research communications
trans-diaqua[2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole]dithiocyanatonickel(II)
spectroscopic characterization and Hirshfeld surface analysis ofaLaboratoire de Chimie de Coordination et d'Analytique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, cLaboratory of Organic and Analytical Chemistry, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco, and dLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: frhoufal@yahoo.com
The reaction of 2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole (4-pox) and thiocyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octahedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water molecules. In the crystal, the molecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing.
Keywords: coordination complex; crystal structure; 1,3,4-oxadiazole; thiocyanate; spectroscopy; hydrogen bonds; Hirshfeld analysis.
CCDC reference: 1911306
1. Chemical context
Bi- or multidentate bridging heterocyclic ligands, in particular thiadiazole and oxadiazole derivatives, have been used to bind metal ions, thus generating mono- (Guo et al., 2003), bi- (Mahmoudi & Morsali, 2007) or multidimensional (Du et al., 2004a; Du et al., 2010; Li et al., 2010a) coordination complexes as well as metal–organic framework (MOF) type coordination polymers with potentially interesting magnetic (Li et al., 2010b; Laachir et al., 2016; Liu et al., 2003) and biological (Zine et al., 2017; Smaili et al., 2017; Baba Ahmed et al., 2015; Barboiu et al., 1996) properties. Employing angular dipyridyl donor ligands 2,5-bis(pyridin-4-yl)-1,3,4-thiadiazole and 2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole (4-pox) with metal salts has allowed the synthesis of transition-metal complexes with different topologies. The counter-anions (PF6−, ClO4−, NO3−, SCN−) seem to play an essential role in the architecture of the products obtained, particularly in the case of polymeric compounds (Du, Lam et al., 2004b; Huang et al., 2004; Mahmoudi & Morsali, 2007). With the thiocyanate ion (SCN−), mononuclear complexes of formula [M(4-pox)2(NCS)2(H2O)2] have been synthesized; they exhibit an octahedral geometry around the metal site with pseudohalide and organic ligands in mutually trans positions (Du et al., 2002b, Fang et al., 2002; Du & Zhao, 2004). Herein we report the synthesis, structural characterizations and Hirshfeld surface analysis of the title complex.
2. Structural commentary
In the molecule of the title compound, the nickel(II) cation is located on an inversion centre and shows an almost regular octahedral coordination geometry (Fig. 1). The Ni1 atom is connected to pairs of water molecules and thiocyanate anions, with Ni1—O2 and Ni1—N5 distances of 2.0748 (18) and 2.0316 (18) Å, respectively. The two remaining, symmetry-related bonds are slightly longer [Ni1—N4 = 2.1327 (17) Å], which leads to a slightly elongated octahedral coordination environment. The oxadiazole ring subtends dihedral angles of 27.86 (13) and 12.74 (14)°, respectively, with the Ni-bound (N4/C8–C12) and outer (N1/C1–C5) pyridine rings while the pyridine rings subtend a dihedral angle of 28.02 (13)°.
3. Supramolecular features
In the crystal, the molecules are linked through strong O—H⋯N hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2). Weak π–π stacking interactions [centroid-to-centroid distance = 3.9749 (12) Å; 2 − x, 1 − y, 2 − z] are also observed between pyridine rings (N4/C8–C12) coordinated to adjacent metal centres.
4. Hirshfeld surface analysis
In order to visualize the role of weak intermolecular contacts, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer17.5 (Turner et al., 2017). The three dimensional dnorm surface of the title compound using a standard surface resolution with a fixed colour scale of −0.6661 to 1.4210 a.u. is shown in Fig. 3. The darkest red spots on this surface correspond to the O—H⋯N hydrogen bonds resulting from the interaction between the coordinated water molecules and N atoms of the pyridine and oxadiazole rings.
The fingerprint plots in Fig. 4, for all interactions in the title compound, and those delineated into H⋯H, N⋯H/H⋯N, C⋯H/H⋯C, S⋯H/H⋯S and C⋯C contacts, exhibit the characteristic pseudo-symmetric wings in the de and di diagonal axes. The percentage contributions to the overall Hirshfeld surface are given in Table 2. The H⋯N/N⋯H contacts arising from intermolecular O—H⋯N hydrogen bonding make a 22.1% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ≃1.8 Å. In the absence of C—H⋯π interactions, the wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (18.2% contribution, Fig. 4d) also have a nearly symmetrical distribution of points, with thick edges at de + di ≃ 3.1 Å. The H⋯H contacts (23.9% contribution, Fig. 4b) appear in the central region of the fingerprint plot with de = di ≃ 1.0 Å. The S⋯H/H⋯S contacts (17.3% contribution, Fig. 4e) indicate that the interatomic separations are greater than the sum of the van der Waals radii, suggesting they have a limited influence on the molecular packing. The C⋯C contacts (5.9% contribution, Fig. 4f) are a measure of the π–π stacking interactions and have an arrow-shaped distribution of points with the tip at de = di ≃ 1.7 Å. π–π Interactions are indicated by adjacent red and blue triangles in the surface mapped over shape-index (Fig. 5).
|
5. Spectroscopic characterizations
FTIR spectra were recorded on a SHIMADZU FT–IR 8400S spectrometer with a Smart iTR attachment and diamond-attenuated total reflectance (ATR) crystal in the range 500–4000 cm−1. UV–visible absorption spectra were recorded in the range 200–800 nm using a SHIMADZU 2450 spectrophotometer. The complex concentration used for UV–visible measurements was 10−4 M in methanol solvent.
The IR spectrum of the title complex (Fig. 6) is analogous to that of the 4-pox ligand, except for the presence of a wide band of low intensity around 3409 cm−1 in addition to another sharp and strong band at 2083 cm−1, attributable to the water molecules [υ(OH); Du et al., 2002a; Du et al., 2004a] and thiocyanate ions [υ(CN; Du & Zhao, 2004; Fang et al., 2002], respectively. A comparison of the spectrum with that of 4-pox, which is characterized by its main absorption bands, 3055–3084, 1618, 1569 and 1551–1418 cm−1, resulting from the C—H, C=N (oxadiazole), C=N (pyridine) and C=C (pyridine) bonds, respectively (Table 3; Jha et al., 2010; Formagio et al., 2008), indicates the presence of 4-pox in the complexes as well as water molecules and thiocyanate anions in the isolated product, as evidenced by the XRD study. The UV–vis spectrum of the title complex in methanol (Fig. 7) displays an intense band at 274 nm that is essentially attributable to intraligand π–π* electronic transitions in a conjugate system (Mahmoudi & Morsali, 2007; Kudelko et al., 2015). The free 4-pox ligand also shows the same band at the same position, indicating that the ligand structure has undergone very few changes upon coordination to the metal.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for six-coordinated metal complexes of 4-pox resulted in 48 hits. The structure of the title compound is similar to those of the related complexes [M(4-pox)2(NCS)2(H2O)2] where M = CdII (Du et al., 2002b), MnII or CoII (Fang et al., 2002) or FeII (Du & Zhao, 2004). In all cases, an octahedral geometry around the metal site with pseudohalide and organic ligands in mutually trans positions was observed.
7. Synthesis and crystallization
The 2,5-bis(4-pyridin-4-yl)-1,3,4-oxadiazole (4-pox) ligand was synthesized as described previously (Bentiss & Lagrenée, 1999). To a methanolic solution (20 ml) of 4-pox (0.2 mmol, 45 mg) under magnetic stirring at room temperature were added successively aqueous solutions (each 5 ml) of KSCN (0.2 mmol, 20 mg) and NiCl2·6H2O (0.1 mmol, 24 mg). After 10 min of reaction, the precipitate obtained was filtered and washed with distilled water and dissolved in 15 ml of DMF. After one month of slow evaporation of the solvent, the obtained green single crystals were washed with water and dried under vacuum (80%). These crystals were used as isolated for single crystal X-ray analysis. Analysis calculated for C26H20N10NiS2O4. C, 47.36; H, 3.06; N, 21.24; S, 9.73; found: C, 47.51; H, 3.13; N, 21.29; S, 9.59. IR–ATR (cm−1): 3055 (w), 1618 (m), 1569 (m), 1551 (m), 1488 (m), 1418 (m), 1330 (w), 1279 (w), 1237 (w), 1213 (w), 1125 (w), 1097 (w), 1062 (m), 1019 (w), 1008 (m), 972 (w), 842 (s), 750 (m), 728 (s), 715 (s), 697 (m). UV–vis [λmax, nm (∊max, M−1 cm−1)]: 274 (28920).
8. Refinement
Crystal data, data collection and structure . The water H atoms were initially located in a difference-Fourier map and refined with O—H distance restraints of 0.78 Å and with Uiso(H) set to 1.5 Ueq(O). All other H atoms were located in a difference-Fourier map and refined as riding, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4Supporting information
CCDC reference: 1911306
https://doi.org/10.1107/S2056989019008727/rz5259sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008727/rz5259Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(NCS)2(C12H8N4O)2(H2O)2] | F(000) = 676 |
Mr = 659.35 | Dx = 1.506 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5395 (7) Å | Cell parameters from 4425 reflections |
b = 20.7595 (15) Å | θ = 2.5–30.5° |
c = 8.6686 (6) Å | µ = 0.86 mm−1 |
β = 108.908 (3)° | T = 296 K |
V = 1453.81 (19) Å3 | Block, green |
Z = 2 | 0.36 × 0.27 × 0.20 mm |
Bruker D8 VENTURE Super DUO diffractometer | 4425 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3100 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.041 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 30.5°, θmin = 2.5° |
φ and ω scans | h = −11→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −29→29 |
Tmin = 0.638, Tmax = 0.746 | l = −12→12 |
19935 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.6622P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.69 e Å−3 |
4425 reflections | Δρmin = −0.76 e Å−3 |
197 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.008 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5151 (4) | 0.85637 (12) | 1.0739 (3) | 0.0652 (8) | |
H1 | 0.560714 | 0.891631 | 1.037771 | 0.078* | |
C2 | 0.5764 (4) | 0.79567 (10) | 1.0599 (3) | 0.0538 (6) | |
H2 | 0.662391 | 0.790140 | 1.017334 | 0.065* | |
C3 | 0.3276 (4) | 0.81602 (14) | 1.1842 (4) | 0.0680 (8) | |
H3 | 0.242154 | 0.822966 | 1.226905 | 0.082* | |
C4 | 0.3778 (3) | 0.75337 (12) | 1.1741 (3) | 0.0549 (6) | |
H4 | 0.327416 | 0.719031 | 1.208419 | 0.066* | |
C5 | 0.5052 (3) | 0.74335 (10) | 1.1116 (3) | 0.0446 (5) | |
C6 | 0.5599 (3) | 0.67774 (9) | 1.0969 (3) | 0.0411 (5) | |
C7 | 0.6815 (3) | 0.60294 (9) | 1.0151 (2) | 0.0370 (4) | |
C8 | 0.7763 (3) | 0.57441 (9) | 0.9201 (3) | 0.0375 (4) | |
C9 | 0.8891 (3) | 0.61127 (10) | 0.8754 (3) | 0.0484 (6) | |
H9 | 0.916670 | 0.652504 | 0.917307 | 0.058* | |
C10 | 0.9594 (3) | 0.58558 (10) | 0.7675 (3) | 0.0516 (6) | |
H10 | 1.035155 | 0.610562 | 0.737470 | 0.062* | |
C11 | 0.7456 (3) | 0.51207 (9) | 0.8619 (3) | 0.0449 (5) | |
H11 | 0.674855 | 0.485395 | 0.894781 | 0.054* | |
C12 | 0.8219 (3) | 0.49036 (9) | 0.7543 (3) | 0.0472 (6) | |
H12 | 0.800741 | 0.448454 | 0.715141 | 0.057* | |
C13 | 0.9838 (3) | 0.64445 (9) | 0.3751 (3) | 0.0399 (5) | |
N1 | 0.3940 (3) | 0.86677 (11) | 1.1365 (3) | 0.0707 (7) | |
N2 | 0.5248 (3) | 0.62564 (9) | 1.1590 (3) | 0.0516 (5) | |
N3 | 0.6058 (3) | 0.57608 (8) | 1.1044 (2) | 0.0478 (5) | |
N4 | 0.9250 (3) | 0.52657 (8) | 0.7032 (2) | 0.0454 (5) | |
N5 | 0.9805 (3) | 0.59299 (8) | 0.4230 (3) | 0.0478 (5) | |
O1 | 0.65795 (19) | 0.66746 (6) | 1.00419 (17) | 0.0398 (3) | |
O2 | 0.7528 (2) | 0.48479 (7) | 0.3675 (2) | 0.0575 (5) | |
H1W | 0.703394 | 0.453575 | 0.366441 | 0.086* | |
H2W | 0.708961 | 0.506891 | 0.292497 | 0.086* | |
S2 | 0.99004 (12) | 0.71645 (3) | 0.30546 (12) | 0.0874 (3) | |
Ni1 | 1.000000 | 0.500000 | 0.500000 | 0.03858 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.084 (2) | 0.0360 (11) | 0.0605 (15) | 0.0122 (12) | 0.0024 (15) | −0.0055 (10) |
C2 | 0.0703 (18) | 0.0367 (10) | 0.0498 (13) | 0.0101 (11) | 0.0131 (13) | −0.0037 (9) |
C3 | 0.0566 (18) | 0.0648 (17) | 0.0704 (18) | 0.0273 (14) | 0.0038 (15) | −0.0176 (14) |
C4 | 0.0494 (16) | 0.0541 (13) | 0.0537 (14) | 0.0183 (11) | 0.0063 (12) | −0.0082 (11) |
C5 | 0.0505 (15) | 0.0377 (10) | 0.0386 (10) | 0.0136 (9) | 0.0047 (10) | −0.0048 (8) |
C6 | 0.0467 (13) | 0.0361 (10) | 0.0389 (10) | 0.0080 (9) | 0.0116 (10) | −0.0038 (8) |
C7 | 0.0407 (12) | 0.0277 (8) | 0.0410 (10) | 0.0029 (7) | 0.0112 (9) | 0.0004 (7) |
C8 | 0.0404 (12) | 0.0301 (9) | 0.0432 (10) | 0.0021 (8) | 0.0151 (10) | 0.0000 (7) |
C9 | 0.0549 (15) | 0.0342 (9) | 0.0616 (14) | −0.0117 (9) | 0.0265 (13) | −0.0127 (9) |
C10 | 0.0563 (16) | 0.0392 (10) | 0.0696 (15) | −0.0159 (10) | 0.0346 (14) | −0.0113 (10) |
C11 | 0.0537 (15) | 0.0299 (9) | 0.0595 (13) | −0.0042 (8) | 0.0301 (12) | −0.0016 (8) |
C12 | 0.0586 (16) | 0.0287 (9) | 0.0636 (14) | −0.0066 (9) | 0.0325 (13) | −0.0062 (8) |
C13 | 0.0403 (13) | 0.0310 (9) | 0.0456 (11) | −0.0011 (8) | 0.0099 (10) | −0.0038 (8) |
N1 | 0.0738 (18) | 0.0484 (12) | 0.0680 (14) | 0.0283 (11) | −0.0071 (13) | −0.0148 (10) |
N2 | 0.0647 (14) | 0.0390 (9) | 0.0609 (12) | 0.0099 (9) | 0.0340 (11) | 0.0009 (8) |
N3 | 0.0609 (14) | 0.0330 (8) | 0.0583 (11) | 0.0063 (8) | 0.0317 (11) | 0.0018 (7) |
N4 | 0.0526 (12) | 0.0312 (8) | 0.0620 (12) | −0.0059 (8) | 0.0320 (10) | −0.0062 (8) |
N5 | 0.0527 (13) | 0.0311 (8) | 0.0629 (12) | −0.0026 (7) | 0.0234 (10) | −0.0001 (8) |
O1 | 0.0500 (10) | 0.0278 (6) | 0.0421 (8) | 0.0035 (6) | 0.0159 (7) | −0.0007 (5) |
O2 | 0.0481 (11) | 0.0392 (8) | 0.0786 (12) | −0.0102 (7) | 0.0116 (9) | 0.0160 (8) |
S2 | 0.0959 (7) | 0.0375 (3) | 0.0972 (6) | −0.0107 (3) | −0.0123 (5) | 0.0245 (3) |
Ni1 | 0.0423 (3) | 0.02354 (17) | 0.0559 (3) | −0.00321 (14) | 0.0241 (2) | −0.00040 (14) |
C1—N1 | 1.332 (4) | C8—C11 | 1.383 (3) |
C1—C2 | 1.385 (3) | C9—C10 | 1.372 (3) |
C1—H1 | 0.9300 | C9—H9 | 0.9300 |
C2—C5 | 1.388 (3) | C10—N4 | 1.338 (3) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—N1 | 1.325 (4) | C11—C12 | 1.375 (3) |
C3—C4 | 1.381 (3) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—N4 | 1.338 (3) |
C4—C5 | 1.379 (3) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—N5 | 1.150 (3) |
C5—C6 | 1.459 (3) | C13—S2 | 1.619 (2) |
C6—N2 | 1.286 (3) | N2—N3 | 1.404 (2) |
C6—O1 | 1.352 (3) | N4—Ni1 | 2.1327 (17) |
C7—N3 | 1.285 (3) | N5—Ni1 | 2.0316 (18) |
C7—O1 | 1.353 (2) | O2—Ni1 | 2.0748 (18) |
C7—C8 | 1.456 (3) | O2—H1W | 0.7715 |
C8—C9 | 1.380 (3) | O2—H2W | 0.7846 |
N1—C1—C2 | 123.3 (3) | C8—C11—H11 | 120.7 |
N1—C1—H1 | 118.4 | N4—C12—C11 | 123.21 (18) |
C2—C1—H1 | 118.4 | N4—C12—H12 | 118.4 |
C1—C2—C5 | 117.8 (3) | C11—C12—H12 | 118.4 |
C1—C2—H2 | 121.1 | N5—C13—S2 | 179.0 (2) |
C5—C2—H2 | 121.1 | C3—N1—C1 | 117.8 (2) |
N1—C3—C4 | 123.8 (3) | C6—N2—N3 | 105.56 (17) |
N1—C3—H3 | 118.1 | C7—N3—N2 | 106.48 (16) |
C4—C3—H3 | 118.1 | C12—N4—C10 | 117.08 (18) |
C5—C4—C3 | 117.9 (3) | C12—N4—Ni1 | 122.28 (14) |
C5—C4—H4 | 121.1 | C10—N4—Ni1 | 119.80 (14) |
C3—C4—H4 | 121.1 | C13—N5—Ni1 | 172.93 (19) |
C4—C5—C2 | 119.5 (2) | C6—O1—C7 | 102.77 (15) |
C4—C5—C6 | 119.4 (2) | Ni1—O2—H1W | 126.0 |
C2—C5—C6 | 121.1 (2) | Ni1—O2—H2W | 119.7 |
N2—C6—O1 | 112.89 (17) | H1W—O2—H2W | 111.7 |
N2—C6—C5 | 128.6 (2) | N5i—Ni1—N5 | 180.0 |
O1—C6—C5 | 118.47 (19) | N5i—Ni1—O2i | 90.13 (7) |
N3—C7—O1 | 112.30 (17) | N5—Ni1—O2i | 89.87 (7) |
N3—C7—C8 | 130.17 (17) | N5i—Ni1—O2 | 89.87 (7) |
O1—C7—C8 | 117.41 (17) | N5—Ni1—O2 | 90.13 (7) |
C9—C8—C11 | 118.93 (19) | O2i—Ni1—O2 | 180.00 (8) |
C9—C8—C7 | 120.01 (17) | N5i—Ni1—N4 | 89.38 (7) |
C11—C8—C7 | 120.85 (19) | N5—Ni1—N4 | 90.62 (7) |
C10—C9—C8 | 118.35 (19) | O2i—Ni1—N4 | 91.57 (8) |
C10—C9—H9 | 120.8 | O2—Ni1—N4 | 88.43 (8) |
C8—C9—H9 | 120.8 | N5i—Ni1—N4i | 90.62 (7) |
N4—C10—C9 | 123.7 (2) | N5—Ni1—N4i | 89.38 (7) |
N4—C10—H10 | 118.2 | O2i—Ni1—N4i | 88.43 (8) |
C9—C10—H10 | 118.2 | O2—Ni1—N4i | 91.57 (8) |
C12—C11—C8 | 118.60 (19) | N4—Ni1—N4i | 180.0 |
C12—C11—H11 | 120.7 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1W···N1ii | 0.77 | 1.98 | 2.747 (2) | 172 |
O2—H2W···N3iii | 0.78 | 2.14 | 2.918 (3) | 173 |
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z−1. |
Contact type | Percentage contribution |
H···H | 23.9 |
N···H/H···N | 22.1 |
C···H/H···C | 18.2 |
S···H/H···S | 17.3 |
C···C | 5.9 |
C···N/N···C | 3.7 |
C···O/O···C | 2.9 |
C···S/S···C | 2.5 |
S···O/O···S | 1.4 |
O···H/H···O | 0.7 |
N···O/O···N | 0.7 |
N···N | 0.5 |
Bond | 4-pox | [Ni(4-pox)2(NCS)2(H2O)2] |
C═C(pyridine) | 1535–1414 (m) | 1551–1418 (m) |
C═N(pyridine) | 1563 (m) | 1569 (m) |
C═N(oxadiazole) | 1608 (m) | 1618 (m) |
C═N(thiocyanate) | – | 2083 (s) |
C—H | 3040 (w) | 3055 (w), 3084 (w) |
O—H | – | 3409 (m) |
w = weak, m = medium, s = strong. |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray measurements and the CUR CA2D of Chouaib Doukkali University (El Jadida Morocco) for its support.
References
Baba Ahmed, Y., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764–772. Google Scholar
Barboiu, M., Cimpoesu, M., Guran, C. & Supuran, C. T. (1996). Met.-Based Drugs, 3, 227–232. CrossRef CAS Google Scholar
Bentiss, F. & Lagrenée, M. (1999). J. Heterocycl. Chem. 36, 1029–1032. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Du, M., Bu, X. H., Guo, Y. M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. (2002a). Inorg. Chem. 41, 4904–4908. CSD CrossRef PubMed CAS Google Scholar
Du, M., Guo, Y. M., Chen, S. T., Bu, X. H., Batten, S. R., Ribas, J. & Kitagawa, S. (2004a). Inorg. Chem. 43, 1287–1293. CSD CrossRef PubMed CAS Google Scholar
Du, M., Lam, C.-K., Bu, X.-H. & Mak, T. C. W. (2004b). Inorg. Chem. Commun. 7, 315–318. CSD CrossRef CAS Google Scholar
Du, M., Liu, H. & Bu, X. H. (2002b). J. Chem. Crystallogr. 32, 57–61. CSD CrossRef CAS Google Scholar
Du, M., Wang, Q., Li, C.-P., Zhao, X.-J. & Ribas, J. (2010). Cryst. Growth Des. 10, 3285–3296. Web of Science CSD CrossRef CAS Google Scholar
Du, M. & Zhao, X. J. (2004). J. Mol. Struct. 694, 235–240. Web of Science CSD CrossRef CAS Google Scholar
Fang, Y., Liu, H., Du, M., Guo, Y. & Bu, X. (2002). J. Mol. Struct. 608, 229–233. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Formagio, A. S. N., Tonin, L. T. D., Foglio, M. A., Madjarof, C., de Carvalho, J. E., da Costa, W. F., Cardoso, F. P. & Sarragiotto, M. H. (2008). Bioorg. Med. Chem. 16, 9660–9667. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Y.-M., Liu, H. & Leng, X.-B. (2003). Acta Cryst. E59, m59–m60. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, Z., Song, H. B., Du, M., Chen, S. T., Bu, X. H. & Ribas, J. (2004). Inorg. Chem. 43, 931–944. CSD CrossRef PubMed CAS Google Scholar
Jha, K. K., Samad, A., Kumar, Y., Shaharyar, M., Khosa, R. L., Jain, J., Kumar, V. & Singh, P. (2010). Eur. J. Med. Chem. 45, 4963–4967. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kudelko, A., Wróblowska, M., Jarosz, T., Łaba, K. & Łapkowski, M. (2015). Arkivoc, 2015, 287–302. Google Scholar
Laachir, A., Guesmi, S., Saadi, M., El Ammari, L., Mentré, O., Vezin, H., Colis, S. & Bentiss, F. (2016). J. Mol. Struct. 1123, 400–406. CSD CrossRef CAS Google Scholar
Li, C.-P., Chen, J. & Du, M. (2010a). CrystEngComm, 12, 4392–4402. CSD CrossRef CAS Google Scholar
Li, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010b). Cryst. Growth Des. 10, 5034–5042. CSD CrossRef CAS Google Scholar
Liu, T. F., Fu, D., Gao, S., Zhang, Y. Z., Sun, H. L., Su, G. & Liu, Y. J. (2003). J. Am. Chem. Soc. 125, 13976–13977. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mahmoudi, G. & Morsali, A. (2007). CrystEngComm, 9, 1062–1072. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smaili, A., Rifai, L. A., Esserti, S., Koussa, T., Bentiss, F., Guesmi, S., Laachir, A. & Faize, M. (2017). Pestic. Biochem. Physiol. 143, 26–32. CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zine, H., Rifai, L. A., Koussa, T., Bentiss, F., Guesmi, S., Laachir, A., Kacem, M., Belfaiza, M. & Faize, M. (2017). Pest Manage. Sci. 73, 188–197. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.