. (2006). Inorg. Chim. Acta, 359, 1923–1928.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds