research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-6-phenyl­pyridazin-3(2H)-one

aLaboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco, bDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar-842001, India, cLaboratory of Organic Synthesis, Extraction and Development, Faculty of Sciences, Hassan II University, Casablanca, Morocco, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and eLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: saiddaoui26@gmail.com, faizichemiitg@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 May 2019; accepted 15 June 2019; online 21 June 2019)

The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the 4-fluoro­phenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In mol­ecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming columns stacking along the a-axis direction. The B mol­ecules are linked to each other in a similar manner and form columns separating the columns of A mol­ecules.

1. Chemical context

Pyridazin-3(2H)-ones are pyridazine derivatives, being constructed about a six-membered ring that contains two adjacent nitro­gen atoms, at positions one and two, and with a carbonyl group at position three. The inter­est in these nitro­gen-rich heterocyclic derivatives arises from the fact that they exhibit a number of promising pharmacological and biological activities. These include anti-oxidant (Khokra et al., 2016[Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739-750.]), anti-bacterial and anti-fungal (Abiha et al. 2018[Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231-241.]), anti-cancer (Kamble et al. 2017[Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10-39.]), analgesic and anti-inflammatory (Ibrahim et al. 2017[Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.]), anti-depressant (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]) and anti-ulcer activities (Yamada et al., 1981[Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433-3439.]). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002[Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241-245.]), acaricides (Igarashi & Sakamoto, 1994[Igarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243-S251.]) and herbicides (Aza­ari et al., 2016[Azaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145-1152.]). The present work is a part of an ongoing structural study of heterocyclic compounds and their utilization as mol­ecular (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]) and fluorescence (Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]; Kumar et al., 2017[Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11-21.]; 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]) sensors. Given the inter­est in this class of compounds and the paucity of structural data, the crystal structure analysis of the title pyridazin-3(2H)-one derivative has been undertaken, along with a DFT study, in order to gain further insight into the mol­ecular structure.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). In each mol­ecule, a central oxopyridazinyl ring is connected to a fluoro­benzyl­acetate group, a phenyl group, and a benzyl residue. The oxopyridazinyl ring (B) is planar in both mol­ecules; r.m.s. deviations are 0.029 Å for mol­ecule A and 0.009 Å for mol­ecule B. In mol­ecule A, the 4-fluoro­phenyl ring (A; C1A–C6A), the benzyl ring (C; C20A–C25A) and the phenyl ring (D; C13A–C18A) are inclined to the central pyridazine ring (B; N1A/N2A/C9A–C12A) by 86.54 (11), 3.70 (9) and 84.87 (13)°, respectively. In mol­ecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. Hence, the conformation of the two mol­ecules differs essentially in the orientation of the benzyl ring (C) with respect to the central pyridazine ring (B); 3.70 (9)° in mol­ecule A compared to 10.47 (8)° in mol­ecule B. The two mol­ecules have an r.m.s. deviation of 0.683 Å for the 30 non-hydrogen atoms (Fig. 2[link]; PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A structural overlap view of mol­ecule A (black) on mol­ecule B (red), drawn using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Supra­molecular features

In the crystal, the A mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif (Table 1[link] and Fig. 3[link]). The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action (Table 1[link]), forming columns stacking along the a-axis direction. The B mol­ecules are linked to each other in a similar manner (Table 1[link]), and also form columns separating the columns of A mol­ecules, as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15A—H15A⋯F1Ai 0.93 2.49 3.263 (3) 141
C15B—H15B⋯F1Bii 0.93 2.56 3.310 (3) 138
C8A—H8B⋯O1Aiii 0.97 2.50 3.466 (3) 179
C8B—H8D⋯O1Biv 0.97 2.49 3.458 (2) 176
C19A—H19ACg1iv 0.97 2.93 3.845 (2) 158
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x-1, -y, -z+1; (iii) x+1, y, z; (iv) x-1, y, z.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The C—H⋯F hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Frontier mol­ecular orbitals analysis

The highest occupied mol­ecular orbitals (HOMOs) and the lowest-lying unoccupied mol­ecular orbitals (LUMOs) are named as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry and UV–vis spectra. As a result of the inter­action between the HOMO and LUMO orbitals of a structure, a transition state of the ππ* type is observed according to mol­ecular orbital theory. The frontier orbital gap helps characterize the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed as a soft mol­ecule. The DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The DFT structure optimization was performed starting from the X-ray geometry and the experimental values of the bond lengths and bond angles match the theoretical values. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole substituted oxopyridazinyl ring. The electron distribution of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels is shown in Fig. 4[link]. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO−1 is domin­ated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is 0.15669 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.22571 and −0.06902 a.u., respectively.

[Figure 4]
Figure 4
Electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.

5. Mol­ecular electrostatic potential surface analysis

The mol­ecular electrostatic potential (MEP) is a technique of mapping electrostatic potential onto the iso-electron density surface. The MEP surface provides information about the reactive sites. The colour scheme is as follows: red for electron rich, partial negative charge; blue for electron-deficient, partial positive charge; light blue for a slightly electron deficient region; yellow for a slightly electron-rich region; green for neutral (Politzer & Murray, 2002[Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134-142.]). In addition to these, in the majority of the MEPs, while the maximum positive region, which is the preferred site for nucleophilic attack, is indicated in blue, the maximum negative region, which is the preferred site for electrophilic attack, is indicated in red. The three-dimensional plot of the MEP of the title compound is shown in Fig. 5[link]. According to the MEP map results, the negative regions of the whole mol­ecule are located on donor oxygen atoms (red regions). The resulting surface simultaneously displays the mol­ecular size and shape and electrostatic potential values. As can be seen from the MEP map contours, regions having negative potential are over the electronegative atoms (viz. atoms O1A and O2A of mol­ecule A and O1B and O2B of mol­ecule B). The positive regions are over hydrogen atoms, indicating that these sites are the most likely to be involved in nucleophilic processes.

[Figure 5]
Figure 5
Total electron density mapped over the mol­ecular electrostatic potential surface of the title compound.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave zero hits for the skeleton of the title compound. A search for pyridazin-3(2H)-ones gave 297 hits, while a search for 6-phenyl-pyridazin-3(2H)-ones gave 40 hits, including 6-phenyl-pyridazin-3(2H)-one itself (CSD refcode CUBBOR; Anderson et al., 2009[Anderson, K. M., Probert, M. R., Whiteley, C. N., Rowland, A. M., Goeta, A. E. & Steed, J. W. (2009). Cryst. Growth Des. 9, 1082-1087.]). A search for 4-benzyl-6-phenyl-pyridazin-3(2H)-ones gave only three hits, for example 4-(4-bromo­benz­yl)-6-phenyl­pyridazin-3(2H)-one (VOPMOE; Tsai et al., 2014[Tsai, Y.-L., Syu, S.-E., Yang, S.-M., Das, U., Fan, Y.-S., Lee, C.-J. & Lin, W. (2014). Tetrahedron, 70, 5038-5045.]). A search for pyridazin-3(2H)-ones with an oxoethyl group in position-2 on the pyridazine ring gave eight hits, mostly esters. Four of these structures also have a phenyl substituent in position-6 on the pyridazine ring, as in the title compound. They include, for example 2-(6-oxo-3,4-diphenyl-1,6-di­hydro­pyridazin-1-yl)acetic acid (CIPTOL; Aydın et al., 2007[Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.]).

7. Synthesis and crystallization

A mixture of 4-benzyl-6-phenyl­pyridazin-3(2H)-one (1 g, 3.8 mmol), K2CO3 (1.3 g, 9.5 mmol) and 2-chloro-1-(4-fluoro­phen­yl)ethan-1-one (1.58 g, 5 mmol) in acetone (40 ml), was refluxed overnight. The solution was then filtered by suction and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford the title compound as colourless prismatic crystals (yield 68%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The image plate disc in the diffractometer used for the data collection was unfortunately distorted at the outer edges, hence the maximum 2θ value available was limited to 48.8°.

Table 2
Experimental details

Crystal data
Chemical formula C25H19FN2O2
Mr 398.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.0575 (3), 10.0973 (7), 38.608 (2)
α, β, γ (°) 86.237 (5), 86.675 (5), 88.354 (5)
V3) 1963.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.67 × 0.53 × 0.44
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.953, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 16344, 6363, 4315
Rint 0.031
(sin θ/λ)max−1) 0.582
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 0.99
No. of reflections 6363
No. of parameters 542
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-Benzyl-2-[2-(4-fluorophenyl)-2-oxoethyl]-6-phenylpyridazin-3(2H)-one top
Crystal data top
C25H19FN2O2Z = 4
Mr = 398.42F(000) = 832
Triclinic, P1Dx = 1.348 Mg m3
a = 5.0575 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0973 (7) ÅCell parameters from 17316 reflections
c = 38.608 (2) Åθ = 1.1–25.0°
α = 86.237 (5)°µ = 0.09 mm1
β = 86.675 (5)°T = 296 K
γ = 88.354 (5)°Prism, colourless
V = 1963.4 (2) Å30.67 × 0.53 × 0.44 mm
Data collection top
Stoe IPDS 2
diffractometer
6363 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4315 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.031
Detector resolution: 6.67 pixels mm-1θmax = 24.4°, θmin = 1.1°
rotation method scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.953, Tmax = 0.974l = 4444
16344 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
6363 reflectionsΔρmax = 0.16 e Å3
542 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.6289 (5)0.09624 (17)0.02980 (4)0.1608 (8)
O1A0.1611 (3)0.54893 (15)0.06085 (4)0.0884 (4)
O2A0.1102 (3)0.46400 (14)0.14261 (3)0.0843 (4)
N1A0.4405 (3)0.59106 (15)0.11746 (4)0.0671 (4)
N2A0.5835 (3)0.70263 (15)0.11242 (4)0.0647 (4)
C1A0.5570 (7)0.1845 (3)0.00606 (7)0.1070 (9)
C2A0.3566 (7)0.2716 (3)0.01297 (6)0.1131 (9)
H2A0.2678970.2696090.0333550.136*
C3A0.2873 (5)0.3632 (2)0.01093 (6)0.0928 (7)
H3A0.1478970.4230520.0067160.111*
C4A0.4204 (4)0.36847 (19)0.04125 (5)0.0682 (5)
C5A0.6218 (5)0.2767 (2)0.04710 (6)0.0879 (6)
H5A0.7130230.2775670.0673160.105*
C6A0.6904 (6)0.1834 (3)0.02333 (7)0.1084 (8)
H6A0.8256010.1209600.0274610.130*
C7A0.3491 (4)0.47327 (19)0.06528 (5)0.0674 (5)
C8A0.5252 (4)0.48597 (19)0.09515 (5)0.0716 (5)
H8A0.5288790.4023570.1090270.086*
H8B0.7043300.5026550.0858540.086*
C9A0.2332 (4)0.56748 (19)0.14188 (5)0.0668 (5)
C10A0.1890 (4)0.67082 (19)0.16591 (4)0.0643 (5)
C11A0.3298 (3)0.78185 (19)0.16100 (4)0.0638 (4)
H11A0.2969830.8498310.1759210.077*
C12A0.5292 (3)0.79793 (17)0.13333 (4)0.0590 (4)
C13A0.6973 (3)0.91648 (17)0.12757 (4)0.0592 (4)
C14A0.9022 (4)0.9212 (2)0.10193 (5)0.0701 (5)
H14A0.9309360.8504250.0878260.084*
C15A1.0634 (4)1.0296 (2)0.09714 (5)0.0785 (5)
H15A1.1987961.0311030.0797640.094*
C16A1.0263 (4)1.1351 (2)0.11770 (5)0.0771 (5)
H16A1.1357771.2078100.1143780.093*
C17A0.8272 (4)1.1320 (2)0.14305 (5)0.0800 (6)
H17A0.8014401.2028630.1571840.096*
C18A0.6631 (4)1.02435 (19)0.14795 (5)0.0737 (5)
H18A0.5272091.0243440.1652480.088*
C19A0.0153 (4)0.6428 (2)0.19543 (5)0.0776 (5)
H19A0.1894650.6652080.1871600.093*
H19B0.0101030.5483850.2019100.093*
C20A0.0200 (4)0.7165 (2)0.22721 (5)0.0748 (5)
C21A0.1352 (5)0.8225 (3)0.23581 (7)0.1061 (8)
H21A0.2685360.8531740.2214920.127*
C22A0.0946 (9)0.8864 (3)0.26656 (11)0.1434 (13)
H22A0.2004390.9590780.2725780.172*
C23A0.1034 (11)0.8396 (5)0.28740 (9)0.1518 (19)
H23A0.1310880.8804730.3077310.182*
C24A0.2553 (8)0.7361 (5)0.27864 (8)0.1443 (14)
H240.3907830.7059230.2926650.173*
C25A0.2138 (5)0.6744 (3)0.24941 (6)0.1052 (8)
H25A0.3199920.6009390.2441120.126*
F1B0.1157 (4)0.40818 (14)0.53084 (4)0.1266 (5)
O1B0.3487 (3)0.07220 (14)0.43808 (3)0.0772 (4)
O2B0.4021 (3)0.03214 (13)0.35481 (3)0.0802 (4)
N1B0.0734 (3)0.15026 (13)0.38207 (3)0.0584 (4)
N2B0.0726 (3)0.26127 (13)0.38851 (3)0.0555 (3)
C1B0.0437 (5)0.3100 (2)0.50691 (5)0.0843 (6)
C2B0.1540 (5)0.2291 (2)0.51344 (5)0.0873 (6)
H2B0.2421650.2409840.5339340.105*
C3B0.2203 (4)0.1293 (2)0.48904 (5)0.0751 (5)
H3B0.3561660.0730100.4930360.090*
C4B0.0889 (3)0.11043 (16)0.45843 (4)0.0563 (4)
C5B0.1091 (4)0.19582 (19)0.45264 (5)0.0710 (5)
H5B0.1984720.1848320.4322190.085*
C6B0.1761 (5)0.2978 (2)0.47698 (6)0.0842 (6)
H6B0.3079350.3565180.4730600.101*
C7B0.1617 (3)0.00317 (17)0.43376 (4)0.0573 (4)
C8B0.0105 (3)0.03345 (16)0.40320 (4)0.0611 (4)
H8C0.0040290.0421570.3888880.073*
H8D0.1927030.0469190.4118030.073*
C9B0.2882 (3)0.14027 (18)0.35847 (4)0.0601 (4)
C10B0.3580 (3)0.26374 (17)0.33930 (4)0.0562 (4)
C11B0.2149 (3)0.37419 (17)0.34604 (4)0.0561 (4)
H11B0.2612470.4543640.3343360.067*
C12B0.0065 (3)0.37147 (16)0.37073 (4)0.0514 (4)
C13B0.1834 (3)0.48873 (15)0.37667 (4)0.0525 (4)
C14B0.3844 (3)0.48391 (18)0.40284 (4)0.0616 (4)
H14B0.4028710.4075580.4175230.074*
C15B0.5563 (4)0.59007 (18)0.40738 (5)0.0690 (5)
H15B0.6896000.5849140.4250070.083*
C16B0.5320 (4)0.70395 (19)0.38596 (5)0.0683 (5)
H16B0.6484120.7756980.3890980.082*
C17B0.3363 (4)0.71117 (18)0.36007 (5)0.0688 (5)
H17B0.3197550.7879430.3455100.083*
C18B0.1626 (4)0.60469 (17)0.35541 (4)0.0643 (5)
H18B0.0297260.6108860.3377400.077*
C19B0.5868 (3)0.2626 (2)0.31260 (4)0.0663 (5)
H19C0.6972380.1841280.3174080.080*
H19D0.6932130.3396140.3148560.080*
C20B0.5043 (3)0.26336 (16)0.27574 (4)0.0559 (4)
C21B0.6112 (5)0.3470 (2)0.25011 (5)0.0966 (7)
H21B0.7404780.4050930.2553030.116*
C22B0.5316 (6)0.3476 (3)0.21622 (6)0.1098 (9)
H22B0.6062660.4072240.1992910.132*
C23B0.3522 (5)0.2651 (2)0.20764 (5)0.0839 (6)
H23B0.3020790.2657300.1848250.101*
C24B0.2429 (6)0.1804 (3)0.23227 (6)0.1173 (9)
H24B0.1153710.1221640.2266010.141*
C25B0.3195 (5)0.1796 (3)0.26598 (6)0.1101 (9)
H25B0.2422380.1198710.2826590.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.256 (2)0.1202 (12)0.1074 (11)0.0320 (13)0.0419 (12)0.0539 (9)
O1A0.0780 (9)0.0997 (11)0.0865 (9)0.0114 (9)0.0045 (7)0.0049 (8)
O2A0.0967 (10)0.0754 (9)0.0813 (9)0.0261 (8)0.0038 (7)0.0001 (7)
N1A0.0673 (9)0.0631 (9)0.0712 (9)0.0060 (8)0.0003 (8)0.0088 (7)
N2A0.0624 (9)0.0636 (9)0.0682 (9)0.0079 (8)0.0010 (7)0.0053 (7)
C1A0.161 (3)0.0827 (17)0.0773 (15)0.0335 (18)0.0291 (16)0.0238 (13)
C2A0.164 (3)0.104 (2)0.0745 (15)0.040 (2)0.0073 (16)0.0167 (14)
C3A0.1055 (17)0.0920 (15)0.0825 (14)0.0137 (13)0.0141 (13)0.0050 (12)
C4A0.0727 (12)0.0679 (12)0.0635 (11)0.0170 (10)0.0053 (9)0.0026 (9)
C5A0.1025 (17)0.0828 (14)0.0793 (13)0.0020 (13)0.0038 (12)0.0167 (11)
C6A0.130 (2)0.0906 (17)0.1048 (19)0.0070 (15)0.0092 (16)0.0282 (14)
C7A0.0631 (11)0.0694 (12)0.0683 (11)0.0107 (10)0.0063 (9)0.0019 (9)
C8A0.0708 (12)0.0643 (11)0.0806 (12)0.0020 (10)0.0027 (10)0.0144 (9)
C9A0.0694 (12)0.0662 (12)0.0649 (10)0.0094 (10)0.0080 (9)0.0020 (9)
C10A0.0600 (10)0.0739 (12)0.0588 (10)0.0085 (10)0.0055 (8)0.0013 (9)
C11A0.0615 (11)0.0700 (12)0.0601 (10)0.0042 (9)0.0003 (8)0.0082 (8)
C12A0.0568 (10)0.0637 (11)0.0567 (9)0.0001 (9)0.0029 (8)0.0060 (8)
C13A0.0563 (10)0.0643 (11)0.0574 (9)0.0026 (8)0.0050 (8)0.0041 (8)
C14A0.0710 (12)0.0773 (12)0.0627 (10)0.0117 (10)0.0048 (9)0.0126 (9)
C15A0.0725 (13)0.0916 (15)0.0711 (11)0.0194 (11)0.0082 (9)0.0056 (11)
C16A0.0745 (13)0.0764 (13)0.0816 (13)0.0196 (11)0.0055 (11)0.0057 (11)
C17A0.0854 (14)0.0706 (13)0.0855 (13)0.0117 (11)0.0015 (11)0.0189 (10)
C18A0.0726 (12)0.0714 (12)0.0769 (12)0.0078 (10)0.0097 (10)0.0130 (10)
C19A0.0666 (12)0.0979 (15)0.0677 (11)0.0175 (11)0.0021 (9)0.0003 (10)
C20A0.0664 (12)0.0952 (15)0.0616 (11)0.0213 (11)0.0083 (9)0.0020 (10)
C21A0.0987 (18)0.1080 (19)0.1115 (19)0.0175 (16)0.0124 (15)0.0148 (16)
C22A0.171 (3)0.115 (2)0.143 (3)0.046 (2)0.055 (3)0.041 (2)
C23A0.202 (5)0.181 (4)0.077 (2)0.119 (4)0.030 (2)0.023 (2)
C24A0.154 (3)0.216 (4)0.0664 (18)0.082 (3)0.0151 (17)0.010 (2)
C25A0.0970 (17)0.147 (2)0.0718 (14)0.0226 (16)0.0119 (12)0.0078 (14)
F1B0.1881 (15)0.0904 (9)0.0925 (9)0.0023 (10)0.0239 (9)0.0314 (7)
O1B0.0677 (8)0.0835 (9)0.0804 (8)0.0159 (7)0.0044 (7)0.0024 (7)
O2B0.0885 (9)0.0646 (8)0.0843 (9)0.0185 (7)0.0103 (7)0.0045 (6)
N1B0.0605 (8)0.0512 (8)0.0615 (8)0.0053 (7)0.0018 (7)0.0024 (6)
N2B0.0564 (8)0.0535 (8)0.0558 (7)0.0056 (7)0.0021 (6)0.0003 (6)
C1B0.1186 (18)0.0606 (12)0.0675 (12)0.0130 (13)0.0217 (12)0.0125 (10)
C2B0.1173 (18)0.0800 (15)0.0631 (12)0.0123 (14)0.0109 (12)0.0060 (11)
C3B0.0839 (13)0.0732 (12)0.0685 (11)0.0027 (11)0.0118 (10)0.0017 (10)
C4B0.0579 (10)0.0538 (10)0.0558 (9)0.0083 (8)0.0043 (8)0.0035 (8)
C5B0.0781 (13)0.0672 (12)0.0667 (11)0.0060 (10)0.0023 (9)0.0029 (9)
C6B0.0966 (15)0.0675 (12)0.0861 (14)0.0106 (11)0.0060 (12)0.0074 (11)
C7B0.0521 (10)0.0572 (10)0.0616 (9)0.0049 (9)0.0050 (8)0.0062 (8)
C8B0.0610 (10)0.0523 (10)0.0688 (10)0.0017 (8)0.0030 (8)0.0033 (8)
C9B0.0604 (11)0.0611 (11)0.0586 (9)0.0077 (9)0.0038 (8)0.0063 (8)
C10B0.0531 (9)0.0658 (11)0.0500 (8)0.0006 (8)0.0049 (7)0.0051 (8)
C11B0.0561 (10)0.0578 (10)0.0537 (9)0.0020 (8)0.0030 (7)0.0012 (7)
C12B0.0527 (9)0.0532 (9)0.0484 (8)0.0009 (8)0.0059 (7)0.0011 (7)
C13B0.0546 (9)0.0530 (9)0.0505 (8)0.0001 (8)0.0078 (7)0.0035 (7)
C14B0.0657 (11)0.0610 (10)0.0565 (9)0.0048 (9)0.0023 (8)0.0004 (8)
C15B0.0708 (12)0.0685 (12)0.0660 (10)0.0085 (10)0.0074 (9)0.0053 (9)
C16B0.0672 (12)0.0640 (11)0.0738 (11)0.0137 (9)0.0071 (9)0.0103 (9)
C17B0.0788 (12)0.0541 (10)0.0721 (11)0.0045 (9)0.0055 (10)0.0042 (8)
C18B0.0653 (11)0.0602 (11)0.0653 (10)0.0023 (9)0.0041 (8)0.0031 (8)
C19B0.0555 (10)0.0838 (13)0.0593 (10)0.0040 (9)0.0005 (8)0.0065 (9)
C20B0.0521 (9)0.0577 (10)0.0571 (9)0.0021 (8)0.0056 (8)0.0074 (8)
C21B0.1225 (19)0.0981 (16)0.0714 (13)0.0528 (15)0.0054 (12)0.0004 (11)
C22B0.166 (3)0.0959 (17)0.0681 (13)0.0511 (18)0.0095 (14)0.0116 (12)
C23B0.1031 (16)0.0903 (15)0.0592 (11)0.0007 (13)0.0068 (11)0.0107 (11)
C24B0.129 (2)0.158 (2)0.0696 (14)0.0650 (19)0.0042 (13)0.0204 (15)
C25B0.135 (2)0.134 (2)0.0635 (13)0.0703 (18)0.0033 (13)0.0048 (13)
Geometric parameters (Å, º) top
F1A—C1A1.348 (3)F1B—C1B1.353 (2)
O1A—C7A1.215 (2)O1B—C7B1.217 (2)
O2A—C9A1.229 (2)O2B—C9B1.232 (2)
N1A—N2A1.353 (2)N1B—N2B1.3532 (17)
N1A—C9A1.384 (2)N1B—C9B1.383 (2)
N1A—C8A1.450 (2)N1B—C8B1.449 (2)
N2A—C12A1.309 (2)N2B—C12B1.310 (2)
C1A—C2A1.349 (4)C1B—C2B1.354 (3)
C1A—C6A1.353 (4)C1B—C6B1.366 (3)
C2A—C3A1.373 (3)C2B—C3B1.369 (3)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.389 (3)C3B—C4B1.389 (2)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.375 (3)C4B—C5B1.378 (3)
C4A—C7A1.476 (3)C4B—C7B1.483 (2)
C5A—C6A1.382 (3)C5B—C6B1.384 (3)
C5A—H5A0.9300C5B—H5B0.9300
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.512 (3)C7B—C8B1.517 (2)
C8A—H8A0.9700C8B—H8C0.9700
C8A—H8B0.9700C8B—H8D0.9700
C9A—C10A1.445 (3)C9B—C10B1.449 (2)
C10A—C11A1.342 (2)C10B—C11B1.344 (2)
C10A—C19A1.511 (3)C10B—C19B1.505 (2)
C11A—C12A1.430 (2)C11B—C12B1.427 (2)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.486 (2)C12B—C13B1.485 (2)
C13A—C18A1.386 (3)C13B—C18B1.388 (2)
C13A—C14A1.391 (2)C13B—C14B1.391 (2)
C14A—C15A1.379 (3)C14B—C15B1.374 (2)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.372 (3)C15B—C16B1.376 (3)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.363 (3)C16B—C17B1.365 (3)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.383 (3)C17B—C18B1.383 (2)
C17A—H17A0.9300C17B—H17B0.9300
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.498 (3)C19B—C20B1.505 (2)
C19A—H19A0.9700C19B—H19C0.9700
C19A—H19B0.9700C19B—H19D0.9700
C20A—C21A1.356 (3)C20B—C21B1.356 (3)
C20A—C25A1.379 (3)C20B—C25B1.363 (3)
C21A—C22A1.416 (5)C21B—C22B1.391 (3)
C21A—H21A0.9300C21B—H21B0.9300
C22A—C23A1.375 (5)C22B—C23B1.320 (3)
C22A—H22A0.9300C22B—H22B0.9300
C23A—C24A1.329 (6)C23B—C24B1.342 (3)
C23A—H23A0.9300C23B—H23B0.9300
C24A—C25A1.354 (4)C24B—C25B1.378 (3)
C24A—H240.9300C24B—H24B0.9300
C25A—H25A0.9300C25B—H25B0.9300
N2A—N1A—C9A126.89 (15)N2B—N1B—C9B126.71 (14)
N2A—N1A—C8A114.62 (14)N2B—N1B—C8B113.92 (13)
C9A—N1A—C8A118.45 (16)C9B—N1B—C8B119.37 (13)
C12A—N2A—N1A117.72 (14)C12B—N2B—N1B117.52 (13)
F1A—C1A—C2A118.3 (3)F1B—C1B—C2B119.3 (2)
F1A—C1A—C6A118.9 (3)F1B—C1B—C6B117.6 (2)
C2A—C1A—C6A122.9 (2)C2B—C1B—C6B123.07 (19)
C1A—C2A—C3A118.2 (2)C1B—C2B—C3B118.2 (2)
C1A—C2A—H2A120.9C1B—C2B—H2B120.9
C3A—C2A—H2A120.9C3B—C2B—H2B120.9
C2A—C3A—C4A121.5 (2)C2B—C3B—C4B121.3 (2)
C2A—C3A—H3A119.2C2B—C3B—H3B119.3
C4A—C3A—H3A119.2C4B—C3B—H3B119.3
C5A—C4A—C3A117.84 (19)C5B—C4B—C3B118.68 (17)
C5A—C4A—C7A122.41 (18)C5B—C4B—C7B122.54 (16)
C3A—C4A—C7A119.72 (19)C3B—C4B—C7B118.75 (17)
C4A—C5A—C6A120.9 (2)C4B—C5B—C6B120.48 (19)
C4A—C5A—H5A119.6C4B—C5B—H5B119.8
C6A—C5A—H5A119.6C6B—C5B—H5B119.8
C1A—C6A—C5A118.7 (3)C1B—C6B—C5B118.3 (2)
C1A—C6A—H6A120.6C1B—C6B—H6B120.9
C5A—C6A—H6A120.6C5B—C6B—H6B120.9
O1A—C7A—C4A121.70 (18)O1B—C7B—C4B121.68 (16)
O1A—C7A—C8A121.01 (17)O1B—C7B—C8B120.65 (16)
C4A—C7A—C8A117.26 (17)C4B—C7B—C8B117.65 (16)
N1A—C8A—C7A113.57 (16)N1B—C8B—C7B112.24 (15)
N1A—C8A—H8A108.9N1B—C8B—H8C109.2
C7A—C8A—H8A108.9C7B—C8B—H8C109.2
N1A—C8A—H8B108.9N1B—C8B—H8D109.2
C7A—C8A—H8B108.9C7B—C8B—H8D109.2
H8A—C8A—H8B107.7H8C—C8B—H8D107.9
O2A—C9A—N1A120.46 (17)O2B—C9B—N1B120.15 (16)
O2A—C9A—C10A125.55 (18)O2B—C9B—C10B125.22 (16)
N1A—C9A—C10A113.95 (17)N1B—C9B—C10B114.63 (14)
C11A—C10A—C9A119.16 (16)C11B—C10B—C9B118.57 (15)
C11A—C10A—C19A124.93 (17)C11B—C10B—C19B122.85 (16)
C9A—C10A—C19A115.91 (17)C9B—C10B—C19B118.58 (15)
C10A—C11A—C12A121.47 (17)C10B—C11B—C12B121.60 (15)
C10A—C11A—H11A119.3C10B—C11B—H11B119.2
C12A—C11A—H11A119.3C12B—C11B—H11B119.2
N2A—C12A—C11A120.52 (17)N2B—C12B—C11B120.95 (14)
N2A—C12A—C13A115.78 (15)N2B—C12B—C13B115.81 (14)
C11A—C12A—C13A123.59 (16)C11B—C12B—C13B123.17 (14)
C18A—C13A—C14A117.33 (17)C18B—C13B—C14B117.53 (15)
C18A—C13A—C12A121.94 (16)C18B—C13B—C12B121.44 (14)
C14A—C13A—C12A120.70 (16)C14B—C13B—C12B120.96 (14)
C15A—C14A—C13A120.89 (18)C15B—C14B—C13B121.11 (16)
C15A—C14A—H14A119.6C15B—C14B—H14B119.4
C13A—C14A—H14A119.6C13B—C14B—H14B119.4
C16A—C15A—C14A120.77 (18)C14B—C15B—C16B120.31 (17)
C16A—C15A—H15A119.6C14B—C15B—H15B119.8
C14A—C15A—H15A119.6C16B—C15B—H15B119.8
C17A—C16A—C15A119.18 (19)C17B—C16B—C15B119.71 (17)
C17A—C16A—H16A120.4C17B—C16B—H16B120.1
C15A—C16A—H16A120.4C15B—C16B—H16B120.1
C16A—C17A—C18A120.60 (19)C16B—C17B—C18B120.22 (17)
C16A—C17A—H17A119.7C16B—C17B—H17B119.9
C18A—C17A—H17A119.7C18B—C17B—H17B119.9
C17A—C18A—C13A121.23 (18)C17B—C18B—C13B121.11 (16)
C17A—C18A—H18A119.4C17B—C18B—H18B119.4
C13A—C18A—H18A119.4C13B—C18B—H18B119.4
C20A—C19A—C10A114.86 (17)C10B—C19B—C20B113.81 (14)
C20A—C19A—H19A108.6C10B—C19B—H19C108.8
C10A—C19A—H19A108.6C20B—C19B—H19C108.8
C20A—C19A—H19B108.6C10B—C19B—H19D108.8
C10A—C19A—H19B108.6C20B—C19B—H19D108.8
H19A—C19A—H19B107.5H19C—C19B—H19D107.7
C21A—C20A—C25A117.7 (2)C21B—C20B—C25B115.85 (18)
C21A—C20A—C19A122.8 (2)C21B—C20B—C19B121.93 (17)
C25A—C20A—C19A119.5 (2)C25B—C20B—C19B122.22 (17)
C20A—C21A—C22A120.1 (3)C20B—C21B—C22B121.4 (2)
C20A—C21A—H21A120.0C20B—C21B—H21B119.3
C22A—C21A—H21A120.0C22B—C21B—H21B119.3
C23A—C22A—C21A119.1 (4)C23B—C22B—C21B121.2 (2)
C23A—C22A—H22A120.4C23B—C22B—H22B119.4
C21A—C22A—H22A120.4C21B—C22B—H22B119.4
C24A—C23A—C22A120.3 (4)C22B—C23B—C24B119.1 (2)
C24A—C23A—H23A119.8C22B—C23B—H23B120.4
C22A—C23A—H23A119.8C24B—C23B—H23B120.4
C23A—C24A—C25A120.3 (4)C23B—C24B—C25B120.1 (2)
C23A—C24A—H24119.8C23B—C24B—H24B120.0
C25A—C24A—H24119.8C25B—C24B—H24B120.0
C24A—C25A—C20A122.4 (3)C20B—C25B—C24B122.4 (2)
C24A—C25A—H25A118.8C20B—C25B—H25B118.8
C20A—C25A—H25A118.8C24B—C25B—H25B118.8
C9A—N1A—N2A—C12A2.5 (2)C9B—N1B—N2B—C12B0.1 (2)
C8A—N1A—N2A—C12A175.39 (15)C8B—N1B—N2B—C12B179.13 (14)
F1A—C1A—C2A—C3A178.7 (2)F1B—C1B—C2B—C3B179.03 (18)
C6A—C1A—C2A—C3A0.4 (4)C6B—C1B—C2B—C3B1.1 (3)
C1A—C2A—C3A—C4A0.9 (4)C1B—C2B—C3B—C4B0.3 (3)
C2A—C3A—C4A—C5A1.4 (3)C2B—C3B—C4B—C5B1.0 (3)
C2A—C3A—C4A—C7A176.6 (2)C2B—C3B—C4B—C7B177.23 (17)
C3A—C4A—C5A—C6A0.6 (3)C3B—C4B—C5B—C6B0.3 (3)
C7A—C4A—C5A—C6A177.3 (2)C7B—C4B—C5B—C6B177.79 (16)
F1A—C1A—C6A—C5A177.9 (2)F1B—C1B—C6B—C5B178.42 (17)
C2A—C1A—C6A—C5A1.1 (4)C2B—C1B—C6B—C5B1.7 (3)
C4A—C5A—C6A—C1A0.6 (4)C4B—C5B—C6B—C1B0.9 (3)
C5A—C4A—C7A—O1A175.73 (19)C5B—C4B—C7B—O1B174.93 (16)
C3A—C4A—C7A—O1A6.4 (3)C3B—C4B—C7B—O1B7.0 (2)
C5A—C4A—C7A—C8A6.3 (3)C5B—C4B—C7B—C8B6.8 (2)
C3A—C4A—C7A—C8A171.63 (18)C3B—C4B—C7B—C8B171.34 (15)
N2A—N1A—C8A—C7A102.78 (18)N2B—N1B—C8B—C7B99.93 (16)
C9A—N1A—C8A—C7A79.2 (2)C9B—N1B—C8B—C7B79.18 (19)
O1A—C7A—C8A—N1A2.1 (3)O1B—C7B—C8B—N1B1.2 (2)
C4A—C7A—C8A—N1A179.88 (15)C4B—C7B—C8B—N1B177.16 (13)
N2A—N1A—C9A—O2A176.25 (16)N2B—N1B—C9B—O2B179.01 (16)
C8A—N1A—C9A—O2A5.9 (3)C8B—N1B—C9B—O2B2.0 (2)
N2A—N1A—C9A—C10A6.1 (3)N2B—N1B—C9B—C10B0.2 (2)
C8A—N1A—C9A—C10A171.72 (15)C8B—N1B—C9B—C10B178.76 (14)
O2A—C9A—C10A—C11A176.77 (17)O2B—C9B—C10B—C11B179.82 (17)
N1A—C9A—C10A—C11A5.7 (2)N1B—C9B—C10B—C11B0.6 (2)
O2A—C9A—C10A—C19A3.9 (3)O2B—C9B—C10B—C19B0.1 (3)
N1A—C9A—C10A—C19A173.59 (16)N1B—C9B—C10B—C19B179.12 (14)
C9A—C10A—C11A—C12A2.4 (3)C9B—C10B—C11B—C12B1.8 (2)
C19A—C10A—C11A—C12A176.84 (17)C19B—C10B—C11B—C12B177.96 (15)
N1A—N2A—C12A—C11A1.6 (2)N1B—N2B—C12B—C11B1.2 (2)
N1A—N2A—C12A—C13A177.97 (13)N1B—N2B—C12B—C13B175.68 (13)
C10A—C11A—C12A—N2A1.5 (3)C10B—C11B—C12B—N2B2.2 (2)
C10A—C11A—C12A—C13A177.60 (15)C10B—C11B—C12B—C13B174.52 (15)
N2A—C12A—C13A—C18A179.53 (16)N2B—C12B—C13B—C18B168.90 (15)
C11A—C12A—C13A—C18A3.3 (3)C11B—C12B—C13B—C18B8.0 (2)
N2A—C12A—C13A—C14A1.6 (2)N2B—C12B—C13B—C14B8.0 (2)
C11A—C12A—C13A—C14A174.69 (17)C11B—C12B—C13B—C14B175.11 (16)
C18A—C13A—C14A—C15A0.1 (3)C18B—C13B—C14B—C15B0.1 (3)
C12A—C13A—C14A—C15A178.21 (17)C12B—C13B—C14B—C15B176.92 (16)
C13A—C14A—C15A—C16A0.3 (3)C13B—C14B—C15B—C16B0.1 (3)
C14A—C15A—C16A—C17A0.1 (3)C14B—C15B—C16B—C17B0.1 (3)
C15A—C16A—C17A—C18A0.4 (3)C15B—C16B—C17B—C18B0.2 (3)
C16A—C17A—C18A—C13A0.6 (3)C16B—C17B—C18B—C13B0.2 (3)
C14A—C13A—C18A—C17A0.3 (3)C14B—C13B—C18B—C17B0.2 (3)
C12A—C13A—C18A—C17A177.72 (17)C12B—C13B—C18B—C17B176.83 (16)
C11A—C10A—C19A—C20A24.3 (3)C11B—C10B—C19B—C20B78.2 (2)
C9A—C10A—C19A—C20A154.93 (18)C9B—C10B—C19B—C20B101.59 (18)
C10A—C19A—C20A—C21A104.7 (2)C10B—C19B—C20B—C21B132.6 (2)
C10A—C19A—C20A—C25A76.8 (2)C10B—C19B—C20B—C25B47.9 (3)
C25A—C20A—C21A—C22A0.4 (3)C25B—C20B—C21B—C22B1.1 (4)
C19A—C20A—C21A—C22A178.9 (2)C19B—C20B—C21B—C22B179.4 (2)
C20A—C21A—C22A—C23A0.0 (4)C20B—C21B—C22B—C23B1.2 (4)
C21A—C22A—C23A—C24A0.4 (5)C21B—C22B—C23B—C24B0.8 (4)
C22A—C23A—C24A—C25A1.1 (5)C22B—C23B—C24B—C25B0.4 (4)
C23A—C24A—C25A—C20A1.5 (5)C21B—C20B—C25B—C24B0.7 (4)
C21A—C20A—C25A—C24A1.1 (4)C19B—C20B—C25B—C24B179.8 (2)
C19A—C20A—C25A—C24A179.7 (2)C23B—C24B—C25B—C20B0.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.
D—H···AD—HH···AD···AD—H···A
C15A—H15A···F1Ai0.932.493.263 (3)141
C15B—H15B···F1Bii0.932.563.310 (3)138
C8A—H8B···O1Aiii0.972.503.466 (3)179
C8B—H8D···O1Biv0.972.493.458 (2)176
C19A—H19A···Cg1iv0.972.933.845 (2)158
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z+1; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

This study was supported by Hassan II University, Casablanca, Morocco, Mohammed V University, Rabat, Morocco and Langat Singh College, BRABU, Muzaffarpur, India.

Funding information

Funding for this research was provided by a start-up grant from the University Grants Commission, India.

References

First citationAbiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241.  Google Scholar
First citationAnderson, K. M., Probert, M. R., Whiteley, C. N., Rowland, A. M., Goeta, A. E. & Steed, J. W. (2009). Cryst. Growth Des. 9, 1082–1087.  Web of Science CSD CrossRef CAS Google Scholar
First citationAydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145–1152.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.  Web of Science CrossRef Google Scholar
First citationIgarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243–S251.  CrossRef Google Scholar
First citationKamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10–39.  Google Scholar
First citationKhokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750.  CrossRef Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationNauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245.  CrossRef CAS Google Scholar
First citationPolitzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTsai, Y.-L., Syu, S.-E., Yang, S.-M., Das, U., Fan, Y.-S., Lee, C.-J. & Lin, W. (2014). Tetrahedron, 70, 5038–5045.  CSD CrossRef CAS Google Scholar
First citationYamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds