research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-1,3-phenyl­ene bis­­[5-(di­methyl­amino)­naphthalene-1-sulfonate]: crystal structure and DFT calculations

aDepartment of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, bDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, cMaterials and Textile Technology, Faculty of Science, and Technology, Thammasart University, Pathum Thani 12120, Thailand, dCenter of Nanotechnology, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, and eSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: fscibnw@ku.ac.th

Edited by J. Simpson, University of Otago, New Zealand (Received 24 May 2019; accepted 25 June 2019; online 28 June 2019)

The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methyl­phenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates nπ* and ππ* transitions within the mol­ecule.

1. Chemical context

Dansyl probes play important roles in many fields, including their use as industrial tracers and labelled biological tags (Tondi et al., 2005[Tondi, D., Venturelli, A., Ferrari, S., Ghelli, S. & Costi, M. P. (2005). J. Med. Chem. 48, 913-916.]; Li et al., 2006[Li, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22, 8165-8167.]; Liu et al., 2016[Liu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608-1611.]). Dansyl derivatives have been employed to identify some diseases within cells and to detect DNA-duplex sequences. For example, modified oligonucleotides that contain a dansyl fluoro­phore and (S)-2, 3-dihy­droxy propyl carbamates linked to guanine residues result in an enhancement of the fluorescence. Such modified oligonucleotides can be used to prepare and detect the sequence of fluoro­genic probes in DNA (Suzuki et al., 2013[Suzuki, Y., Kowata, K. & Komatsu, Y. (2013). Bioorg. Med. Chem. Lett. 23, 6123-6126.]). Cu-labelled dansyl mol­ecules have been designed and synthesized as fluorescence probes for membrane tags on apoptosis cells. These compounds can also be used for PET imaging of the apoptosis in vivo (Han et al., 2016[Han, J., Wang, X. & Yu, M. (2016). Bioorg. Med. Chem. Lett. 26, 5594-5596.]). Furthermore, the development of dansyl fluoro­genic receptors for cations, anions and neutral mol­ecules has attracted much attention because of their ability to turn fluorescence `on' or `off' through a number of mechanisms including ICT, PET and ET processes (Chen & Chen, 2005[Chen, Q.-Y. & Chen, C.-F. (2005). Tetrahedron Lett. 46, 165-168.]; Praveen et al., 2010[Praveen, L., Reddy, M. L. P. & Varma, R. L. (2010). Tetrahedron Lett. 51, 6626-6629.]; Dinake et al. 2012[Dinake, P., Prokhorova, P. E., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2012). Acta Cryst. E68, m460-m461.]; Jeong et al. 2016[Jeong, Y. A., Chang, I. J. & Chang, S.-K. (2016). Sens. Actuators B Chem. 224, 73-80.]). In this paper, we report the synthesis, mol­ecular structure and crystal packing of 5-methyl-1,3-phenyl­ene bis­[5-(di­methyl­amino)­naphthalene-1-sulfonate]. The results of DFT calculations on the mol­ecule are also reported.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the space group C2/c. The mol­ecule lies on a crystallographic twofold axis running through atoms C1, C2 and C5 of the methyl­phenyl unit so that the asymmetric unit comprises one half-mol­ecule (Fig. 1[link]). The hydrogen atoms of the C1 methyl group are therefore disordered over two equivalent positions. Intra­molecular C14—H14—O3 hydrogen bonds enclose S(6) rings, Fig. 1[link]. The mol­ecular structure comprises two O-dansyl groups on either side of a bridging methyl­phenyl ring that is essentially planar. The S1—O1—C4—C3 torsion angle is 72.98 (16)° with the methyl­phenyl ring plane. The S1 sulfur atoms have distorted tetra­hedral geometries, with an O2—S1—C6 bond angle of 109.18 (8)°. The two naphthalene units in each dansyl group are inclined to one another at an angle of 52.29 (6)°; however, no stacking of the naphthalene units is observed.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as red dashed lines.

3. Supra­molecular features

In the crystal structure, the supra­molecular packing is dominated by weak C—H⋯O hydrogen bonds, Table 1[link]. C9—H9—O1 contacts form dimers enclosing R22(22) rings and generate chains of mol­ecules along the c-axis direction, Fig. 2[link]. C1—H1B—O3 and C16—H16C—O2 contacts further link the mol­ecules into sheets in the ab plane, Fig. 3[link]. These contacts combine to stack rows of mol­ecules arranged in an obverse fashion along the a-axis direction, Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.93 2.49 3.116 (2) 125
C1—H1B⋯O3i 0.96 2.70 3.528 (2) 145
C9—H9⋯O1ii 0.93 2.60 3.486 (2) 158
C16—H16C⋯O2iii 0.96 2.63 3.475 (2) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Chains of dimers of the title compound along the c axis. Dashed lines represent the C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Sheets of mol­ecules of the title compound formed in the ab plane.
[Figure 4]
Figure 4
The overall packing of the title compound viewed along the a-axis direction.

4. Computational study

The Density Functional Theory (DFT) calculations were performed at the CAM-B3LYP/6-311G (d,p) level as implemented in the GAUSSIAN09 program package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The DFT structure optimization of the compound was performed starting from the X-ray geometry. The experimental values of the bond lengths and bond angles match reasonably well with the theoretical values in most cases. However, the lengths of bonds to O atoms involved in hydrogen bonding fit less well, Table 2[link]. The important features such as conjugation and aromaticity are well illustrated by frontier mol­ecular orbitals. The ionization potential of the mol­ecule is determined from the energy of the highest occupied mol­ecular orbital (HOMO) and the electron affinity is calculated from the energy of the lowest unoccupied mol­ecular orbital (LUMO). The frontier mol­ecular orbital energies, EHOMO and ELUMO are −8.24 and −5.25 eV, respectively. Insights into the kinetic stability and chemical reactivity of a mol­ecule can be determined from the energy difference between the HOMO and LUMO orbitals, the so-called HOMO–LUMO energy gap. This gap was found here to be 2.99 eV. The HOMO–LUMO energy levels indicate nπ* and ππ* transitions and are shown in Fig. 5[link]. The HOMO is mainly localized on the nitro­gen atom of di­methyl­amine group as well as on the C=C segments of the naphthalene ring systems while the LUMO is located again on the di­methyl­amine substituent and also on the aromatic rings of the naphthalene systems. In Fig. 5[link], the negative and positive phases are represented by green and red colours, respectively.

Table 2
Comparison of selected experimental (XRD) bond lengths and angles (Å, °) with those from DFT calculations

Bond/angle XRD DFT
S1—O1 1.6006 (12) 1.647
S1—O3 1.4223 (13) 1.453
S1—C6 1.7552 (16) 1.768
O1—C4 1.4166 (17) 1.394
N1—C11 1.413 (2) 1.406
O1—S1—C6 103.11 (7) 103.46
O2—S1—O1 108.81 (7) 108.93
O2—S1—O3 119.32 (9) 119.85
C4—O1—S1 119.05 (9) 119.08
O2—S1—C6 109.18 (8) 109.04
[Figure 5]
Figure 5
Frontier mol­ecular orbitals of the title compound.

5. Database survey

There are many crystal structures of dansyl derivatives that are similar to the title compound. Two categories of crystal structures of dansyl derivatives are found. The first types are simple organic mol­ecules that pack in the solid state through the many types of inter­molecular inter­actions. For example, in 2-[5-(di­methyl­amino)­naphthalene-1-sulfonamido]­phenyl 5-(di­methyl­amino)­naphthalene-1-sulfonate [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode NUQDOU; Chainok et al., 2015[Chainok, K., Duangthongyou, T., Tuntulani, T., Chuenka, A. & Wannalerse, B. (2015). Acta Cryst. E71, o721-o722.]), there are two dansyl units connecting to the amine and hydroxyl groups of a 2-amino­phenol, while weak C—H⋯O hydrogen bonds stabilize the crystal structure. In N-cyclo­dodecyl-5-(di­methyl­amino)­naphthalene-1-sulfonamide (HODDOU; Fischer et al., 2008[Fischer, C., Gruber, T., Seichter, W., Weber, E. & Ibragimov, B. T. (2008). Acta Cryst. E64, o1204.]) a cyclo­dodecyl­amine linked to the dansyl substituent adopts a U-shaped conformation, and the crystal packing is stabilized by N—H⋯O hydrogen bonds and C—H⋯π inter­actions between neighbouring mol­ecules. In 8-quinolyl 5-(di­methyl­amino)­naphthalene-1-sulfonate, (DUVFOQ; Xiao & Zhan, 2010[Xiao, Z. & Zhan, D. (2010). Acta Cryst. E66, o2180.]) with an 8-hy­droxy­quinoline ring, C—H⋯O hydrogen bonds and ππ inter­actions between pairs of chains link adjacent mol­ecules. In the crystal structure of N-(2-amino­eth­yl)-5-(di­methyl­amino)­naphthalene-1-sulfonamide (BOVBOE; Zhang et al., 2009[Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.]) a dansyl compound with a 2-amino­ethyl group, layers are formed through N—H⋯N and weak C—H⋯O hydrogen bonds. In 5,5′-bis­(di­methyl­amino)-N,N′-(3-methyl-3-aza­pentane-1,5-di­yl)di(naphthalene-1-sulf­onamide) (DABSEH; Horne et al., 2015[Horne, T. V., Haque, S. A., Barton, A. & Hossain, M. A. (2015). Acta Cryst. E71, o959-o960.]), packing in the crystal structure relies on N—H⋯O and C—H⋯O inter­actions.

Metal–dansyl complexes form the second class of common dansyl derivatives. The crystal structures of the di- and trinuclear gold(I) complexes [5-(di­methyl­amino)­naphthalene-1-sulfonamido]­bis­(tri­phenyl­phosphine)digold (UZEJAL) and [5-(di­methyl­amino)­naphthalene-1-sulfonamido]­tris­(tri­phenyl­phosphine)trigold perchlorate (UZEJEP) (Cho et al., 2011[Chao, H., Su, B.-C., Li, C.-L., Lam, C.-K. & Feng, X.-L. (2011). Inorg. Chem. Commun. 14, 1436-1439.]) display weak Au⋯Au inter­actions and C—H⋯π contacts within the mol­ecule. The Pb2+ complex 26,28-dibut­oxy-25,27-bis­(N-dansylcarbamoylmeth­oxy)-5,11,17,23-tetra­kis(1,1-di­methyl­eth­yl)calix[4]arene (NOJRAG; Buie et al., 2008[Buie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). Inorg. Chem. 47, 3549-3558.]), where the calix[4]arene bears two dansylcarboxamide groups, was found to be highly selective and sensitive for the recognition of and coordination to the Pb2+ ion.

6. Synthesis and crystallization

The title compound was synthesized by mixing 3,5-di­hydroxy­toluene (1.05 g, 8.46 mmol) and dansyl chloride (4.55g, 17 mmol) using potassium carbonate(2.34g, 17 mmol) as a base in aceto­nitrile solvent (40 ml). The reaction mixture was heated at 363 K and stirred under an N2 atmosphere for 24 h. The solvent was removed with a rotary evaporator. The residue was added to water (15 ml) and extracted with di­chloro­methane (3 × 25ml). The organic layer was dried with anhydrous Na2SO4 and the product was purified by column chromatography using CH2Cl2 as the eluent. The di­chloro­methane was slowly evaporated to afford a green solid in 65% yield. Light-green block-like crystals were grown in chloro­form at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms on C were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and d(C—H) = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms. As atom Cl lies on a twofold rotation axis, the H atoms of the Cl methyl group are disordered with occupancies fixed at 0.5.

Table 3
Experimental details

Crystal data
Chemical formula C31H30N2O6S2
Mr 590.69
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 15.5072 (6), 12.3504 (5), 16.3017 (5)
β (°) 114.868 (1)
V3) 2832.62 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.44 × 0.44 × 0.4
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18169, 2857, 2437
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.04
No. of reflections 2857
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.33
Computer programs: APEX CCD and SAINT (Bruker, 2013[Bruker (2013). APEX CCD and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX CCD (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate] top
Crystal data top
C31H30N2O6S2F(000) = 1240
Mr = 590.69Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.5072 (6) ÅCell parameters from 8490 reflections
b = 12.3504 (5) Åθ = 3.0–26.4°
c = 16.3017 (5) ŵ = 0.24 mm1
β = 114.868 (1)°T = 296 K
V = 2832.62 (18) Å3Block, light green
Z = 40.44 × 0.44 × 0.4 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
2857 independent reflections
Radiation source: sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1919
Tmin = 0.710, Tmax = 0.745k = 1515
18169 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.5124P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2857 reflectionsΔρmax = 0.23 e Å3
190 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.24891 (3)0.59066 (4)0.67336 (3)0.04868 (15)
O10.35036 (8)0.59425 (9)0.75828 (7)0.0458 (3)
O20.21860 (9)0.69851 (11)0.64561 (10)0.0632 (4)
O30.19426 (9)0.52398 (12)0.70474 (10)0.0675 (4)
N10.43181 (10)0.25203 (12)0.48853 (10)0.0535 (4)
C60.27383 (10)0.52632 (13)0.58976 (11)0.0424 (4)
C70.25296 (12)0.58335 (13)0.51133 (12)0.0483 (4)
H70.22600.65190.50410.058*
C80.27244 (12)0.53779 (15)0.44241 (12)0.0526 (4)
H80.25450.57390.38760.063*
C90.31748 (12)0.44083 (14)0.45540 (11)0.0473 (4)
H90.33160.41250.40960.057*
C100.34350 (10)0.38180 (12)0.53666 (10)0.0400 (3)
C110.39393 (11)0.28115 (13)0.55059 (11)0.0458 (4)
C120.40220 (13)0.21854 (14)0.62272 (14)0.0586 (5)
H120.43050.15070.63020.070*
C130.36883 (15)0.25495 (16)0.68541 (14)0.0644 (5)
H130.37400.20960.73280.077*
C140.32938 (13)0.35391 (15)0.67920 (12)0.0532 (4)
H140.31140.37780.72380.064*
C150.31559 (10)0.42115 (12)0.60409 (10)0.0405 (3)
C160.51087 (14)0.32132 (16)0.49436 (14)0.0616 (5)
H16A0.49150.39580.48880.092*
H16B0.52890.30320.44650.092*
H16C0.56400.31030.55160.092*
C170.45713 (16)0.13831 (16)0.48903 (16)0.0728 (6)
H17A0.50910.12120.54570.109*
H17B0.47550.12500.44060.109*
H17C0.40340.09390.48120.109*
C40.42508 (10)0.65401 (13)0.75150 (10)0.0400 (3)
C30.42371 (11)0.76504 (14)0.75244 (11)0.0459 (4)
H30.37230.80160.75470.055*
C20.50000.82262 (19)0.75000.0490 (5)
C50.50000.59523 (18)0.75000.0398 (5)
H50.50000.51990.75000.048*
C10.50000.9447 (2)0.75000.0765 (9)
H1A0.45910.97060.69080.115*0.5
H1B0.56350.97060.76630.115*0.5
H1C0.47740.97060.79290.115*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (2)0.0582 (3)0.0573 (3)0.00268 (16)0.02067 (19)0.00729 (18)
O10.0378 (6)0.0558 (7)0.0467 (6)0.0065 (5)0.0208 (5)0.0008 (5)
O20.0455 (6)0.0600 (8)0.0765 (9)0.0133 (6)0.0182 (6)0.0078 (6)
O30.0482 (7)0.0864 (10)0.0816 (9)0.0191 (7)0.0407 (7)0.0157 (7)
N10.0461 (8)0.0486 (8)0.0618 (9)0.0003 (6)0.0189 (7)0.0103 (7)
C60.0325 (7)0.0458 (9)0.0473 (9)0.0036 (6)0.0153 (6)0.0010 (7)
C70.0429 (8)0.0426 (9)0.0548 (10)0.0020 (7)0.0158 (8)0.0066 (7)
C80.0509 (9)0.0554 (10)0.0452 (9)0.0027 (8)0.0142 (8)0.0142 (7)
C90.0451 (9)0.0538 (10)0.0411 (8)0.0015 (7)0.0163 (7)0.0013 (7)
C100.0336 (7)0.0395 (8)0.0423 (8)0.0059 (6)0.0114 (6)0.0000 (6)
C110.0375 (8)0.0397 (8)0.0531 (9)0.0052 (6)0.0121 (7)0.0032 (7)
C120.0564 (10)0.0414 (9)0.0743 (13)0.0032 (8)0.0241 (10)0.0119 (8)
C130.0662 (12)0.0583 (11)0.0700 (12)0.0002 (9)0.0300 (10)0.0265 (10)
C140.0517 (10)0.0575 (11)0.0545 (10)0.0016 (8)0.0264 (8)0.0113 (8)
C150.0336 (7)0.0425 (8)0.0433 (8)0.0062 (6)0.0141 (6)0.0029 (6)
C160.0507 (10)0.0686 (12)0.0671 (12)0.0000 (9)0.0263 (9)0.0005 (9)
C170.0682 (13)0.0544 (11)0.0892 (15)0.0032 (10)0.0266 (12)0.0176 (10)
C40.0332 (7)0.0499 (9)0.0360 (8)0.0049 (6)0.0136 (6)0.0008 (6)
C30.0373 (8)0.0487 (9)0.0518 (9)0.0027 (6)0.0186 (7)0.0020 (7)
C20.0446 (12)0.0440 (12)0.0577 (14)0.0000.0208 (11)0.000
C50.0372 (10)0.0432 (12)0.0363 (11)0.0000.0129 (9)0.000
C10.0671 (18)0.0455 (15)0.124 (3)0.0000.0475 (19)0.000
Geometric parameters (Å, º) top
S1—O11.6006 (12)C13—H130.9300
S1—O21.4215 (14)C13—C141.352 (3)
S1—O31.4223 (13)C14—H140.9300
S1—C61.7552 (16)C14—C151.419 (2)
O1—C41.4166 (17)C16—H16A0.9600
N1—C111.413 (2)C16—H16B0.9600
N1—C161.465 (2)C16—H16C0.9600
N1—C171.458 (2)C17—H17A0.9600
C6—C71.374 (2)C17—H17B0.9600
C6—C151.426 (2)C17—H17C0.9600
C7—H70.9300C4—C31.372 (2)
C7—C81.399 (3)C4—C51.3789 (19)
C8—H80.9300C3—H30.9300
C8—C91.357 (2)C3—C21.395 (2)
C9—H90.9300C2—C3i1.395 (2)
C9—C101.414 (2)C2—C11.507 (3)
C10—C111.435 (2)C5—C4i1.3789 (19)
C10—C151.426 (2)C5—H50.9300
C11—C121.367 (3)C1—H1A0.9600
C12—H120.9300C1—H1B0.9600
C12—C131.400 (3)C1—H1C0.9600
O1—S1—C6103.11 (7)C13—C14—C15119.53 (17)
O2—S1—O1108.81 (7)C15—C14—H14120.2
O2—S1—O3119.32 (9)C10—C15—C6116.65 (14)
O2—S1—C6109.18 (8)C14—C15—C6124.57 (15)
O3—S1—O1102.86 (8)C14—C15—C10118.77 (15)
O3—S1—C6112.10 (8)N1—C16—H16A109.5
C4—O1—S1119.05 (9)N1—C16—H16B109.5
C11—N1—C16113.17 (14)N1—C16—H16C109.5
C11—N1—C17115.68 (16)H16A—C16—H16B109.5
C17—N1—C16110.26 (16)H16A—C16—H16C109.5
C7—C6—S1116.60 (13)H16B—C16—H16C109.5
C7—C6—C15122.16 (15)N1—C17—H17A109.5
C15—C6—S1121.22 (12)N1—C17—H17B109.5
C6—C7—H7120.1N1—C17—H17C109.5
C6—C7—C8119.70 (15)H17A—C17—H17B109.5
C8—C7—H7120.1H17A—C17—H17C109.5
C7—C8—H8120.0H17B—C17—H17C109.5
C9—C8—C7120.03 (15)C3—C4—O1120.20 (13)
C9—C8—H8120.0C3—C4—C5122.93 (15)
C8—C9—H9119.1C5—C4—O1116.74 (14)
C8—C9—C10121.77 (16)C4—C3—H3120.3
C10—C9—H9119.1C4—C3—C2119.48 (16)
C9—C10—C11121.12 (15)C2—C3—H3120.3
C9—C10—C15119.14 (14)C3—C2—C3i118.7 (2)
C15—C10—C11119.69 (14)C3i—C2—C1120.64 (11)
N1—C11—C10118.03 (15)C3—C2—C1120.65 (11)
C12—C11—N1123.69 (16)C4—C5—C4i116.5 (2)
C12—C11—C10118.28 (16)C4—C5—H5121.8
C11—C12—H12119.5C4i—C5—H5121.8
C11—C12—C13121.09 (17)C2—C1—H1A109.5
C13—C12—H12119.5C2—C1—H1B109.5
C12—C13—H13119.0C2—C1—H1C109.5
C14—C13—C12122.05 (17)H1A—C1—H1B109.5
C14—C13—H13119.0H1A—C1—H1C109.5
C13—C14—H14120.2H1B—C1—H1C109.5
S1—O1—C4—C372.98 (16)C9—C10—C11—N111.1 (2)
S1—O1—C4—C5111.07 (11)C9—C10—C11—C12168.50 (16)
S1—C6—C7—C8178.93 (13)C9—C10—C15—C68.3 (2)
S1—C6—C15—C10172.59 (11)C9—C10—C15—C14170.72 (15)
S1—C6—C15—C148.4 (2)C10—C11—C12—C134.8 (3)
O1—S1—C6—C7121.15 (13)C11—C10—C15—C6174.23 (13)
O1—S1—C6—C1557.51 (13)C11—C10—C15—C146.7 (2)
O1—C4—C3—C2176.99 (11)C11—C12—C13—C141.7 (3)
O1—C4—C5—C4i176.50 (14)C12—C13—C14—C154.0 (3)
O2—S1—O1—C453.02 (13)C13—C14—C15—C6179.28 (16)
O2—S1—C6—C75.58 (15)C13—C14—C15—C100.3 (2)
O2—S1—C6—C15173.07 (12)C15—C6—C7—C80.3 (2)
O3—S1—O1—C4179.51 (11)C15—C10—C11—N1171.45 (13)
O3—S1—C6—C7128.91 (14)C15—C10—C11—C128.9 (2)
O3—S1—C6—C1552.44 (15)C16—N1—C11—C1068.68 (19)
N1—C11—C12—C13175.62 (17)C16—N1—C11—C12111.71 (19)
C6—S1—O1—C462.80 (12)C17—N1—C11—C10162.74 (15)
C6—C7—C8—C94.3 (3)C17—N1—C11—C1216.9 (2)
C7—C6—C15—C106.0 (2)C4—C3—C2—C3i0.62 (10)
C7—C6—C15—C14172.98 (16)C4—C3—C2—C1179.38 (10)
C7—C8—C9—C101.8 (3)C3—C4—C5—C4i0.66 (11)
C8—C9—C10—C11177.88 (15)C5—C4—C3—C21.3 (2)
C8—C9—C10—C154.7 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.493.116 (2)125
C1—H1B···O3ii0.962.703.528 (2)145
C9—H9···O1iii0.932.603.486 (2)158
C16—H16C···O2iv0.962.633.475 (2)147
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y+1, z1/2; (iv) x+1/2, y1/2, z.
Comparison of selected experimental (XRD) bond lengths and angles (Å, °) with those from DFT calculations top
Bond/angleXRDDFT
S1—O11.6006 (12)1.647
S1—O31.4223 (13)1.453
S1—C61.7552 (16)1.768
O1—C41.4166 (17)1.394
N1—C111.413 (2)1.406
O1—S1—C6103.11 (7)103.46
O2—S1—O1108.81 (7)108.93
O2—S1—O3119.32 (9)119.85
C4—O1—S1119.05 (9)119.08
O2—S1—C6109.18 (8)109.04
 

Acknowledgements

The authors thank the Thailand Research Fund (MRG5580182), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Ministry of Higher Education, Science, Research and Innovation, the Kasetsart University Research and Development Institute and the Department of Chemistry, Kasetsart University for financial support.

References

First citationBruker (2013). APEX CCD and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). Inorg. Chem. 47, 3549–3558.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChainok, K., Duangthongyou, T., Tuntulani, T., Chuenka, A. & Wannalerse, B. (2015). Acta Cryst. E71, o721–o722.  CrossRef IUCr Journals Google Scholar
First citationChao, H., Su, B.-C., Li, C.-L., Lam, C.-K. & Feng, X.-L. (2011). Inorg. Chem. Commun. 14, 1436–1439.  CrossRef CAS Google Scholar
First citationChen, Q.-Y. & Chen, C.-F. (2005). Tetrahedron Lett. 46, 165–168.  CrossRef Google Scholar
First citationDinake, P., Prokhorova, P. E., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2012). Acta Cryst. E68, m460–m461.  CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, C., Gruber, T., Seichter, W., Weber, E. & Ibragimov, B. T. (2008). Acta Cryst. E64, o1204.  CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, J., Wang, X. & Yu, M. (2016). Bioorg. Med. Chem. Lett. 26, 5594–5596.  CrossRef CAS PubMed Google Scholar
First citationHorne, T. V., Haque, S. A., Barton, A. & Hossain, M. A. (2015). Acta Cryst. E71, o959–o960.  CrossRef IUCr Journals Google Scholar
First citationJeong, Y. A., Chang, I. J. & Chang, S.-K. (2016). Sens. Actuators B Chem. 224, 73–80.  CrossRef CAS Google Scholar
First citationLi, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22, 8165–8167.  Google Scholar
First citationLiu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608–1611.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, L., Reddy, M. L. P. & Varma, R. L. (2010). Tetrahedron Lett. 51, 6626–6629.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, Y., Kowata, K. & Komatsu, Y. (2013). Bioorg. Med. Chem. Lett. 23, 6123–6126.  CrossRef CAS PubMed Google Scholar
First citationTondi, D., Venturelli, A., Ferrari, S., Ghelli, S. & Costi, M. P. (2005). J. Med. Chem. 48, 913–916.  CrossRef PubMed CAS Google Scholar
First citationXiao, Z. & Zhan, D. (2010). Acta Cryst. E66, o2180.  CrossRef IUCr Journals Google Scholar
First citationZhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds