research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and eLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: younos.bouzian19@gmail.com, faizichemiitg@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 May 2019; accepted 3 June 2019; online 11 June 2019)

In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxyl­ate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intra­molecular C—H⋯O contact forming an S(6) ring motif. In the crystal, mol­ecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π inter­actions, forming a supra­molecular three-dimensional structure.

1. Chemical context

Heterocyclic compounds have paved the way for exceptional achievements in the fight against many life-threatening diseases (Alcaide et al., 2010[Alcaide, B., Almendros, P. & Aragoncillo, C. (2010). Curr. Opin. Drug Discov. Dev. 13, 685-597.]). It is therefore no surprise that the development of new methodologies to synthesize biologically active heterocyclic compounds persists as a very important goal in organic chemistry (Jones et al., 2011[Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. (2011). Nature, 475, 183-188.]). Quinolones and their derivatives have contributed substanti­ally to the evolution of anti­microbial agents. The development of anti­biotic quinolone began in 1962 with the discovery of nalidixic acid, which was used to treat urinary tract infections (Lesher et al., 1962[Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem. 5, 1063-1065.]). Quinolone derivatives are a classical division of organic chemistry; many of these mol­ecules have shown remarkable biological properties, including exceptional anti­bacterial activity (Beena & Rawat, 2013[Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693-764.]; Chai et al., 2011[Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267-4273.]; Hoshino et al., 2008[Hoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65-76.]) and are used as anti-fungal (Musiol et al., 2010[Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960-1973.]), anti-tumoral (Bergh et al., 1997[Bergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204-211.]) and anti-cancer drugs (Elderfield & LeVon, 1960[Elderfield, R. C. & LeVob, E. F. (1960). J. Org. Chem. 25, 1576-1583.]). Recently, complexes based on quinoline-4-carb­oxy­lic acid have been reported (Bu et al., 2005[Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837-9846.]; Xiong et al., 2000[Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183-4186.]). The present study is a continuation of the synthesis of heterocyclic derivatives performed by our team (Chkirate et al., 2019a[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154-158.],b[Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33-37.]). It is part of an ongoing structural study of heterocyclic compounds and their utilization as mol­ecular (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]) and fluorescence sensors (Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]); Kumar et al., 2017[Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11-21.], 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]). We report herein the synthesis and the mol­ecular and crystal structures of the title compound, benzyl 1-benzyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate, along with the density functional theory (DFT) calculations.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. It is composed of two substituted aromatic rings attached to a planar quinolone ring (N1/C9–C17; r.m.s. deviation = 0.017 Å). The attached benzyl rings (C2–C7 and C19–C24) are inclined to the quinolone ring system by 74.09 (8) and 89.43 (7)°, respectively, and to each other by 63.97 (10)°. The carboxyl­ate group is twisted from the quinoline ring system by 32.2 (2)°. The carboxyl­ate group is involved in a short intra­molecular C—H⋯O contact forming an S(6) ring motif (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2 0.93 2.34 2.962 (2) 124
C6—H6⋯O3i 0.93 2.55 3.184 (3) 126
C22—H22⋯O3ii 0.93 2.56 3.490 (2) 174
C13—H13⋯Cg1iii 0.93 2.91 3.727 (2) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular C—H⋯O contact (see Table 1[link]) is shown as a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers lying parallel to the ac plane (Table 1[link] and Fig. 2[link]). The layers are linked by C—H···π inter­actions, so forming a supra­molecular three-dimensional structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A view of along the b axis of the crystal packing of the title compound. Hydrogen bonds (see Table 1[link]) are shown as dashed lines. For clarity, only H atoms H6 and H22 have been included.
[Figure 3]
Figure 3
A view of along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 1[link]). For clarity, only H atoms H6, H22 and H13 have been included (as grey balls).

4. Frontier mol­ecular orbital analysis

The highest occupied mol­ecular orbitals (HOMOs) and the lowest unoccupied mol­ecular orbitals (LUMOs) are named as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry and UV–Vis spectra. The frontier orbital gap helps characterize the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft mol­ecule. DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). DFT structure optimization was performed starting from the X-ray geometry and the values compared with experimental values of bond lengths and bond angles matching with theoretical values. The basis set 6-311G(d,p) is well suited in its approach to the experimental data. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole tetra-substituted benzene ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4[link]. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is found to be 0.15223 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.22932 and −0.07709 a.u., respectively.

[Figure 4]
Figure 4
Electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-benzyl­quinolin-2(1H)-one skeleton gave ten hits. The dihedral angle between the benzyl and quinoline rings varies from ca 71.0 to 89.6°, compared to 89.43 (7)° in the title compound. Only two of these compounds have a carboxyl­ate group in position 4 on the quinoline ring, viz. ethyl 1-benzyl-3-hy­droxy-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (CSD refcode ZINHEL; Paterna et al., 2013[Paterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. pp. 6280-6290.]) and benzyl 1-benzyl-2-oxo-3-vinyl-1,2-di­hydro­quinoline-4-carboxyl­ate (FAVZEK; Malini et al., 2017[Malini, K., Periyaraja, S. & Shanmugam, P. (2017). Eur. J. Org. Chem. pp. 3774-3786.]). The latter compound most closely resembles the title compound, with a vinyl substituent in position 3 of the quinoline ring. A view of the structural overlap of FAVZEK and the title compound is given in Fig. 5[link]. The conformation of the two compounds differs essentially in the orientation of the carboxyl­ate group with respect to the quinoline ring: 85.6 (3)° in FAVZEK compared to 32.2 (2)° in the title compound. This is the result of steric hindrance resulting from the presence of the vinyl substituent in position 3 on the quinoline ring in FAVZEK. In the title compound, the benzyl rings (C19–C24 and C2–C7) are inclined to the quinoline ring by 89.43 (7) and 74.09 (8)°, respectively, while in FAVZEK the corresponding dihedral angles are 88.55 (11) and 76.44 (13)°. The two benzyl rings are inclined to each other by 63.97 (10)° in the title compound compared to 73.38 (16)° in FAVZEK.

[Figure 5]
Figure 5
The structural overlap (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the title compound (blue) and FAVZEK (red: benzyl 1-benzyl-2-oxo-3-vinyl-1,2-di­hydro­quinoline-4-carboxyl­ate; Malini et al., 2017[Malini, K., Periyaraja, S. & Shanmugam, P. (2017). Eur. J. Org. Chem. pp. 3774-3786.]).

6. Synthesis and crystallization

A mixture of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (1 g, 5.29 mmol), K2CO3 (1.46 g, 10.58 mmol), benzyl chloride (1.21 ml, 10.58 mmol) and tetra n-butyl­ammonium bromide as catalyst in DMF (50 ml) was stirred at room temperature for 48 h. The solution was filtered by suction and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (v/v, 95/5) as eluents to afford the title compound. Colourless prismatic crystals of the title compound were obtained by slow evaporation of a solution in ethanol (yield 53%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C24H19NO3
Mr 369.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.6101 (4), 19.5523 (11), 17.2761 (11)
β (°) 96.969 (5)
V3) 1881.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.71 × 0.52 × 0.25
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.949, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 15909, 3686, 2270
Rint 0.046
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 0.95
No. of reflections 3686
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.17
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

enzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C24H19NO3F(000) = 776
Mr = 369.40Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6101 (4) ÅCell parameters from 14721 reflections
b = 19.5523 (11) Åθ = 2.1–30.9°
c = 17.2761 (11) ŵ = 0.09 mm1
β = 96.969 (5)°T = 296 K
V = 1881.0 (2) Å3Prism, colourless
Z = 40.71 × 0.52 × 0.25 mm
Data collection top
STOE IPDS 2
diffractometer
3686 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2270 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
rotation method scansh = 66
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.949, Tmax = 0.979l = 2121
15909 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3686 reflectionsΔρmax = 0.29 e Å3
254 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0160 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6381 (2)0.38420 (8)0.44614 (6)0.0805 (4)
O20.2849 (3)0.41941 (9)0.38836 (8)0.0926 (5)
O31.0727 (3)0.30369 (9)0.23941 (8)0.0974 (5)
N10.8617 (2)0.39351 (7)0.18321 (7)0.0571 (4)
C10.5448 (4)0.38554 (13)0.52105 (10)0.0808 (6)
H1A0.4232780.3504920.5229310.097*
H1B0.4732010.4296940.5293300.097*
C20.7519 (3)0.37265 (9)0.58196 (9)0.0603 (4)
C30.9437 (4)0.41769 (11)0.59339 (12)0.0802 (6)
H30.9450350.4565700.5624330.096*
C41.1323 (4)0.40511 (13)0.65041 (13)0.0906 (7)
H41.2609890.4353780.6574080.109*
C51.1318 (4)0.34884 (15)0.69647 (12)0.0909 (7)
H51.2604360.3404200.7345040.109*
C60.9439 (4)0.30506 (12)0.68696 (12)0.0835 (6)
H60.9423640.2669860.7191610.100*
C70.7553 (3)0.31656 (10)0.63000 (10)0.0693 (5)
H70.6276930.2858770.6238380.083*
C80.4909 (3)0.40350 (9)0.38491 (10)0.0627 (5)
C90.6101 (3)0.40005 (8)0.31252 (9)0.0542 (4)
C100.5488 (3)0.44685 (8)0.24814 (9)0.0512 (4)
C110.3727 (3)0.49795 (9)0.24800 (10)0.0608 (4)
H110.2840340.5013260.2899590.073*
C120.3296 (3)0.54270 (9)0.18732 (11)0.0704 (5)
H120.2145710.5768130.1885250.085*
C130.4568 (4)0.53723 (10)0.12432 (11)0.0729 (5)
H130.4260620.5676240.0829040.088*
C140.6281 (3)0.48765 (9)0.12175 (10)0.0652 (5)
H140.7101040.4840760.0782740.078*
C150.6801 (3)0.44252 (8)0.18394 (9)0.0526 (4)
C160.9158 (3)0.34674 (10)0.24281 (10)0.0669 (5)
C170.7823 (3)0.35337 (10)0.30827 (9)0.0660 (5)
H170.8175450.3235400.3500290.079*
C181.0159 (3)0.39223 (10)0.12080 (9)0.0632 (5)
H18A1.1699950.3729940.1414370.076*
H18B1.0437630.4389670.1053530.076*
C190.9192 (3)0.35221 (8)0.04907 (9)0.0516 (4)
C201.0478 (3)0.35411 (10)0.01382 (10)0.0647 (5)
H201.1851500.3810330.0115160.078*
C210.9761 (4)0.31666 (11)0.08022 (10)0.0767 (6)
H211.0660000.3181170.1220100.092*
C220.7736 (4)0.27749 (11)0.08482 (11)0.0791 (6)
H220.7241330.2526410.1298190.095*
C230.6436 (4)0.27501 (10)0.02272 (12)0.0784 (6)
H230.5059890.2481800.0254860.094*
C240.7161 (3)0.31221 (10)0.04413 (10)0.0644 (5)
H240.6267990.3101630.0860460.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0716 (8)0.1257 (12)0.0459 (6)0.0180 (8)0.0138 (6)0.0066 (7)
O20.0757 (9)0.1299 (13)0.0751 (9)0.0236 (9)0.0211 (7)0.0157 (9)
O30.1090 (11)0.1200 (12)0.0646 (8)0.0597 (10)0.0158 (7)0.0014 (8)
N10.0554 (8)0.0715 (9)0.0438 (7)0.0039 (7)0.0038 (6)0.0072 (6)
C10.0775 (12)0.1182 (17)0.0503 (10)0.0091 (12)0.0225 (9)0.0059 (11)
C20.0656 (10)0.0720 (11)0.0462 (8)0.0049 (9)0.0191 (8)0.0062 (8)
C30.0999 (15)0.0716 (12)0.0756 (13)0.0163 (11)0.0368 (12)0.0042 (10)
C40.0796 (13)0.1186 (19)0.0761 (14)0.0394 (13)0.0196 (12)0.0306 (14)
C50.0716 (12)0.147 (2)0.0550 (11)0.0068 (14)0.0100 (10)0.0096 (13)
C60.0852 (14)0.1003 (16)0.0652 (12)0.0016 (12)0.0099 (10)0.0125 (11)
C70.0771 (12)0.0755 (12)0.0564 (10)0.0184 (10)0.0129 (9)0.0005 (9)
C80.0591 (10)0.0727 (12)0.0572 (10)0.0062 (9)0.0102 (8)0.0003 (8)
C90.0546 (9)0.0624 (10)0.0448 (8)0.0017 (8)0.0031 (7)0.0039 (7)
C100.0505 (8)0.0558 (9)0.0460 (8)0.0026 (7)0.0005 (7)0.0083 (7)
C110.0606 (10)0.0634 (10)0.0574 (9)0.0047 (8)0.0031 (8)0.0092 (8)
C120.0773 (12)0.0599 (11)0.0718 (12)0.0133 (9)0.0002 (10)0.0007 (9)
C130.0873 (13)0.0644 (12)0.0652 (11)0.0039 (10)0.0016 (10)0.0111 (9)
C140.0729 (11)0.0687 (11)0.0545 (9)0.0053 (9)0.0099 (8)0.0024 (8)
C150.0518 (8)0.0562 (10)0.0485 (9)0.0034 (7)0.0008 (7)0.0062 (7)
C160.0697 (11)0.0811 (12)0.0483 (9)0.0213 (10)0.0014 (8)0.0065 (9)
C170.0751 (11)0.0771 (12)0.0448 (9)0.0178 (10)0.0039 (8)0.0025 (8)
C180.0529 (9)0.0834 (13)0.0539 (9)0.0039 (8)0.0092 (8)0.0107 (9)
C190.0493 (8)0.0602 (10)0.0450 (8)0.0077 (7)0.0049 (7)0.0009 (7)
C200.0618 (10)0.0778 (12)0.0558 (10)0.0031 (9)0.0125 (8)0.0002 (9)
C210.0878 (13)0.0937 (15)0.0506 (10)0.0169 (12)0.0167 (9)0.0051 (10)
C220.0912 (14)0.0853 (14)0.0585 (11)0.0099 (12)0.0011 (11)0.0193 (10)
C230.0741 (12)0.0816 (14)0.0764 (13)0.0097 (10)0.0036 (11)0.0154 (11)
C240.0603 (10)0.0794 (12)0.0543 (9)0.0037 (9)0.0101 (8)0.0041 (9)
Geometric parameters (Å, º) top
O1—C81.316 (2)C10—C151.406 (2)
O1—C11.454 (2)C11—C121.364 (2)
O2—C81.205 (2)C11—H110.9300
O3—C161.225 (2)C12—C131.376 (3)
N1—C161.383 (2)C12—H120.9300
N1—C151.400 (2)C13—C141.369 (3)
N1—C181.462 (2)C13—H130.9300
C1—C21.491 (3)C14—C151.394 (2)
C1—H1A0.9700C14—H140.9300
C1—H1B0.9700C16—C171.436 (3)
C2—C71.374 (2)C17—H170.9300
C2—C31.386 (3)C18—C191.510 (2)
C3—C41.378 (3)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
C4—C51.358 (3)C19—C241.376 (2)
C4—H40.9300C19—C201.376 (2)
C5—C61.352 (3)C20—C211.379 (3)
C5—H50.9300C20—H200.9300
C6—C71.373 (3)C21—C221.364 (3)
C6—H60.9300C21—H210.9300
C7—H70.9300C22—C231.369 (3)
C8—C91.490 (2)C22—H220.9300
C9—C171.338 (2)C23—C241.383 (2)
C9—C101.449 (2)C23—H230.9300
C10—C111.405 (2)C24—H240.9300
C8—O1—C1116.85 (14)C11—C12—H12120.1
C16—N1—C15122.69 (14)C13—C12—H12120.1
C16—N1—C18116.21 (14)C14—C13—C12120.92 (17)
C15—N1—C18120.98 (14)C14—C13—H13119.5
O1—C1—C2106.92 (15)C12—C13—H13119.5
O1—C1—H1A110.3C13—C14—C15120.37 (17)
C2—C1—H1A110.3C13—C14—H14119.8
O1—C1—H1B110.3C15—C14—H14119.8
C2—C1—H1B110.3C14—C15—N1120.74 (16)
H1A—C1—H1B108.6C14—C15—C10119.28 (15)
C7—C2—C3117.88 (17)N1—C15—C10119.98 (14)
C7—C2—C1120.90 (17)O3—C16—N1120.85 (17)
C3—C2—C1121.20 (18)O3—C16—C17123.13 (17)
C4—C3—C2120.3 (2)N1—C16—C17116.00 (15)
C4—C3—H3119.9C9—C17—C16123.63 (16)
C2—C3—H3119.9C9—C17—H17118.2
C5—C4—C3120.5 (2)C16—C17—H17118.2
C5—C4—H4119.8N1—C18—C19115.36 (13)
C3—C4—H4119.8N1—C18—H18A108.4
C6—C5—C4119.9 (2)C19—C18—H18A108.4
C6—C5—H5120.0N1—C18—H18B108.4
C4—C5—H5120.0C19—C18—H18B108.4
C5—C6—C7120.3 (2)H18A—C18—H18B107.5
C5—C6—H6119.8C24—C19—C20118.42 (16)
C7—C6—H6119.8C24—C19—C18123.92 (15)
C6—C7—C2121.09 (18)C20—C19—C18117.62 (15)
C6—C7—H7119.5C19—C20—C21120.96 (18)
C2—C7—H7119.5C19—C20—H20119.5
O2—C8—O1123.11 (17)C21—C20—H20119.5
O2—C8—C9125.75 (16)C22—C21—C20120.22 (19)
O1—C8—C9111.09 (14)C22—C21—H21119.9
C17—C9—C10119.64 (15)C20—C21—H21119.9
C17—C9—C8118.55 (15)C21—C22—C23119.53 (18)
C10—C9—C8121.79 (14)C21—C22—H22120.2
C11—C10—C15118.48 (15)C23—C22—H22120.2
C11—C10—C9123.49 (15)C22—C23—C24120.35 (19)
C15—C10—C9117.97 (14)C22—C23—H23119.8
C12—C11—C10121.10 (17)C24—C23—H23119.8
C12—C11—H11119.5C19—C24—C23120.51 (18)
C10—C11—H11119.5C19—C24—H24119.7
C11—C12—C13119.81 (17)C23—C24—H24119.7
C8—O1—C1—C2171.20 (17)C16—N1—C15—C14178.53 (15)
O1—C1—C2—C7118.66 (19)C18—N1—C15—C145.5 (2)
O1—C1—C2—C363.1 (2)C16—N1—C15—C101.9 (2)
C7—C2—C3—C41.2 (3)C18—N1—C15—C10174.07 (14)
C1—C2—C3—C4179.46 (18)C11—C10—C15—C141.5 (2)
C2—C3—C4—C50.6 (3)C9—C10—C15—C14178.87 (14)
C3—C4—C5—C60.6 (3)C11—C10—C15—N1178.12 (13)
C4—C5—C6—C71.2 (3)C9—C10—C15—N10.7 (2)
C5—C6—C7—C20.5 (3)C15—N1—C16—O3178.49 (17)
C3—C2—C7—C60.7 (3)C18—N1—C16—O35.4 (2)
C1—C2—C7—C6178.97 (19)C15—N1—C16—C173.1 (2)
C1—O1—C8—O22.7 (3)C18—N1—C16—C17173.04 (15)
C1—O1—C8—C9179.62 (17)C10—C9—C17—C160.7 (3)
O2—C8—C9—C17147.7 (2)C8—C9—C17—C16177.71 (16)
O1—C8—C9—C1729.9 (2)O3—C16—C17—C9179.80 (19)
O2—C8—C9—C1033.9 (3)N1—C16—C17—C91.8 (3)
O1—C8—C9—C10148.47 (15)C16—N1—C18—C1997.36 (17)
C17—C9—C10—C11179.20 (16)C15—N1—C18—C1986.45 (19)
C8—C9—C10—C110.9 (2)N1—C18—C19—C247.8 (2)
C17—C9—C10—C152.0 (2)N1—C18—C19—C20174.72 (15)
C8—C9—C10—C15176.37 (14)C24—C19—C20—C210.3 (3)
C15—C10—C11—C120.2 (2)C18—C19—C20—C21177.36 (16)
C9—C10—C11—C12176.97 (15)C19—C20—C21—C220.7 (3)
C10—C11—C12—C131.2 (3)C20—C21—C22—C230.7 (3)
C11—C12—C13—C140.5 (3)C21—C22—C23—C240.3 (3)
C12—C13—C14—C151.3 (3)C20—C19—C24—C230.1 (3)
C13—C14—C15—N1177.34 (16)C18—C19—C24—C23177.59 (17)
C13—C14—C15—C102.3 (2)C22—C23—C24—C190.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O20.932.342.962 (2)124
C6—H6···O3i0.932.553.184 (3)126
C22—H22···O3ii0.932.563.490 (2)174
C13—H13···Cg1iii0.932.913.727 (2)147
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z.
 

Acknowledgements

This study was supported by Hassan II University, Casablanca, Morocco, Mohammed V University, Rabat, Morocco, and Langat Singh College, BRABU, Muzaffarpur, India.

References

First citationAlcaide, B., Almendros, P. & Aragoncillo, C. (2010). Curr. Opin. Drug Discov. Dev. 13, 685–597.  CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBeena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764.  Google Scholar
First citationBergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204–211.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElderfield, R. C. & LeVob, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Web of Science Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65–76.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. (2011). Nature, 475, 183–188.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationLesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem. 5, 1063–1065.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalini, K., Periyaraja, S. & Shanmugam, P. (2017). Eur. J. Org. Chem. pp. 3774–3786.  Web of Science CSD CrossRef Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationMusiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPaterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. pp. 6280–6290.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationXiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds