research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­­idene)meth­yl]quinoline

aLaboratory of Organic and Analytical Chemistry, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: s.akhramez@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 May 2019; accepted 27 May 2019; online 7 June 2019)

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10[\overline{3}]] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.

1. Chemical context

Quinoline hydrazones are important classes of organic compounds that have long attracted attention because of their potential biological and pharmacological properties. They were conventionally prepared by a condensation reaction of the carbonyl compounds with hydrazines. A number of compounds incorporating the quinolinic heterocycle and a hydrazone have been synthesized and tested for their potential as anti­tumor agents (Erguc et al., 2018[Erguc, A., Altinop, M. D., Atli, O., Sever, B., Iscan, G., Gormus, G. & Ozdemir, A. (2018). Lett. Drug. Des. Discov. 15, 193-202.]; Mandewale et al., 2017[Mandewale, M. C., Patil, U. C., Shedge, S. V. & Dappadwad, U. R. (2017). J. Basic Appl. Sci, 6, 354-361.]). Hydrazono-quinoline derivatives have been incorp­orated in many synthetic heterocyclic compounds in order to enhance the cytotoxic activity (Bingul et al., 2016[Bingul, M., Tan, O., Gardner, C. R., Sutton, S. K., Arndt, G. M., Marshall, G. M., Cheung, B. B., Kumar, N. & Black, D. St C. (2016). Molecules, 21, 916-934.]). Some of these derivatives may have anti-tuberculosis activity in vitro against various strains of Mycobacterium (Eswaran et al., 2010a[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010a). Eur. J. Med. Chem. 45, 3374-3383.],b[Eswaran, S., Adhikari, A. V., Pal, N. K. & Chowdhury, I. H. (2010b). Bioorg. Med. Chem. Lett. 20, 1040-1044.], 2009[Eswaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Eur. J. Med. Chem. 44, 4637-4647.]). Others have been studied as anti­bacterial agents (Desai et al., 2014[Desai, N. C., Kotadiya, G. M. & Trivedi, A. R. (2014). Bioorg. Med. Chem. Lett. 24, 3126-3130.]; Vlahov et al., 1990[Vlahov, R., Parushev, S., Vlahov, J., Nickel, P. & Snatzke, G. (1990). Pure Appl. Chem. 62, 1303-1306.]) and anti­malarials (Vandekerckhove & D'hooghe, 2015[Vandekerckhove, S. & D'hooghe, M. (2015). Bioorg. Med. Chem. 23, 5098-5119.]; Lyon et al., 1999[Lyon, M. A., Lawrence, S., Williams, D. J. & Jackson, Y. A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 437-442.]; Nayak et al., 2016[Nayak, G., Shrivastava, B. & Singhai, A. K. (2016). Int. J. Curr. Pharm. Res, 8, 64-67.]; Hamama et al., 2018[Hamama, W. S., Ibrahim, M. E., Gooda, A. A. & Zoorob, H. H. (2018). RSC Adv. 8, 8484-8515.]; Chavan et al., 2016[Chavan, H. V., Sirsat, D. M. & Mule, Y. B. (2016). Iran. Chem. Commun, 4, 373-388.]).

[Scheme 1]

In an attempt to find novel bioactive cytotoxic mol­ecules, we have synthesized a series of quinoline-3-carbo­nitrile and 2-chloro­quinoline derivatives by the reaction mechanism illus­trated in Fig. 1[link]. A similar synthesis has been reported in the literature (Korcz et al., 2018[Korcz, M., Sączewski, F., Bednarski, P. J. & Kornicka, A. (2018). Molecules, 23, 1497-1518.]).

[Figure 1]
Figure 1
Reaction scheme: condensation of 2-chloro-3-formyl­quinoline with phenyl­hydrazine.

The structure of the title compound 5, has been elucidated using 1H and 13C NMR spectroscopy and X-ray diffraction analysis.

2. Structural commentary

Compound 5 was prepared by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. It crystallizes in the monoclinic space group Cc. It is composed of a phenyl ring and a quinoline ring system linked by a –CH=N—NH– spacer (Fig. 2[link]), and adopts an E configuration relative to the hydrazonic N2=C10 bond [1.277 (3) Å].

[Figure 2]
Figure 2
The mol­ecular structure of compound 5 with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The quinoline moiety is very slightly twisted, as indicated by the dihedral angle of 0.99 (10)° between the C1–C6 and N1/C1–C4/C9 rings. The phenyl ring (C11–C16) makes a dihedral angle of 8.49 (9)° with the mean plane of the quinoline ring system. The C1—Cl1 bond length of 1.750 (2) Å is in good agreement with the value of 1.756 (2) Å reported for a related structure, viz. (E)-1-[(2-chloro­quinolin-3-yl)methyl­ene]-2-(4-methyl­phen­yl)hydrazine, also known as 2-chloro-3-{[(4-methyl­phen­yl)hydrazono]meth­yl)quinoline} (Kumara et al., 2016[Kumara, T. H. S., Nagendrappa, G., Chandrika, N., Sowmya, H. B. V., Kaur, M., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. C72, 670-678.]).

3. Supra­molecular features

In the crystal of compound 5, mol­ecules are linked by a C—H⋯π-phenyl inter­action (Table 1[link]), with an H⋯centroid distance of 2.97 Å, forming zigzag chains propagating along the [10[\overline{3}]] direction, as shown in Fig. 3[link]. The NH group of the hydrazone moiety does not form a hydrogen bond, but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via a weak N—H⋯π inter­action (Table 1[link]), to form of a supra­molecular three-dimensional structure (Fig. 4[link]). There are no other significant inter­molecular contacts shorter than those of the sum of the van der Waals radii of the individual atoms (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cgi 0.93 2.97 3.700 (3) 136
N3—H3NCgii 0.86 3.30 4.060 149
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Chain of mol­ecules of compound 5 linked by C—H⋯π and N—H⋯π inter­actions (Table 1[link]), shown respectively, as dotted orange and purple dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of compound 5. H atoms not involved in the C—H⋯π and N—H⋯π inter­actions (dotted orange and purple dashed lines, respectively) have been omitted for clarity.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

In order to visualize the role of weak inter­molecular contacts in the crystal of compound 5, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). The three-dimensional dnorm surface of 5 is shown in Fig. 5[link] with a standard surface resolution and a fixed colour scale of −0.1805 to 1.0413 a.u. The darkest red spots on the Hirshfeld surface indicate contact points with atoms participating in inter­molecular C—H⋯π and N—H⋯π inter­actions that involve C7—H7 and N3—H3N and the phenyl substituent (Table 1[link]).

[Figure 5]
Figure 5
A view of the Hirshfeld surface of compound 5 mapped over (a) dnorm and (b) shape index.

As illustrated in Fig. 6[link], the corresponding fingerprint plots for compound 5 have characteristic pseudo-symmetric wings along the de and di diagonal axes. The presence of C—H⋯π and N—H⋯π inter­actions in the crystal are indicated by the pair of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C (Fig. 6[link]c) and N⋯H/H⋯N (Fig. 6[link]e) contacts (33.7 and 9.5% contributions, respectively, to the Hirshfeld surface). As shown in Fig. 6[link]b, the most widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a contribution of 35.5% to the Hirshfeld surface. There are also Cl⋯H/H⋯Cl (12.3%; Fig. 6[link]d) and N⋯H/H⋯N (9.5%; Fig. 6[link]e) contacts, with smaller contributions from C⋯C (3.5%), Cl⋯N (2.3%), C⋯N (2.2%) and C⋯Cl (1.1%) contacts.

[Figure 6]
Figure 6
The overall two-dimensional fingerprint plot for compound 5, and those delineated into: (b) H⋯H (35.5%), (c) C⋯H/H⋯C (33.7%), (d) Cl⋯H/H.·Cl (12.3%) and (e) N⋯H/H⋯N (9.5%) contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the hydrazinylidenemethyl quinoline system (Fig. 7[link]) as the main skeleton revealed the presence of three similar structures to the title compound. One compound, (E)-2-chloro-3-{[2-(p-tol­yl)hydrazineyl­idene]meth­yl}quinoline (5a) (CSD refcode ATIBOW; Kumara et al., 2016[Kumara, T. H. S., Nagendrappa, G., Chandrika, N., Sowmya, H. B. V., Kaur, M., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. C72, 670-678.]) has the C=N—N linkage with quinoline at position-3, as in the title compound 5. Two compounds have the C=N—N linkage with quinoline at position-2, viz. (E)-2-[(2-phenyl­hydrazineyl­idene)meth­yl]quinoline (5b) (WASJOS; Mukherjee et al., 2014[Mukherjee, S., Paul, A. K., Krishna Rajak, K. & Stoeckli-Evans, H. (2014). Sens. Actuators B Chem. 203, 150-156.]) and (E)-2-{[2-(4-chloro­phen­yl)hydrazineyl­idene]meth­yl}quinoline (5c) (Chaur Valencia et al., 2018[Chaur Valencia, M. N., Romero, E. L., Gutiérrez, G., Soto Monsalve, M., D'Vries, R. & Zuluaga, H. F. (2018). Rev. Colomb. Quim. 47(2), 63-72.]), as shown in Fig. 7[link]. Table 2[link] presents a comparison between the principal bond lengths and angles of compound 5 and the related structures. The bond lengths in the hydrazonic linkage –C=N—N– remain almost unaltered in all four compounds, as do the C—C=N—N torsion angles.

Table 2
Comparison of main bond lengths (Å) and C—C=N—N torsion angles (°) in compound 5 and the related structures 5a, 5b and 5c

Compound C2—C10 C10=N2 N2—N3 N3—C11 C—C=N—N
5 1.461 (3) 1.277 (3) 1.349 (3) 1.391 (3) −177.79 (19)
5a 1.468 1.282 1.354 1.400 −178.40
5b 1.452 1.289 1.350 1.393 −179.10
5c 1.456 1.279 1.348 1.389 179.10
Notes: 5 this study; 5a Kumara et al. (2016[Kumara, T. H. S., Nagendrappa, G., Chandrika, N., Sowmya, H. B. V., Kaur, M., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. C72, 670-678.]); 5b Mukherjee et al. (2014[Mukherjee, S., Paul, A. K., Krishna Rajak, K. & Stoeckli-Evans, H. (2014). Sens. Actuators B Chem. 203, 150-156.]); 5c Chaur Valencia et al. (2018[Chaur Valencia, M. N., Romero, E. L., Gutiérrez, G., Soto Monsalve, M., D'Vries, R. & Zuluaga, H. F. (2018). Rev. Colomb. Quim. 47(2), 63-72.]).
[Figure 7]
Figure 7
Structures of some related quinoline-hydrazine compounds.

6. Synthesis and crystallization

The multi-step reactions leading to the synthesis of the title compound 5 are illustrated in Fig. 1[link]. Details of the syntheses of compounds 2, 3 and 5 are given below.

2-Chloro­quinoline-3-carbaldehyde (3) was synthesized from acetyl­ated aniline (2), according to a Vilsmeier–Haack reaction, either by conventional methods (Ramesh et al., 2008[Ramesh, E., Sree Vidhya, T. K. & Raghunathan, R. (2008). Tetrahedron Lett. 49, 2810-2814.]; Rajakumar & Raja, 2010[Rajakumar, P. & Raja, R. (2010). Tetrahedron Lett. 51, 4365-4370.]), using microwaves (Mogilaiah et al., 2002[Mogilaiah, K., Reddy, N. V. & Rao, R. B. (2002). Indian J. Heterocycl. Chem. 11, 253-261.]) or ultrasonic irradiation (Ali et al., 2002[Ali, M. M., Sana, S., Tasneem, R. K. C., Rajanna, K. C. & Saiprakash, P. K. (2002). Synth. Commun. 32, 1351-1356.]).

In a first step, we tried a simple reaction of 2-chloro­quinoline-3-carbaldehyde (3) and phenyl hydrazine in ethanol at room temperature or with heating to synthesize a new pyrazolo-quinoline derivative, 1-phenyl-1H-pyrazolo[3,4-b]quinoline (4). This was by a simple and different method from that described in the literature (Hamama et al., 2018[Hamama, W. S., Ibrahim, M. E., Gooda, A. A. & Zoorob, H. H. (2018). RSC Adv. 8, 8484-8515.]). Unfortunately, the reaction did not take the desired route and led to the formation of the title compound 5, 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline, resulting from the attack of the nitro­gen of hydrazine on the aldehyde at position 3 of quinoline.

The reaction conditions for the synthesis of compound 5 were optimized by changing the solvent, the catalyst and the temperature. The best yield of 92% was obtained by the conventional method, viz. refluxing in ethanol for 10 min and without a catalyst. In the 1H NMR spectra of this hydrazone quinoline, the single resonance for the proton of the –N(H)N=group is observed at δ = 12.01 ppm, whereas the corresponding amide N=CH proton appears as a broad singlet at 8.45 ppm. The spectra show that the chemical shifts of the protons on the aryl group have been assigned correctly. The structure of this hydrazono-quinoline, 5, was confirmed by the single-crystal X-ray diffraction study.

Synthesis of N-phenyl­acetamide (2):

To a 500 ml flask containing 250 ml of water and 25% hydro­chloric acid (15 ml, 0.108 mol), aniline (9.75 ml, 0.108 mol) was added. The reaction mixture was heated at 323 K for 10 min. Then, and at room temperature, acetic anhydride (10.3 ml, 0.108 mol) and sodium acetate (16.4 g, 0.2 mol) were added. The mixture was stirred for 20 min. The product obtained was filtered off and then dried, giving a white solid (yield 86%, m.p. 384–386 K).

1H NMR (300 Hz, CDCl3): δ (ppm) 7.42 (1H, s, NH), 7.77–7.22 (5H, m, HAr), 2,21 (3H, s, CH3); 13C NMR (75 Hz, CDCl3): δ (ppm) 169.9 (CO), 140.0 (C), 129.6 (2C), 128.7 (C), 122.3 (2CH), 20.9 (CH3).

Synthesis of 2-chloro­quinoline-3-carbaldehyde (3):

Phospho­rus oxychloride (POCl3) (35 ml, 374 mmol) was added dropwise with magnetic stirring at 273 K, to anhydrous N,N-di­methyl­formamide (DMF) (10 ml, 135 mmol) in a double-necked flask. Once the addition was complete, the temperature was allowed to rise and the reaction mixture was left stirring for 30 min. Acetanilide 2 (7.29 g, 54 mmol) was then added and the reaction mixture was heated at 348 K for 4 h. Subsequently and at room temperature, the reaction mixture was poured in small portions into an Erlenmeyer flask containing a mixture of ice/water (200 ml) maintained with magnetic stirring. The precipitate formed was filtered and then washed with water (100 ml). Compound 3 was obtained as a yellow solid (yield 68%, m.p. 418–420 K).

1HNMR (300 Hz, CDCl3): δ (ppm) 10.59 (1H, s, CHO), 8.80 (1H, s), 8.07–7.66 (4H, m, HAr); 13CNMR (75 Hz, CDCl3): δ (ppm) 189.2 (CHO), 150.1 (C), 149.5 (C), 140.2 (CH), 133.6 (CH), 129.7 (C), 128.5 (CH), 128.1 (CH), 126.4 (CH), 126.3 (C).

Synthesis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline (5):

To a solution of 2-chloro­quinoline-3-carbaldehyde (3) (191.0 mg, 1 mmol) in ethanol was added phenyl­hydrazine (0.99 ml, 1 mmol). The mixture was stirred and refluxed for 10 min. The precipitate that formed was filtered, then washed repeatedly with diethyl ether. Subsequently, the precipitate was dissolved in pure ethanol. Pale-brown block-like crystals were obtained by slow evaporation of this ethano­lic solution at room temperature. The crystals were then dried under vacuum (yield 92%, m.p. 429–429 K).

1HNMR (300 Hz, CDCl3): 12.01 (s, 1H, NH), 8.97 (s, 1H, Hquinoline), 8.45 (s, 1H, N=CH), 7.90–8.00 (m, 4H, Ar-H), 7.62 (d, J = 8.3 Hz, 2H, Ar-H), 7.33 (d, J = 7.9 Hz, 2H, Ar-H), 7.06 (t, J = 7.9 Hz, 1H, Ar-H); 13CNMR (75 Hz, CDCl3): 121.8, 127.8 (three overlapping signals), 154.1 (CCl), 147.4 (C), 146.3 (C), 135.8 (CN), 133.4 (C), 131.8 (C), 129.9 (2C), 129.5(C), 128.8 (C), 128.0 (C), 127.7 (C), 126.6 (C), 124.1 (C), 122.7 (C), 116.6 (2C).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms could be located in a difference-Fourier map. During refinement they were placed in calculated positions and treated as riding: N—H = 0.86 Å, C—H = 0.93 Å with Uiso(H) = 1.2Ueq(N,C).

Table 3
Experimental details

Crystal data
Chemical formula C16H12ClN3
Mr 281.74
Crystal system, space group Monoclinic, Cc
Temperature (K) 296
a, b, c (Å) 6.2114 (4), 19.4553 (11), 11.2520 (7)
β (°) 91.883 (2)
V3) 1359.01 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.35 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.678, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21613, 2981, 2712
Rint 0.029
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.04
No. of reflections 2981
No. of parameters 182
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Absolute structure Flack x determined using 1200 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.023 (15)
Computer programs: APEX3 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-Chloro-3-[(E)-(2-phenylhydrazinylidene)methyl]quinoline top
Crystal data top
C16H12ClN3F(000) = 584
Mr = 281.74Dx = 1.377 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 6.2114 (4) ÅCell parameters from 2981 reflections
b = 19.4553 (11) Åθ = 2.8–27.1°
c = 11.2520 (7) ŵ = 0.27 mm1
β = 91.883 (2)°T = 296 K
V = 1359.01 (14) Å3Block, brown
Z = 40.35 × 0.26 × 0.20 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
2981 independent reflections
Radiation source: INCOATEC IµS micro-focus source2712 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 27.1°, θmin = 2.8°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2424
Tmin = 0.678, Tmax = 0.746l = 1414
21613 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.2303P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.15 e Å3
2981 reflectionsΔρmin = 0.14 e Å3
182 parametersExtinction correction: (SHELXL2014; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0046 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1200 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.023 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50087 (11)0.42496 (3)0.50091 (7)0.0554 (2)
N10.1727 (3)0.34866 (11)0.44617 (16)0.0421 (4)
N20.6213 (3)0.40817 (9)0.12487 (17)0.0419 (4)
N30.8016 (3)0.43842 (10)0.08642 (18)0.0463 (5)
H3N0.88140.46240.13450.056*
C10.3350 (3)0.37935 (11)0.39999 (19)0.0393 (5)
C20.3882 (3)0.37981 (11)0.27845 (18)0.0371 (5)
C30.2499 (4)0.34346 (12)0.20400 (18)0.0395 (5)
H30.27440.34240.12290.047*
C40.0728 (4)0.30794 (11)0.24785 (18)0.0379 (5)
C50.0709 (4)0.26905 (12)0.1754 (2)0.0470 (5)
H50.05100.26650.09400.056*
C60.2389 (4)0.23516 (13)0.2241 (2)0.0511 (6)
H60.33280.20960.17560.061*
C70.2712 (5)0.23870 (13)0.3473 (3)0.0544 (6)
H70.38500.21490.37980.065*
C80.1374 (4)0.27659 (13)0.4190 (2)0.0498 (6)
H80.16190.27940.49990.060*
C90.0384 (4)0.31169 (11)0.37146 (19)0.0394 (5)
C100.5788 (4)0.41442 (11)0.2346 (2)0.0421 (5)
H100.66710.44040.28550.051*
C110.8577 (4)0.43052 (11)0.0315 (2)0.0405 (5)
C120.7277 (4)0.39628 (13)0.1134 (2)0.0487 (5)
H120.59800.37730.09050.058*
C130.7903 (5)0.39014 (15)0.2298 (2)0.0574 (7)
H130.70170.36700.28470.069*
C140.9814 (5)0.41769 (13)0.2655 (2)0.0582 (7)
H141.02180.41370.34410.070*
C151.1114 (5)0.45108 (15)0.1835 (3)0.0620 (7)
H151.24140.46970.20670.074*
C161.0518 (5)0.45757 (15)0.0663 (2)0.0563 (7)
H161.14200.48000.01130.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0558 (3)0.0700 (4)0.0398 (3)0.0078 (3)0.0075 (2)0.0099 (3)
N10.0487 (10)0.0489 (10)0.0288 (8)0.0018 (8)0.0014 (8)0.0004 (7)
N20.0435 (11)0.0417 (10)0.0407 (10)0.0026 (8)0.0042 (8)0.0034 (8)
N30.0471 (11)0.0510 (11)0.0411 (10)0.0138 (9)0.0049 (8)0.0024 (8)
C10.0438 (12)0.0401 (11)0.0336 (10)0.0036 (9)0.0052 (9)0.0029 (9)
C20.0416 (12)0.0352 (11)0.0345 (11)0.0044 (9)0.0015 (9)0.0009 (8)
C30.0474 (12)0.0425 (12)0.0290 (10)0.0001 (9)0.0052 (9)0.0021 (8)
C40.0453 (12)0.0349 (10)0.0335 (10)0.0029 (9)0.0025 (9)0.0002 (8)
C50.0574 (14)0.0469 (12)0.0368 (12)0.0040 (11)0.0024 (10)0.0047 (10)
C60.0566 (14)0.0465 (14)0.0499 (15)0.0112 (11)0.0021 (12)0.0065 (10)
C70.0541 (15)0.0536 (14)0.0561 (15)0.0123 (12)0.0110 (12)0.0013 (12)
C80.0575 (15)0.0561 (15)0.0361 (12)0.0054 (12)0.0092 (10)0.0025 (11)
C90.0459 (12)0.0379 (11)0.0343 (10)0.0020 (9)0.0016 (9)0.0016 (8)
C100.0452 (12)0.0426 (11)0.0385 (11)0.0024 (10)0.0011 (9)0.0009 (9)
C110.0454 (12)0.0364 (12)0.0401 (12)0.0003 (9)0.0050 (9)0.0038 (8)
C120.0464 (13)0.0539 (13)0.0457 (13)0.0040 (11)0.0004 (10)0.0031 (10)
C130.0755 (19)0.0575 (16)0.0388 (13)0.0056 (14)0.0042 (12)0.0008 (11)
C140.084 (2)0.0474 (14)0.0441 (13)0.0173 (14)0.0182 (13)0.0101 (11)
C150.0650 (18)0.0549 (15)0.0677 (18)0.0024 (13)0.0277 (15)0.0071 (13)
C160.0563 (15)0.0560 (15)0.0572 (16)0.0156 (12)0.0113 (12)0.0022 (12)
Geometric parameters (Å, º) top
Cl1—C11.750 (2)C6—H60.9300
N1—C11.295 (3)C7—C81.356 (4)
N1—C91.369 (3)C7—H70.9300
N2—C101.277 (3)C8—C91.408 (3)
N2—N31.349 (3)C8—H80.9300
N3—C111.391 (3)C10—H100.9300
N3—H3N0.8600C11—C121.377 (3)
C1—C21.417 (3)C11—C161.384 (3)
C2—C31.376 (3)C12—C131.384 (3)
C2—C101.461 (3)C12—H120.9300
C3—C41.402 (3)C13—C141.374 (4)
C3—H30.9300C13—H130.9300
C4—C51.409 (3)C14—C151.370 (5)
C4—C91.416 (3)C14—H140.9300
C5—C61.365 (4)C15—C161.387 (4)
C5—H50.9300C15—H150.9300
C6—C71.409 (4)C16—H160.9300
C1—N1—C9117.55 (18)C7—C8—H8119.8
C10—N2—N3117.97 (19)C9—C8—H8119.8
N2—N3—C11119.62 (19)N1—C9—C8119.1 (2)
N2—N3—H3N120.2N1—C9—C4121.43 (19)
C11—N3—H3N120.2C8—C9—C4119.5 (2)
N1—C1—C2126.8 (2)N2—C10—C2118.6 (2)
N1—C1—Cl1115.01 (16)N2—C10—H10120.7
C2—C1—Cl1118.15 (17)C2—C10—H10120.7
C3—C2—C1115.04 (19)C12—C11—C16119.4 (2)
C3—C2—C10121.86 (19)C12—C11—N3122.1 (2)
C1—C2—C10123.08 (19)C16—C11—N3118.4 (2)
C2—C3—C4121.36 (19)C11—C12—C13119.9 (2)
C2—C3—H3119.3C11—C12—H12120.0
C4—C3—H3119.3C13—C12—H12120.0
C3—C4—C5123.4 (2)C14—C13—C12121.0 (3)
C3—C4—C9117.76 (19)C14—C13—H13119.5
C5—C4—C9118.9 (2)C12—C13—H13119.5
C6—C5—C4120.4 (2)C15—C14—C13118.9 (2)
C6—C5—H5119.8C15—C14—H14120.5
C4—C5—H5119.8C13—C14—H14120.5
C5—C6—C7120.4 (2)C14—C15—C16120.9 (3)
C5—C6—H6119.8C14—C15—H15119.5
C7—C6—H6119.8C16—C15—H15119.5
C8—C7—C6120.5 (2)C11—C16—C15119.8 (3)
C8—C7—H7119.8C11—C16—H16120.1
C6—C7—H7119.8C15—C16—H16120.1
C7—C8—C9120.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cgi0.932.973.700 (3)136
N3—H3N···Cgii0.863.304.060149
Symmetry codes: (i) x3/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2.
Comparison of main bond lengths (Å) and C—CN—N torsion angles (°) in compound 5 and the related structures 5a, 5b and 5c top
CompoundC2—C10C10N2N2—N3N3—C11C—CN—N
51.461 (3)1.277 (3)1.349 (3)1.391 (3)-177.79 (19)
5a1.4681.2821.3541.400-178.40
5b1.4521.2891.3501.393-179.10
5c1.4561.2791.3481.389179.10
Notes: 5 this study; 5a Kumara et al. (2016); 5b Mukherjee et al. (2014); 5c Chaur Valencia et al. (2018).
 

Acknowledgements

The authors thank Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray measurements.

References

First citationAli, M. M., Sana, S., Tasneem, R. K. C., Rajanna, K. C. & Saiprakash, P. K. (2002). Synth. Commun. 32, 1351–1356.  Web of Science CrossRef CAS Google Scholar
First citationBingul, M., Tan, O., Gardner, C. R., Sutton, S. K., Arndt, G. M., Marshall, G. M., Cheung, B. B., Kumar, N. & Black, D. St C. (2016). Molecules, 21, 916–934.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaur Valencia, M. N., Romero, E. L., Gutiérrez, G., Soto Monsalve, M., D'Vries, R. & Zuluaga, H. F. (2018). Rev. Colomb. Quim. 47(2), 63–72.  Web of Science CrossRef Google Scholar
First citationChavan, H. V., Sirsat, D. M. & Mule, Y. B. (2016). Iran. Chem. Commun, 4, 373–388.  Google Scholar
First citationDesai, N. C., Kotadiya, G. M. & Trivedi, A. R. (2014). Bioorg. Med. Chem. Lett. 24, 3126–3130.  Web of Science CrossRef CAS PubMed Google Scholar
First citationErguc, A., Altinop, M. D., Atli, O., Sever, B., Iscan, G., Gormus, G. & Ozdemir, A. (2018). Lett. Drug. Des. Discov. 15, 193–202.  CAS Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010a). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V., Pal, N. K. & Chowdhury, I. H. (2010b). Bioorg. Med. Chem. Lett. 20, 1040–1044.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Eur. J. Med. Chem. 44, 4637–4647.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamama, W. S., Ibrahim, M. E., Gooda, A. A. & Zoorob, H. H. (2018). RSC Adv. 8, 8484–8515.  Web of Science CrossRef CAS Google Scholar
First citationKorcz, M., Sączewski, F., Bednarski, P. J. & Kornicka, A. (2018). Molecules, 23, 1497–1518.  Web of Science CrossRef Google Scholar
First citationKumara, T. H. S., Nagendrappa, G., Chandrika, N., Sowmya, H. B. V., Kaur, M., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. C72, 670–678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLyon, M. A., Lawrence, S., Williams, D. J. & Jackson, Y. A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 437–442.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandewale, M. C., Patil, U. C., Shedge, S. V. & Dappadwad, U. R. (2017). J. Basic Appl. Sci, 6, 354–361.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMogilaiah, K., Reddy, N. V. & Rao, R. B. (2002). Indian J. Heterocycl. Chem. 11, 253–261.  CAS Google Scholar
First citationMukherjee, S., Paul, A. K., Krishna Rajak, K. & Stoeckli-Evans, H. (2014). Sens. Actuators B Chem. 203, 150–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, G., Shrivastava, B. & Singhai, A. K. (2016). Int. J. Curr. Pharm. Res, 8, 64–67.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajakumar, P. & Raja, R. (2010). Tetrahedron Lett. 51, 4365–4370.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, E., Sree Vidhya, T. K. & Raghunathan, R. (2008). Tetrahedron Lett. 49, 2810–2814.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationVandekerckhove, S. & D'hooghe, M. (2015). Bioorg. Med. Chem. 23, 5098–5119.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVlahov, R., Parushev, S., Vlahov, J., Nickel, P. & Snatzke, G. (1990). Pure Appl. Chem. 62, 1303–1306.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds